

2020 ANNUAL GROUNDWATER AND SURFACE WATER MONITORING REPORT HAILEYBURY WASTE DISPOSAL SITE HAILEYBURY, ONTARIO

Submitted to:

The City of Temiskaming Shores

P.O. Box 2050, 325 Farr Drive

Haileybury, Ontario

P0J 1K0

Submitted by:

Wood Environment & Infrastructure Solutions

131 Fielding Road Lively, Ontario P3Y 1L7

Tel: (705) 682-2632

25 March 2021

Wood Project No.: TY131010

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

TABLE OF CONTENTS

SEC.	TION			PAGE			
1.0	INTF	RODUCTIO	ON	1			
	1.1		cation				
	1.2	Owners	ship and Key Personnel	1			
	1.3	Descrip	otion and Development of the Site	2			
		1.3.1	Waste Quantities Received				
		1.3.2	On-Site Resource Recovery Activities				
		1.3.3	Site Capacity				
	1.4		ring and Reporting Program Objectives and Requirements				
	1.5		ptions and Limitations				
2.0			TTING				
	2.1		y and Hydrogeology				
	2.2		e Water Features				
3.0			N OF MONITORING PROGRAM				
	3.1		ring Locations				
	3.2		ring Frequency				
	3.3	Field ar	nd Laboratory Parameters and Analysis	8			
	3.4	Monitor	ring Procedures and Methods	8			
	3.5	Quality	Assurance for Sampling and Analysis	9			
4.0	MONITORING RESULTS						
	4.1						
	4.2	Data Quality Evaluation					
	4.3	Ground	Iwater Flow Monitoring	10			
	4.4	Ground	Iwater Quality Monitoring	10			
		4.4.1	Background Water Quality	10			
		4.4.2	Source Strength Water Quality				
		4.4.3	Crossgradient Water Quality				
		4.4.4	Downgradient Water Quality	11			
		4.4.5	Field Parameter Measurements				
	4.5	Surface	e Water Quality Monitoring				
		4.5.1	Field Parameter Measurements				
5.0			T, INTERPRETATION AND DISCUSSION				
	5.1		lwater Quality				
		5.1.1	Groundwater Trend Analysis				
		5.1.2	Guideline B-7 Calculations				
		5.1.3	Trigger Level Monitoring Program				
	5.2		e Water Quality				
		5.2.1	Surface Water Trend Analysis				
	5 0	5.2.2	Trigger Level Monitoring Program				
0.0	5.3		acy of the Monitoring Program				
6.0			IS				
7.0			OATIONS				
8.0 9.0							
Ű.U		ニハニハンこく	J				

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

TABLES

Table 1: Was	ste Quantities Received in 2020	3
Table 2: Mon	itoring Locations On-Site	6
Table 3: Grou	undwater Monitoring Well Construction Details	7
Table 4: Surf	ace Water Monitoring Stations Summary	7
Table 5A: Sp	ring 2020 Groundwater Field Parameter Measurements	13
Table 5B: Su	mmer 2020 Groundwater Field Parameter Measurements	13
Table 5C: Fa	ll 2020 Groundwater Field Parameter Measurements	14
Table 6A: Sp	ring 2020 Surface Water Field Parameter Measurements	15
Table 6B: Fa	Il 2020 Surface Water Field Parameter Measurements	15
	FIGURES	
Figure 1	Site Location Map	
Figure 2	Surface Water and Groundwater Monitoring Locations	
Figure 3	2020 Haileybury Waste Disposal Site Operations	
Figure 4	Contaminant Attenuation Zone	
Figure 5A	Inferred Groundwater Contour Plan - June 2020	
Figure 5B	Inferred Groundwater Contour Plan - August 2020	
Figure 5C	Inferred Groundwater Contour Plan - October 2020	
	APPENDICES	
Appendix A	Certificate of Approval No. A570402	
Appendix B	Borehole Logs	
Appendix C	Groundwater Elevations	
Appendix D	2020 Laboratory Analytical Reports	
Appendix E	Summary of Groundwater Geochemical Analyses	
Appendix F	Summary of Surface Water Geochemical Analyses	
Appendix G	Trend Analysis	
Appendix H	Photographic Inventory of Groundwater and Surface Water Monitoring	Locations
Appendix I	Reasonable Use Calculations (Guideline B-7)	
Appendix J	Monitoring and Screening Checklist	

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

1.0 INTRODUCTION

Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited (Wood), was retained by The City of Temiskaming Shores (the City) to prepare the 2020 annual groundwater and surface water monitoring report for the Haileybury Waste Disposal Site (the Site). The following report provides a detailed evaluation and summary of the 2020 monitoring data and was completed to constitute the 2020 Annual Monitoring Report to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) in accordance with Subsection 6 of Condition 6 of Certificate of Approval (C of A) No. A570402, provided in Appendix A. This document also includes groundwater flow directions and a review of the historical and current groundwater and surface water geochemical data and geochemical trends. The groundwater quality is evaluated with respect to MECP Guideline B-7 and both groundwater and surface water are assessed according to a previously established Trigger Mechanism for the Site.

1.1 Site Location

The Site is located approximately 9 kilometres (km) southwest of Haileybury, Ontario, Lot 1, Concession 2, within the City of Temiskaming Shores, in the District of Temiskaming. The Universal Transverse Mercator (UTM) coordinates of the Site are 593843 Easting and 5252782 Northing, Zone 17, relative to the North American Datum (NAD) 1983 (collected via handheld Global Positioning System (GPS), accuracy +/- 5 metres (m)). The location of the Site is presented on Figure 1; a Site plan, including all monitoring locations, is presented as Figure 2.

1.2 Ownership and Key Personnel

Contact information for the Site contact representative and the Competent Environmental Practitioner (CEP) for both groundwater and surface water is outlined below.

Site Contact Representative:

Steve Burnett

The City of Temiskaming Shores P.O. Box 2050, 325 Farr Drive Haileybury, Ontario P0J 1K0 Phone: (705) 672-3363 ext. 4132

Fax: (705) 672-2911

Email: sburnett@temiskamingshores.ca

Groundwater and Surface Water CEP:

Brian Grant
Wood Environment & Infrastructure Solutions
131 Fielding Road
Lively, Ontario P3E 1L7
Phone: (705) 682-2632 ext.235

Fax: (705) 682-2260

Email: brian.grant@woodplc.com

Wood Project No.: TY131010

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

1.3 Description and Development of the Site

The Site is operated under Provisional C of A No. A570402, issued on 10 November 1998 and amended on 10 November 1999, 27 April 2009 and 18 December 2009. The Provisional C of A allows for the use of a 5.8 hectare (ha) waste fill area within a total Site area of 32.4 ha (Appendix A), as illustrated on Figure 3. The Site was originally approved in 1998, but had been in operation prior to that time, since 1975 (Story Environmental Inc. (Story), 2013). The Site is approved to accept solid non-hazardous municipal waste for disposal and has a maximum approved capacity of 470,000 cubic metres (m³), including daily and intermediate cover. The service area for the Site includes the City of Temiskaming Shores and the Town of Cobalt.

The City completed the acquisition of additional land downgradient of the Site in the fall of 2013. The negotiations for the acquisition had been ongoing since 2004, at which time the City was issued a letter of non-compliance by the MECP and was required to obtain all applicable property for the use of a 28 ha Contaminant Attenuation Zone (CAZ). The purchase of this property was passed as By-Law No. 2013-198 in December 2013. The locations of the property purchased in 2013 and the CAZ are illustrated on Figure 4.

No operations problems were encountered at the Site in 2020, and no complaints were received. As required by the C of A, a battery-operated methane gas monitor is installed at the Site in order to ensure that the Site building is free of any potential landfill gas accumulation.

1.3.1 Waste Quantities Received

As weigh scales are not in place at the Site, daily records are kept in order to estimate the amount of uncompacted waste received at the Site. The Haileybury Landfill accepted approximately 31,403.3 cubic metres (m³) of uncompacted waste in 2020. Monthly estimates of uncompacted waste are illustrated below in Table 1.

All refrigerators received at the Haileybury Landfill are tagged by licensed technicians, indicating that all potential ozone depleting substances (i.e., refrigerants) have been removed.

1.3.2 On-Site Resource Recovery Activities

Designated resource recovery areas are available at the landfill.

<u>Tires:</u> Tires are accepted at the Site in a designated area and stockpiled for shipment to a recycler. The number of tires collected from the landfill during 2020 and sent for recycling is unknown, as the City is not provided with this information under the new Full Producer Responsibility Program.

<u>Scrap Metal:</u> Scrap metal is accepted at the Site in a designated area and is sorted and removed from the Site regularly for recycling. No scrap metal was transferred off-Site during 2020.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Table 1: Waste Quantities Received in 2020

Month	Total Annual Uncompacted Waste (m³)
January	2,448.9
February	1,113.2
March	2,028.4
April	1,958.0
Мау	2,305.9
June	2,849.5
July	3,072.0
August	3,024.6
September	3,198.9
October	2,828.1
November	3,552.1
December	3,023.8
ANNUAL TOTAL	31,403.3

1.3.3 Site Capacity

Occasional topographical surveys are conducted at the Site in order to accurately track the landfill capacity consumed and remaining, and the associated estimated remaining life span of the Site. The remaining capacity of the Site is estimated on an annual basis, however an accurate estimate can only be calculated on the years that a Site survey is undertaken.

The most recent topographical survey conducted at the Site was undertaken on 19 May 2020 by Exp Services Inc. (Exp). The contours within the fill area obtained from the 2020 survey are presented on Figure 3. The 2020 topographical survey was completed by Exp in conjunction with a technical memorandum dated 25 May 2020, which outlines the estimated site life of the landfill. Exp has calculated the available remaining capacity of the Site to be approximately 48,269 m³ at the time of the May 2020 survey. Exp used a waste generation rate of 21,703 m³, estimated historically by Wood as part of a separate study, to calculate an approximate remaining life span of 2.2 years as of May 2020. Given the Site's short remaining life, it is recommended that a survey be undertaken during the spring of 2021 to accurately track remaining capacity as the Site approaches closure.

1.4 Monitoring and Reporting Program Objectives and Requirements

Previous investigations resulted in the instrumentation of the Site with a variety of groundwater monitoring wells and identification of the three existing surface water monitoring stations (SW-3 through SW-5). A total of 14 monitoring wells are currently used for monitoring purposes and

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

two additional wells have been confirmed destroyed (TW-1 and TW-3). Eight of the 14 wells currently comprising the monitoring network are sampled three times annually (TW-4, TW-6, TW-8, TW-9, TW-13, TW-15 and TW-16), and four wells are sampled once annually, in the spring (TW-10, TW-12, TW-14 and TW-17). The other three remaining wells are not sampled, but are retained for water level measurements (TW-5, TW-7 and TW-11). Static groundwater levels are measured at each of the 14 wells in the monitoring network during each of the three annual monitoring events. Surface water is sampled concurrently with groundwater during the spring and fall events. The locations of groundwater and surface water monitoring stations composing the monitoring network are presented on Figure 2.

1.5 Assumptions and Limitations

Wood's limitation of liability and scope of work is as follows:

- The work performed in this report was carried out in accordance with the Terms and Conditions made part of our contract. The conclusions presented herein are based solely upon the scope of services and time and budgetary limitations described in our contract.
- The report has been prepared in accordance with generally accepted environmental study and/or engineering practices. No other warranties, either expressed or implied, are made as to the professional services provided under the terms of our contract and included in this report.
- 3. The services performed and outlined in this report were based, in part, upon a previously installed monitoring network, established by others and approved by the applicable regulatory agencies. Our opinion cannot be extended to portions of the Site which were unavailable for direct observations, reasonably beyond the control of Wood.
- 4. The objective of this report was to assess the water quality conditions at the Site, given the context of our contract, with respect to existing environmental regulations within the applicable jurisdiction.
- 5. The Site history interpreted herein relies on information supplied by others, such as local, provincial and federal agencies, as well as Site personnel. No attempt has been made to independently verify the accuracy of such information, unless specifically noted in our report.
- 6. Our interpretations relating to the landfill-derived leachate plume at the Site are described in this report. Where testing was performed, it was executed in accordance with our contract for these services. It should be noted that other compounds or materials not tested for may be present in the Site environment.
- 7. The conclusions of this report are based, in part, on the information provided by others. The possibility remains that unexpected environmental conditions may be encountered at the Site in locations not specifically investigated. Should such an event occur, Wood must be notified in order that we may determine if modifications to our conclusions are necessary.
- 8. The utilization of Wood's services during future monitoring at the Site will allow Wood to observe compliance with the conclusions and recommendations contained herein. It will also provide for changes as necessary to suit field conditions as they are encountered.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

9. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Wood accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

2.0 PHYSICAL SETTING

2.1 Geology and Hydrogeology

Borehole logs detailing soil and groundwater conditions for the monitoring well network are provided in Appendix B. In summary, the subsurface conditions at the Site consist of sand and gravel over bedrock, with an additional layer of till between the sand unit and bedrock in some areas (Story, 2013). Bedrock outcrops are reported along the northern and eastern boundaries of the Site, with depths to bedrock in mid-Site areas varying from 16 m to 22 m below original grade (Story, 2013). The bedrock surface is reported to slope from the north and east towards the southwest (Story, 2013).

Static water levels were recorded by Wood at each of the wells during the spring, summer and fall 2020 groundwater monitoring events. Appendix C presents the groundwater elevations measured during the 2020 groundwater monitoring events. Figures 5A through 5C present the inferred groundwater elevation contours and groundwater flow directions for the 2020 monitoring events. In general, the recorded static groundwater levels indicate groundwater flow across the Site towards the west. The inferred groundwater flow direction appears to mimic the reported bedrock elevation contours, as described by Story (Story, 2013).

2.2 Surface Water Features

Surface water features on-Site include a small, intermittent stream, which flows from a swampy area east of the Site, and along the southern Site boundary, discharging to an unnamed tributary to South Wabi Creek after crossing Firstbrooke Line Road. The unnamed tributary is situated southwest of the Site, west of both Firstbrooke Line Road and the Trans Canada Pipeline right-of-way, and flows to the northwest, discharging to South Wabi Creek, which eventually discharges to Moose Lake before flowing into Lake Temiskaming via Wabi Creek.

3.0 DESCRIPTION OF MONITORING PROGRAM

3.1 Monitoring Locations

All monitoring locations for groundwater and surface water are illustrated on Figure 2. Detailed locations are provided in Table 2. Monitoring well elevations for top of casing are provided in Appendix C.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Table 2: Monitoring Locations On-Site

Monitoring Location	Easting Zone 16 NAD 83	Northing Zone 16 NAD 83	Collection Method	Accuracy	Collection Personnel	Date Collected
TW-4	593656	5252867				
TW-5	593835	5252876				
TW-6	593605	5252915				
TW-7	593553	5252777				
TW-8	593910	5253100				
TW-9	593553	5252965				
TW-10	593486	5252824				
TW-11	593519	5252961			Trained	
TW-12	593356	5252963	Handheld GPS	+/- 5 m	Wood field	26 May 2013
TW-13	593472	5253010	0. 0		crew	
TW-14	593381	5252937				
TW-15	593369	5253024				
TW-16	593282	5252995				
TW-17	593517	5252798				
SW-3	593258	5252942				
SW-4	593538	5252661				
SW-5	593843	5252782				

According to the groundwater elevation data collected to date, TW-8 is considered unlikely to be impacted by landfill leachate since it is located east and upgradient of the Site. TW-8 is therefore considered to be representative of background (i.e., non-impacted) water quality conditions, and allows a determination of Site compliance to be undertaken using MECP Guideline B-7.

Wells TW-4 and TW-6 are situated within the fill area and are consequently considered to be source monitoring wells. Located slightly downgradient of the waste fill area, wells TW-9 and TW-13 are representative of immediate downgradient water quality conditions. Wells TW-12, TW-14, TW-15 and TW-16 are located further downgradient of the waste deposits, with TW-16 being representative of the downgradient property boundary, as it is situated the furthest downgradient of the Site and within the property comprising the CAZ. Wells TW-10 and TW-17 are situated in a position crossgradient of the Site, as the inferred groundwater flow direction is toward the northwest in the vicinity of these wells.

Table 3 presents a summary of the available construction details and respective on-Site positions of the groundwater monitoring wells. Construction details are based on borehole logs prepared by others (Appendix B).

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Table 3: Groundwater Monitoring Well Construction Details

Well ID	Condition	Total Depth (mbgs)	Screened Interval (mbgs)	Unit Screened	On-Site Position
TW-3		Destroyed prior	to spring 2015 m	onitoring event.	
TW-4	Good	10.67	7.67 – 10.67	Sand	Source
TW-6	Good	8.84	8.84 - 7.34	Sand	Source
TW-8	Good	2.44	0.94 – 2.44	Sand	Upgradient
TW-9	Good	12.95	11.45 – 12.95	Sand	Downgradient
TW-10	Good	6.7	5.2 – 6.7	Sand	Crossgradient
TW-12	Good	8.7	7.2 – 8.7	Sand and Bedrock	Downgradient
TW-13	Good	14.7	11.7 – 14.7	Sand	Downgradient
TW-14	Good	13.7	10.7 – 13.7	Sand	Downgradient
TW-15	Good	13.1	10.1 – 13.1	Sand	Downgradient
TW-16	Good	7.7	6.2 – 7.7	Sand	Downgradient
TW-17	Good	4.0	2.5 – 4.0	Silt	Crossgradient

Table 4 presents a summary of the surface water monitoring locations. Surface water monitoring stations SW-3 and SW-4 are situated along the unnamed tributary to South Wabi Creek and are representative of downstream and upstream water quality conditions, respectively. Station SW-5 is situated adjacent to the Site, at the intermittent stream, on the downstream side of the Site access road. Locations of all sampling stations are indicated on Figure 2.

Table 4: Surface Water Monitoring Stations Summary

Station ID	Watercourse	Position
SW-3	Unnamed Tributary to South Wabi Creek	Downstream
SW-4	Unnamed Tributary to South Wabi Creek	Upstream
SW-5	Intermittent Stream	Adjacent to Site

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

3.2 Monitoring Frequency

As per previous annual monitoring events, groundwater was sampled three times annually by Wood, during the spring, summer and fall of 2020, and surface water was sampled twice, in the spring and fall. Sampling events occurred on the following dates:

- Spring 3 June 2020;
- Summer 10 August 2020; and,
- Fall 1 October 2020.

3.3 Field and Laboratory Parameters and Analysis

Geochemical analyses for general chemistry, metals and nitrogen cycle parameters were completed on all samples collected. A detailed list of laboratory results for these parameters is included in Appendix D. Field parameters for both groundwater and surface water comprised temperature, pH, conductivity and dissolved solids. Static water level measurements were also recorded for groundwater. All field equipment was maintained and calibrated appropriately prior to each use.

3.4 Monitoring Procedures and Methods

Monitoring and sample collection followed typical industry standard practices. Each groundwater monitoring well was purged prior to sampling to ensure the sample was representative of the formation water. Dedicated well instrumentation (Waterra Tube and foot valve system) was used to obtain water samples from the groundwater monitoring wells, and samples were immediately transferred to laboratory-prepared sample vials and bottles. Samples identified for heavy metals analysis were field-filtered using a single use 0.45 μ m filter unit, and the remaining samples were preserved following standard laboratory protocols as established in the MECP "Guidance on Sampling for Use at Contaminated Sites in Ontario" (revised December 1996). Care was taken during collection of surface water samples to ensure that a representative sample was collected, and that underlying sediments were not disturbed.

Samples were submitted under chain of custody, in a temperature controlled setting (i.e., in a cooler, on ice) to a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory sub-contractor, AGAT Laboratories (AGAT), in Mississauga for analysis. The analytical results were subsequently forwarded to Wood. Laboratory analytical reports for 2020 are provided in Appendix D.

The 2020 groundwater monitoring data were reviewed by comparison to the current MECP Ontario Drinking Water Standards (ODWS). Environmental compliance of groundwater quality was evaluated according to MECP Guideline B-7. The 2020 surface water monitoring data were reviewed by comparison to the current MECP Provincial Water Quality Objectives (PWQO), as well as the Canadian Water Quality Guidelines (CWQG) and the Aquatic Protection Values (APV) from Table 3.1 of the 2011 MECP document *Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Sites in Ontario*.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

3.5 Quality Assurance for Sampling and Analysis

Wood uses recognized industry standards, including the Canadian Council of Ministers of the Environment (CCME) Subsurface Assessment Handbook for Contaminated Sites and MECP's manual Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario for conducting environmental assessments. For quality assurance, all work is supervised and internally reviewed by senior staff members.

Field sampling equipment decontamination was completed in accordance with accepted protocols. As a minimum, sampling equipment was washed with detergent solution and rinsed with distilled water between sampling. Decontamination procedures were undertaken to prevent any cross-contamination between monitoring locations and sampling sites. Screening instruments were calibrated prior to each use.

As a minimum, for every ten groundwater or surface water samples collected, one field duplicate sample was collected and included in the laboratory submission for analysis. Three field duplicate samples were collected during the spring sampling event, two for groundwater and one for surface water; one field duplicate sample was collected during the summer sampling event, for groundwater; and two field duplicate samples were collected during the fall event, one for groundwater and one for surface water. Samples were submitted to a CALA accredited laboratory that is MECP certified for the analysis of drinking water samples. Laboratory blanks and duplicates were used to ensure sample integrity. Relative Percent Differences (RPDs) were calculated and discussed where applicable. Samples were placed in appropriate sample containers provided by the laboratory and preserved (as required based on type of analysis) until delivered (shipped by courier or hand delivered) to the laboratory for analysis. A chain of custody form accompanied samples at all points of handling.

4.0 MONITORING RESULTS

4.1 Historical Data

Historical data for groundwater and surface water are provided in Appendices E and F, respectively. Water quality data dating back to 2011 are presented for both groundwater and surface water.

4.2 Data Quality Evaluation

The analytical laboratory employed to perform the laboratory analyses (AGAT) is accredited by the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999 – "General Requirements for the Competence of Testing and Calibration Laboratories" for the tested parameters and has met the standards for proficiency testing developed by the Standards Council of Canada for parameters set out in the Soil, Ground Water and Sediment Standards.

Sample analysis dates provided on the laboratory analytical reports issued by AGAT indicate that all sample analyses were performed within the required sample/extract hold times, as indicated by the dates presented in columns for each sample parameter on the analytical report.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

The laboratory minimum detection limits were reported to be at or lower than the required MECP reporting detection limits for the parameters analyzed. A comparison of the internal laboratory duplicate samples indicates that all samples and the respective duplicates are within acceptable limits.

As a quality control measure, groundwater and/or surface water duplicate samples were collected during each sampling event. All duplicate data are provided in Appendix D and are summarized in Appendices E and F. Groundwater duplicate samples were collected from TW-17 and TW-9 during the spring monitoring event, from TW-15 during the summer monitoring event, and from TW-6 during the fall monitoring event. Surface water duplicate samples were collected from SW-4 during both the spring and fall events.

When compared to concentrations reported in the original samples, duplicate water quality data reported that all parameters were within an acceptable range with respect to relative percent difference (i.e., the industry standard of less than 50%), with the exception of barium, biological oxygen demand (BOD), phosphorus, organic nitrogen and aluminum in groundwater, and titanium and turbidity in surface water. The duplicate water quality data and associated calculated relative percent differences are not interpreted to indicate any sampling or laboratory biases during 2020.

4.3 Groundwater Flow Monitoring

As discussed in Section 2.1, the recorded static groundwater levels indicate groundwater flow from the fill area towards the west. Static groundwater elevations are presented in Appendix C. Groundwater elevations, inferred groundwater elevation contours and groundwater flow directions for the 2020 groundwater monitoring events are illustrated on Figures 5A through 5C.

In addition to the current groundwater elevation data, historical groundwater elevations were reviewed in order to identify any trends or inconsistencies in the data. Overall, the reported static groundwater elevations are consistent with those recorded during historical sampling efforts. A time-elevation graph was developed for all monitoring wells from 2003 to 2020, presented in Appendix G. The available groundwater elevation data indicate relatively stable elevations over time.

4.4 Groundwater Quality Monitoring

Samples were collected from all applicable wells during all three 2020 monitoring events. Data summary tables are provided in Appendix E. A photographic inventory of the monitoring wells is provided in Appendix H. The condition of each monitoring well was confirmed during the 2020 monitoring events, with no noticeable requirement for maintenance or repair at the time of the fall event. As discussed above, TW-3 was destroyed prior to the spring 2015 monitoring event.

4.4.1 Background Water Quality

Background water quality at TW-8 is characterized by moderate concentrations of dissolved organic carbon (DOC), and low concentrations of alkalinity, chloride, sulphate, hardness, total dissolved solids (TDS) and most metals parameters. Iron and manganese are quantified at

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

elevated levels compared to the ODWS and these parameters are therefore unreliable for evaluating landfill performance. Organic nitrogen has also been quantified at elevated concentrations at this location sporadically throughout the monitoring record. In accordance with the inferred groundwater flow direction, concentrations of landfill indicator parameters quantified at this location are considered to be representative of regional background water quality in the aquifer intersected by the well screen.

ODWS exceedances quantified in TW-8 during 2020 are shown as bold entries in the associated geochemical summary table provided in Appendix E and included iron, manganese and organic nitrogen. Iron and manganese are aesthetic objectives and have been established to assess potential taste, odour or colour problems that may interfere with good water quality control practices. Organic nitrogen is an operational guideline and specifically address potential treatment issues if the groundwater is used as a communal water supply. Exceedances of these parameters do not constitute a health hazard and can likely be attributed to elevated compounds produced by natural processes occurring in the aguifer.

4.4.2 Source Strength Water Quality

On-Site (i.e., source) groundwater quality conditions are measured by monitoring wells TW-4 and TW-6. Water quality in TW-4 and TW-6 is generally characterized by elevated concentrations of most analytical parameters, in comparison to background water quality. It is noted, however, that these wells are situated immediately downgradient of recent waste deposits, but are crossgradient to historical waste deposits. Water quality is notably degraded in TW-4, as compared to TW-6. The varying water quality conditions reported across the fill area may be indicative of waste deposits of varying ages or possibly different types of waste in the vicinity of, or upgradient of, each of the source monitoring wells. Water quality in TW-6 indicates higher than usual concentrations of indicator parameters, as compared to the historical monitoring record for this location, during the summer and fall 2019 and summer 2020 monitoring events. These variable results could potentially be indicative of an increasing trend at this location as waste deposition at the Site progresses over time.

4.4.3 Crossgradient Water Quality

Water quality conditions are similar in crossgradient wells TW-10 and TW-17. Groundwater in both wells is characterized by concentrations of most parameters at levels similar to, or lower than, background with the exceptions of chloride and sodium, which are marginally elevated. These concentrations are not interpreted to be indicative of a landfill-derived impact to groundwater quality and could potentially be related to the proximity of these monitoring wells to Firstbrooke Line Road and winter maintenance practices (i.e. road salt).

4.4.4 Downgradient Water Quality

Monitoring wells TW-9 and TW-13 measure water quality conditions immediately downgradient of the fill area, and directly downgradient of historical waste deposits. When compared to background conditions, concentrations of analytical parameters in both wells are elevated. Concentrations in these downgradient wells are higher than those reported in TW-4 and TW-6, likely as a result of their location slightly further north and more directly downgradient of the

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

older waste deposits at the Site. Groundwater quality in TW-9 is similar to that of TW-13, despite TW-13 being situated at a distance slightly further downgradient. A seasonal trend is apparent at TW-13, which indicates lower concentrations of indicator parameters during the annual spring sampling events, compared to the summer and fall events each year. This trend is consistent over time, with the exception of the spring 2018 monitoring event, as illustrated in the data summary table provided in Appendix E.

Water quality further downgradient of the Site is measured by monitoring wells TW-12, TW-14 and TW-15, situated immediately west of the pipeline right-of-way. All three wells are located generally downgradient of the fill area, however only TW-15 is situated directly hydraulically downgradient of the waste deposits. Groundwater flow in the immediate vicinity of TW-12 and TW-14 is towards the northwest, therefore these wells may not be within the groundwater plume. For the purposes of this report, they have been considered downgradient monitors, in order to ensure that any potential future impacts to groundwater at these locations are identified, should groundwater flow patterns in this area change as a result of Site activities or those on adjacent properties. At this time, the data available to date indicate that water quality in wells TW-12 and TW-14 is dissimilar to that of TW-15.

Water quality in TW-12 is generally similar to that of TW-14, with concentrations of parameters such as alkalinity, sulphate, hardness and barium quantified at slightly higher concentrations in TW-12. Both wells quantify levels of most indicator parameters that are similar to, or lower than, background well TW-8, with the exceptions of the parameters listed above in TW-12, which are marginally elevated. Water quality at downgradient monitoring locations TW-12 and TW-14 is comparable to characteristics reported at crossgradient wells TW-10 and TW-17, situated to the southeast of TW-12 and TW-14.

Groundwater quality in TW-15 is characterized by elevated concentrations of most parameters in comparison to background conditions, with the exception of iron, which is higher at background. An improvement in water quality is noted in TW-15, however, in comparison to TW-13.

TW-16 is the furthest downgradient monitoring well and is therefore considered to be representative of the downgradient property boundary. TW-16 is located in the eastern portion of the CAZ property acquired in 2013, and additional land is available within the CAZ, downgradient of TW-16, for continued natural attenuation, if necessary. Groundwater quality in TW-16 is characterized by concentrations of all parameters at levels similar to, or lower than, those reported in background monitoring well TW-8, and indicates a further improvement in water quality as compared to TW-15. No impact to groundwater quality is apparent at this downgradient location, and water quality indicates successful natural attenuation downgradient of the Site.

4.4.5 Field Parameter Measurements

Field parameters were measured at all monitoring wells at the time of sampling and are presented in Tables 5A through 5C.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Table 5A: Spring 2020 Groundwater Field Parameter Measurements

Well ID	Temperature (°C)	рН	Conductivity (mS/cm)	Dissolved Solids (mg/L)
TW-4	7.8	6.13	722	361
TW-6	8.4	6.00	229	115
TW-8	7.1	5.93	119	60
TW-9	11.4	6.47	1628	814
TW-10	6.7	5.56	155	78
TW-12	9.4	6.91	142	71
TW-13	6.5	6.21	190	95
TW-14	7.0	6.37	76	38
TW-15	10.2	7.05	155	78
TW-16	10.9	6.41	635	318
TW-17	7.2	5.99	99	50

Table 5B: Summer 2020 Groundwater Field Parameter Measurements

Well ID	Temperature (°C)	рН	Conductivity (mS/cm)	Dissolved Solids (mg/L)
TW-4	10.5	6.81	1107	554
TW-6	14.5	6.96	825	413
TW-8	13.1	7.60	206	103
TW-9	14.6	6.75	1789	895
TW-13	13.3	6.79	2952	1476
TW-15	16.3	7.02	801	401
TW-16	15.6	7.73	176	88

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Table 5C: Fall 2020 Groundwater Field Parameter Measurements

Well ID	Temperature (°C)	рН	Conductivity (mS/cm)	Dissolved Solids (mg/L)
TW-4	8.2	8.37	980	490
TW-6	8.4	7.42	370	185
TW-8	10.8	9.63	233	117
TW-9	11.9	7.41	1674	837
TW-13	10.9	6.79	1889	945
TW-15	10.6	7.74	899	450
TW-16	7.8	8.22	103	52

4.5 Surface Water Quality Monitoring

As discussed in Section 3.1, surface water monitoring stations SW-3 and SW-4 are representative of downstream and upstream water quality conditions, respectively. Station SW-5 is situated adjacent to the Site, on the intermittent stream, on the downstream side of the Site access road.

Samples were obtained at all three surface water monitoring stations during the both the spring and fall 2020 monitoring events. A photographic inventory of the monitoring stations is provided in Appendix H. Data summary tables are provided in Appendix F.

The results of the 2020 surface water monitoring indicate no APV or CWQG exceedances in SW-3 or SW-4. Both stations quantified marginal PWQO exceedance for phenols during the spring event and for iron during the fall event. Water quality downstream of the Site at SW-3 is almost identical to that upstream of any potential landfill-derived impact to surface water quality at SW-4.

Water quality at SW-5 is characterized by PWQO exceedances of phenols, low pH, copper and iron; no exceedances of the APV or CWQG were quantified during 2020. Water quality at SW-5 is similar to that reported at SW-4, with the exception of high iron concentrations. Remaining analytical parameters are typically similar to, or lower than, those reported at upstream station SW-4.

4.5.1 Field Parameter Measurements

Field parameters were measured at all monitoring stations at the time of sampling and are presented in Tables 6A and 6B.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Table 6A: Spring 2020 Surface Water Field Parameter Measurements

Station ID	Temperature (°C)	рН	Conductivity (mS/cm)	Dissolved Solids (mg/L)
SW-3	15.0	6.58	370	185
SW-4	17.1	7.27	438	219
SW-5	16.3	6.22	31	16

Table 6B: Fall 2020 Surface Water Field Parameter Measurements

Station ID	Temperature (°C)	рН	Conductivity (mS/cm)	Dissolved Solids (mg/L)
SW-3	12.1	6.08	242	121
SW-4	12.8	6.30	214	107
SW-5	11.7	4.90	35	18

5.0 ASSESSMENT, INTERPRETATION AND DISCUSSION

5.1 Groundwater Quality

5.1.1 Groundwater Trend Analysis

The current and previous groundwater elevation and water quality data were reviewed with the objective of identifying any apparent trends or inconsistencies in the present monitoring record. With respect to groundwater elevations, the data available indicate that the seasonal water table fluctuation has been relatively consistent since 2003, with two atypically low water levels reported; one in TW-10 during the fall 2015 monitoring event and one in TW-14 during the fall 2016 monitoring event. An elevation chart featuring the water table elevation in each monitoring well from 2003 to 2020 is presented in Appendix G.

A series of time-concentration graphs were developed for several select landfill indicator parameters (including alkalinity, barium, boron, chloride, DOC, hardness and TDS) for each monitoring well location from 1994 to 2020. These time-concentration graphs are presented in Appendix G.

Historical groundwater quality data indicate consistent concentrations of most parameters over time, with a few exceptions. Elevated and erratic concentrations of barium were reported during the period from 1998 to 2001 and during the years of 2002 and 2004 for the majority of wells. The results from these periods were not produced by Wood and are potentially typos contained in the inherited data. Elevated DOC concentrations were quantified in TW-10 during 2003 and

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

in TW-16 during 2012; however, these concentrations appear to be anomalous when compared to the remainder of the historical monitoring record at these locations. All parameters graphed were quantified at elevated levels in TW-6 during the fall 2019 monitoring event. These results are potentially indicative of a developing trend at this location, but additional data are necessary to confirm this interpretation.

All parameters graphed indicate high concentrations and a high range of fluctuation in TW-13, where a seasonal trend is apparent, with low concentrations quantified during the spring monitoring events and higher concentrations quantified during the summer and fall monitoring events throughout most of the historical monitoring record. Elevated concentrations of the selected parameters are quantified consistently over time in TW-4, TW-9 and TW-15, as compared to background levels; these results are consistent with the proximity of these wells to the fill area. Increasing trends are apparent in TW-9, but appear to have stabilized during recent years. An erratic range of fluctuation is demonstrated in TW-6, which indicates no apparent trends at this time. Water quality in the remaining monitoring wells is generally comparable to background conditions, with low and stable concentrations over time and no discernible trends.

5.1.2 Guideline B-7 Calculations

In September 1986, a policy was introduced by the MECP to assist in the evaluation of groundwater impacts, especially for the case of landfill and/or lagoon operations. The policy was entitled "The Incorporation of the Reasonable Use Concept into MECP Groundwater Management Activities" and is referred to now as Guideline B-7 (formerly Policy 15-08). Simply stated, the policy sets groundwater contaminant discharge criteria for landfills and/or lagoons that may impair local water quality; the criteria are based on maintaining the protection of groundwater resources on the adjacent lands or properties.

The contaminant discharge criteria, which represent the maximum acceptable levels of contaminants that should not be exceeded, are established using a simple mathematical relationship that incorporates background (existing) water quality and the highest provincial water quality standards for the adjacent land use. Under Guideline B-7, water quality impacts will not be allowed to exceed the maximum calculated discharge criteria at the landfill (or Site) property boundaries.

In order to apply Guideline B-7, the appropriate resource use of the adjacent properties must be selected. At the Haileybury Landfill Site, the highest end use for groundwater on the adjacent properties is for drinking water purposes, for which the ODWS - Table 1 through Table 4 have been established. The purpose of the ODWS is to protect public health through the provision of safe drinking water. Water intended for human consumption shall not contain unsafe concentrations of toxic chemicals (health related parameters). Health related standards are established for parameters that, when present above a certain concentration, have known or suspected adverse health effects. At the same time, water should also be aesthetically acceptable. Colour, odour and turbidity are parameters that, when controlled, result in water that is clear, colourless and without objectionable or unpleasant taste or odour (non-health related parameters). In addition, operational guidelines have been established for non-health related parameters that need to be controlled to ensure efficient and effective treatment and distribution of the water. As well, Guideline B-7 requires the identification of background water

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

quality conditions in the underlying aquifer.

The background geochemical profile (based on the geometric mean of all results from TW-8) and the resultant values were applied along with the ODWS, to complete a Guideline B-7 analysis for all of the groundwater monitoring wells for the landfill indicator parameters. Appendix I presents the Guideline B-7 calculations for the 2020 monitoring results that have been developed using all valid background analytical data observed in TW-8.

It should be noted that these Guideline B-7 values are much lower (i.e., more stringent) than the ODWS, and a well-by-well comparison of the performance of each of the parameters at all of the groundwater monitoring wells is also presented in Appendix I for the 2020 monitoring events. By the present assessment, monitoring wells TW-4, TW-6, TW-9, TW-13 and TW-15 exhibit non-compliance with Guideline B-7. Exceedances are indicated by bold and shaded entries in the tables provided in Appendix I.

Comparing concentrations observed in all groundwater monitoring wells during the 2020 sampling events to the maximum allowable concentrations (Appendix I), five health related (arsenic, barium, boron, nitrate and nitrite) and five non-health related (chloride, DOC, sodium, sulphate and TDS) parameter exceedances were reported at source and downgradient monitoring wells situated in close proximity to the fill area. The majority of the Guideline B-7 exceedances were quantified in wells TW-9 and TW-13, with fewer exceeding concentrations reported in TW-4, TW-6 and TW-15. No exceedances of the Guideline B-7 maximum allowable concentrations were quantified in TW-16.

In summary, the monitoring record indicates that a measurable water quality impact is occurring in the immediate vicinity of the waste deposits and in downgradient areas. Exceedances of the Guideline B-7 maximum allowable concentrations have been recorded on-Site during the present monitoring review and are interpreted to be landfill-derived; however, no exceedances were quantified at the monitoring well which is currently considered to be representative of the downgradient Site property boundary (i.e., TW-16). The Site is therefore in compliance with respect to Guideline B-7. Confirmation of these results through additional, regularly scheduled sampling in 2021 is recommended.

5.1.3 Trigger Level Monitoring Program

The 2012 annual monitoring report prepared by Story (Story, 2013) indicates that a Trigger Level Monitoring Program is in place for groundwater at the Site. Although no details of the program are provided in the report, it is stated that three trigger concentrations have been set, for chloride, sulphate and boron, to be evaluated at downgradient monitoring well TW-15. The trigger concentrations are 230 mg/L for chloride, 510 mg/L for sulphate and 3.5 mg/L for boron. No other trigger parameters are indicated.

By the present assessment, no trigger level exceedances were quantified in TW-15 during 2020. The Site is therefore in compliance with respect to groundwater quality, as determined by the trigger level monitoring program presented by Story in the 2012 annual monitoring report.

It should be noted that the indicated trigger concentration for sulphate has been set at a value

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

that is actually higher than the ODWS value for this parameter (i.e., 500 mg/L). It is recommended that a more appropriate trigger concentration be developed for sulphate (i.e., lower than the ODWS value). The Guideline B-7 maximum allowable concentration of 253 mg/L is recommended for use as the revised sulphate trigger concentration. It is noted that no trigger level exceedances would be quantified in TW-15 for sulphate should this revised trigger value be used.

5.2 Surface Water Quality

5.2.1 Surface Water Trend Analysis

The current and previous surface water quality data were reviewed with the objective of identifying any apparent trends or inconsistencies in the present monitoring record. A series of time-concentration graphs were developed for several select landfill indicator parameters (including barium, chloride, copper, sulphate and zinc) for each monitoring location from 2008 to 2020. These time-concentration graphs are presented in Appendix G.

Historical surface water quality data generally indicate consistent concentrations of most parameters over time. A seasonal trend is apparent at stations SW-3 and SW-4 for chloride and sulphate, which indicate almost identical patterns throughout the monitoring record. It is noted that water quality at SW-3 reported elevated concentrations of barium, copper and zinc between September 2015 and September 2017. Concentrations of these parameters at SW-3 have since returned to typical levels and are similar to those reported at SW-4. Low and stable concentrations of all parameters graphed are demonstrated at SW-4 throughout the historical monitoring record. Water quality at SW-5 is generally stable at low concentrations of most parameters, with the exception of an anomalous zinc concentration in 2013. In addition, many parameters were quantified at elevated levels at SW-5 during the fall 2019 monitoring event; these results are interpreted to be anomalous.

5.2.2 Trigger Level Monitoring Program

The 2012 annual monitoring report prepared by Story (Story, 2013) indicates that a Trigger Level Monitoring Program is in place for surface water at the Site. Although no details of the Program are provided in the report, it is stated that two trigger concentrations have been set, for boron and unionized ammonia, to be evaluated at downstream surface water monitoring station SW-3. The trigger concentrations are 0.2 mg/L for boron and 0.02 mg/L for unionized ammonia (i.e., at the PWQO values). No other trigger parameters are indicated.

By the present assessment, no trigger level exceedances were quantified at SW-3 during 2020. The Site is therefore in compliance with respect to surface water quality, as determined by the trigger level monitoring program presented by Story in the 2012 annual monitoring report.

Similar to the groundwater trigger level monitoring program, Wood recommends that the surface water trigger level concentrations be reduced, to levels lower than the associated PWQO values. Trigger levels should not be set at the compliance values, but rather at slightly reduced levels, to allow time for modifications to Site operations should the trigger values be exceeded, and a resultant condition of non-compliance occur.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

5.3 Adequacy of the Monitoring Program

It is Wood's opinion that the current groundwater and surface water monitoring program is adequate with respect to the characterization of Site conditions, the evaluation of Site performance and the assessment of Site compliance. The Monitoring and Screening Checklist is provided in Appendix J.

In accordance with MECP correspondence dated 24 July 2020, however, various changes will be made to the 2021 annual monitoring program. All monitoring wells will be sampled during all three sampling events during 2021; an additional downgradient monitoring well will be installed prior to the spring 2021 sampling event, to be situated northwest of TW-15; and analyses of trends and Guideline B-7 will include nitrate, iron and manganese.

6.0 CONCLUSIONS

Based on the results of the current monitoring program, the following conclusions have been made:

- Groundwater movement at the Site, as determined by water table elevations recorded at each of the monitoring wells, was determined as being directed away from the fill area to the west. TW-8 is situated (hydraulically) in a position considered to be representative of background conditions since it is located east of the Site. This monitoring well configuration allows a detailed evaluation of the Haileybury Landfill Site to be undertaken with respect to MECP Guideline B-7.
- 2. Groundwater quality suggests impacts (when compared to background) are occurring due to landfill-derived leachate in the wells immediate downgradient of the fill area, with a measureable improvement in groundwater quality with increased distance from the fill area. Furthest downgradient well TW-16 indicates no impact to groundwater quality. Crossgradient wells TW-10 and TW-17 and downgradient wells TW-12 and TW-14 indicate no landfill-derived impact, with water quality generally resembling background conditions.
- 3. A review of the 2020 surface water geochemical data from locations both upstream and downstream of the Site indicates no landfill-derived impact to surface water downstream of the Site at SW-3.
- 4. The current (2020) groundwater monitoring record indicates that the Site is continuing to operate as designed, as a natural attenuation type facility. Although a measurable water quality impact is occurring downgradient of the fill area, the current water quality results indicate that the Site is in compliance with respect to Guideline B-7 at compliance well TW-16.
- 5. Both groundwater and surface water are in compliance with respect to the trigger concentrations, as stated in the 2012 annual monitoring report (Story, 2013).
- 6. The Site has a calculated remaining capacity for waste of 48,269 m³, as of May 2020. This equates to a remaining Site life of 2.2 years.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

7.0 RECOMMENDATIONS

The following recommendations should be considered for inclusion in next year's monitoring program:

- 1. The City should continue to monitor groundwater and surface water at the current sampling frequencies so that seasonal variations for certain parameters could be documented and understood. Adjustments to the 2021 annual monitoring program should be made as outlined in the MECP correspondence dated 24 July 2020.
- 2. Groundwater elevations at all existing monitoring wells should be measured during each groundwater sampling round to further confirm groundwater flow directions and establish seasonal fluctuations.
- 3. A topographical survey of the entire Site should be undertaken during the spring of 2022 in order to facilitate an accurate calculation of remaining capacity and Site life, given that the Site is approaching closure.
- 4. The trigger level monitoring programs for both groundwater and surface water should be re-evaluated and revised, with trigger concentrations reduced appropriately, so as to serve as an early warning program to prevent non-compliance.

8.0 CLOSURE

This report has been prepared for the exclusive use of the City for specific application to this Site. The annual monitoring report was prepared in accordance with the verbal and written requests from the City and generally accepted assessment practices, restricting the investigations to the assessment of the environmental compliance associated with the Site. No other warranty, expressed or implied is made.

Respectfully Submitted,

Wood Environment & Infrastructure Solutions, A Division of Wood Canada Limited

Prepared by:

Reviewed by:

Emily Lemieux, B.Sc.

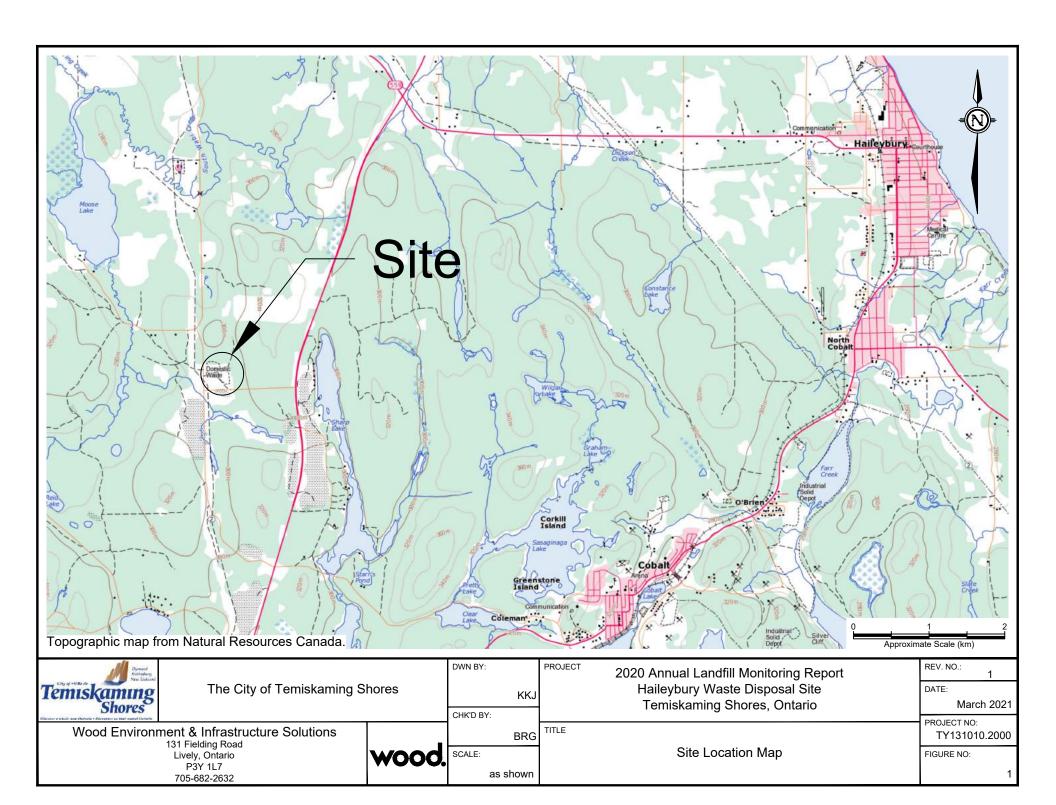
and Lis

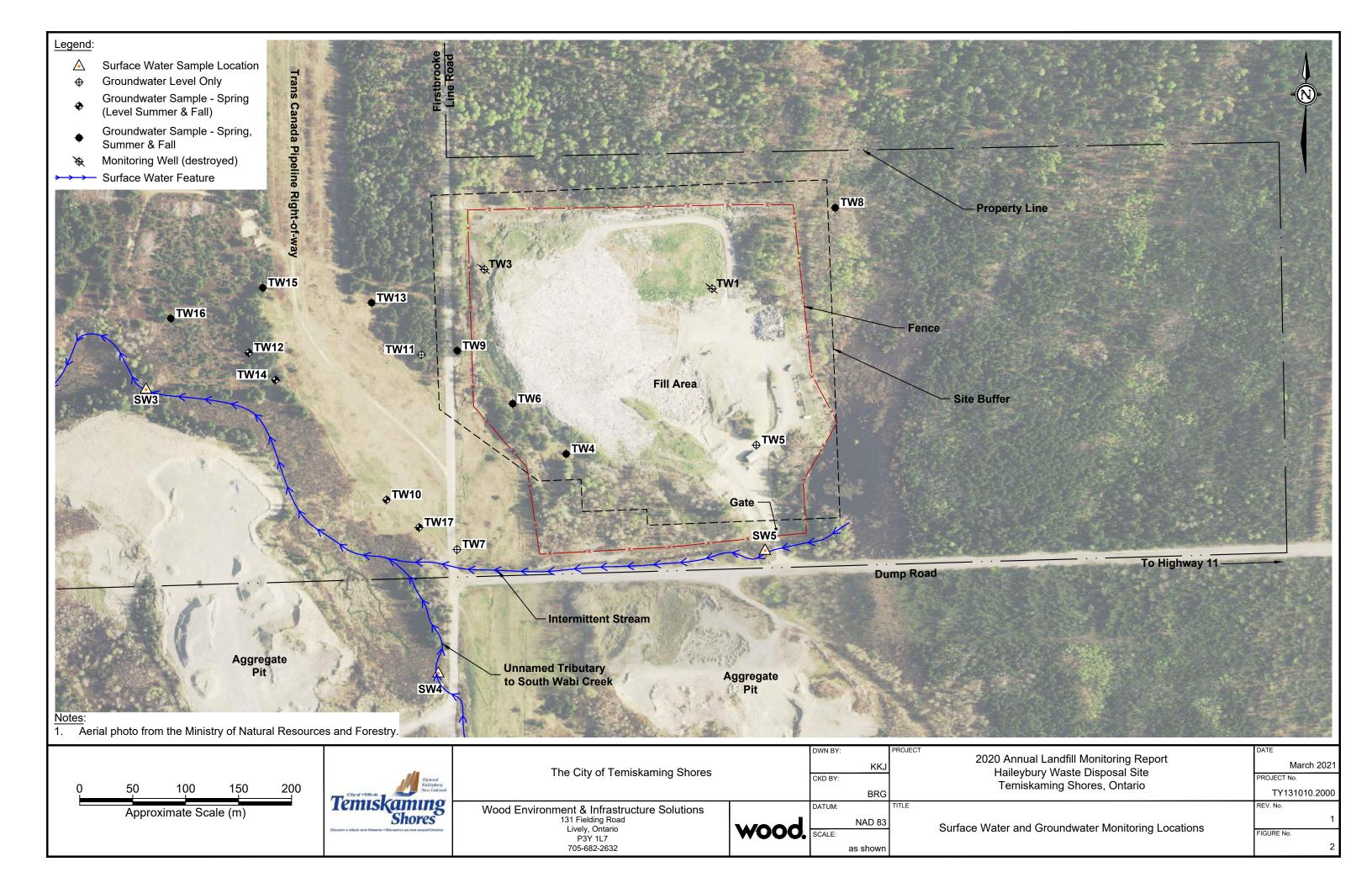
Environmental Scientist

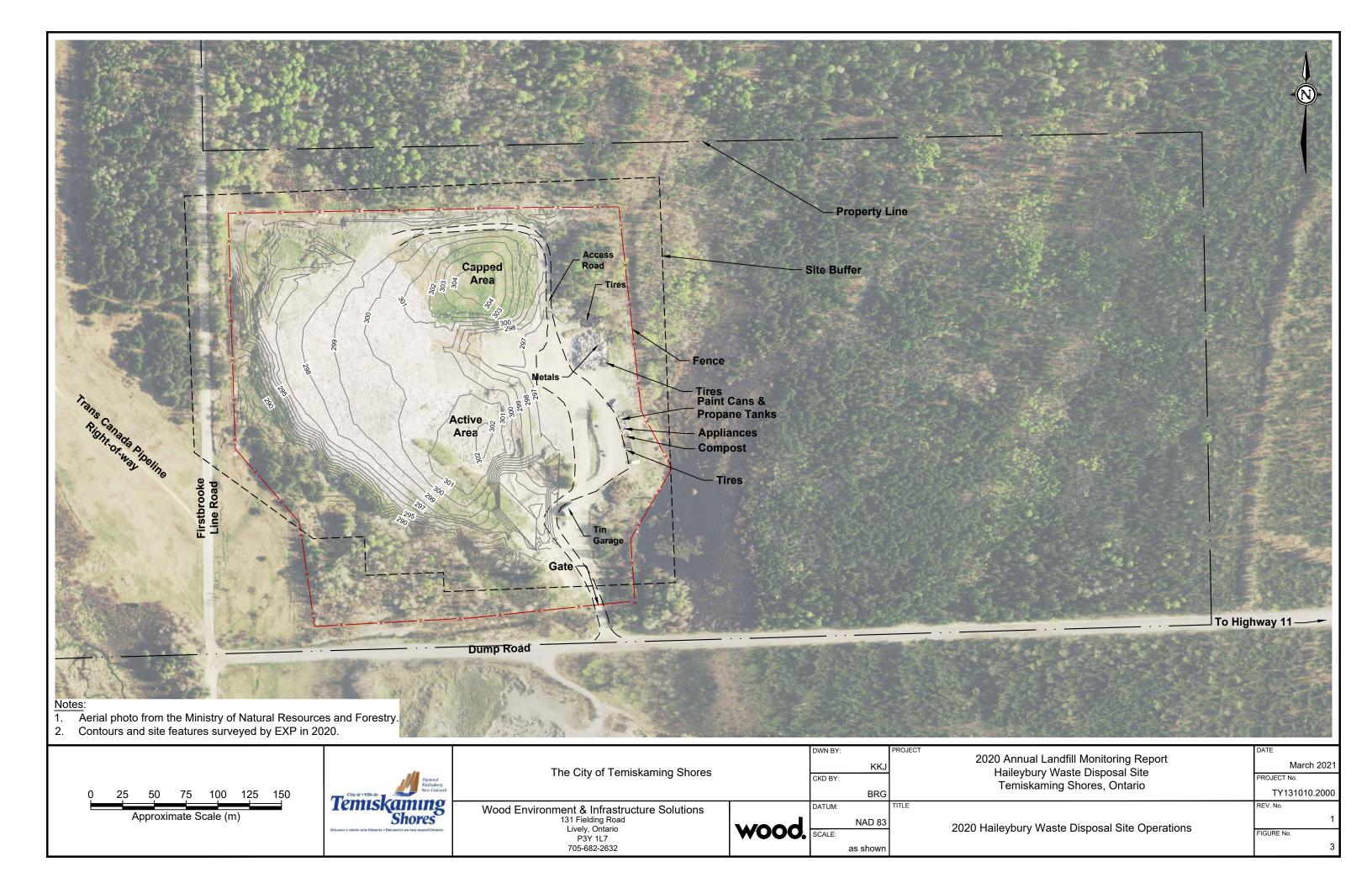
Brian Grant, P.Eng. Senior Hydrogeologist

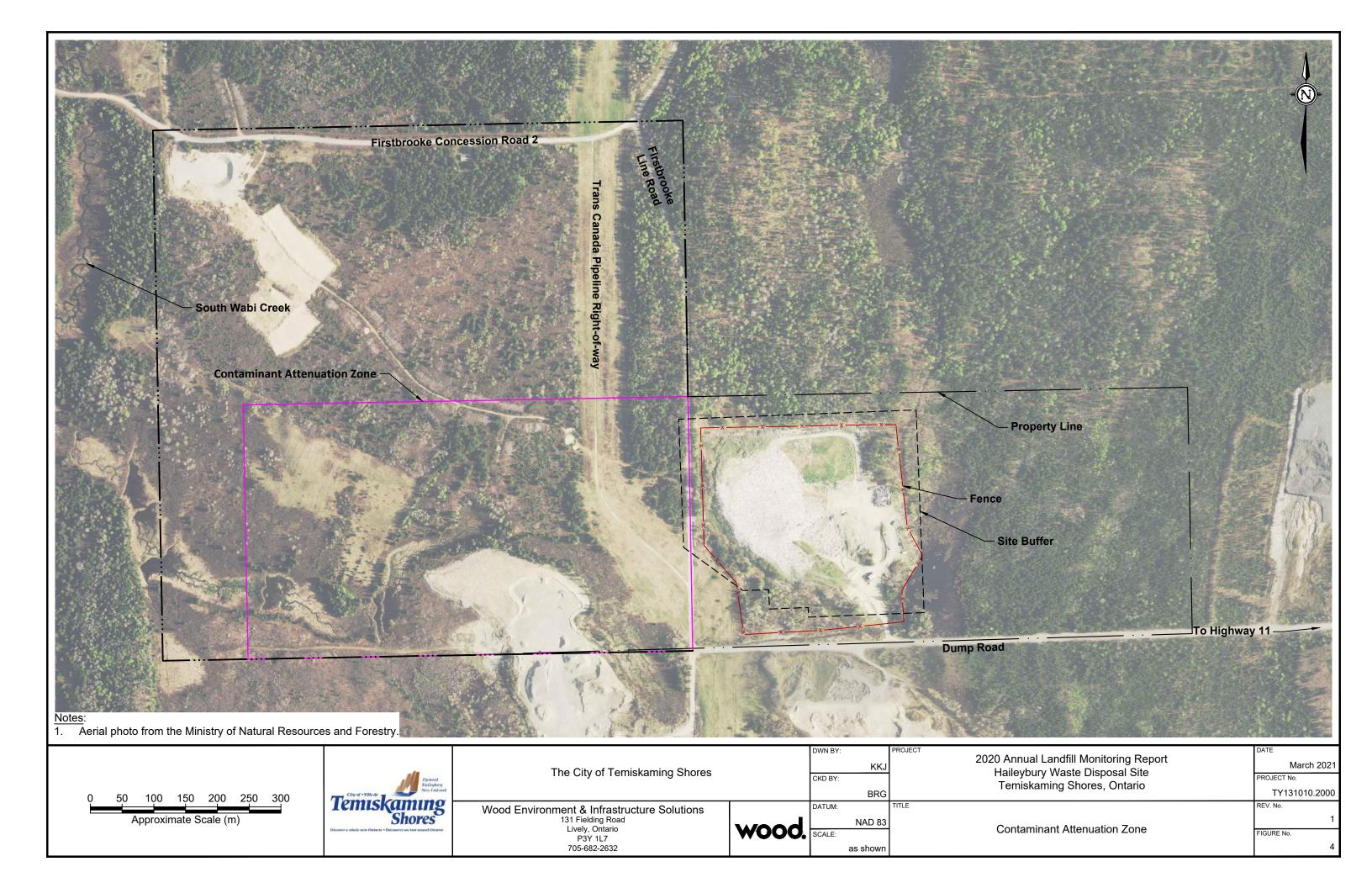
Wood Project No.: TY131010

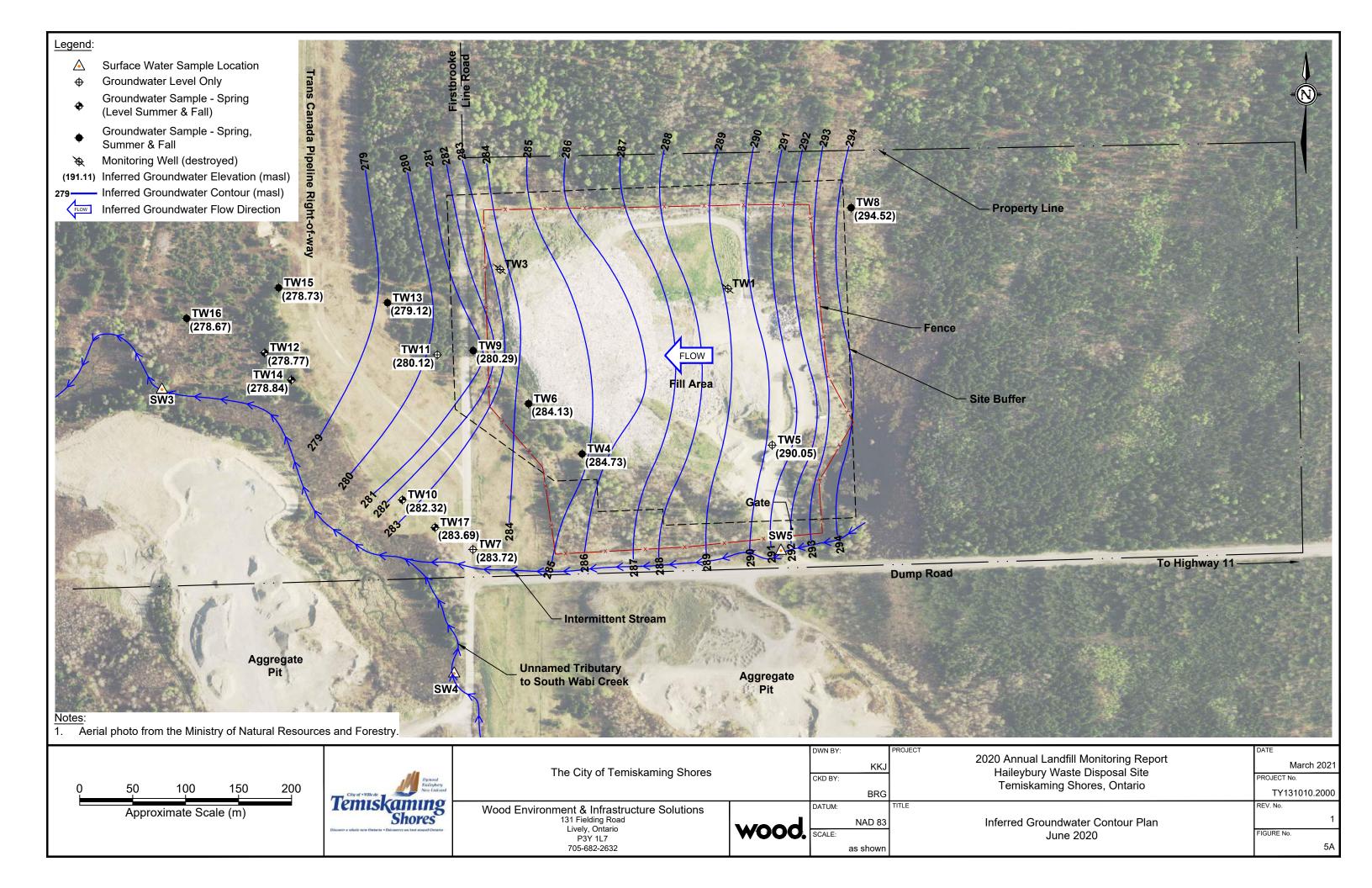
2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

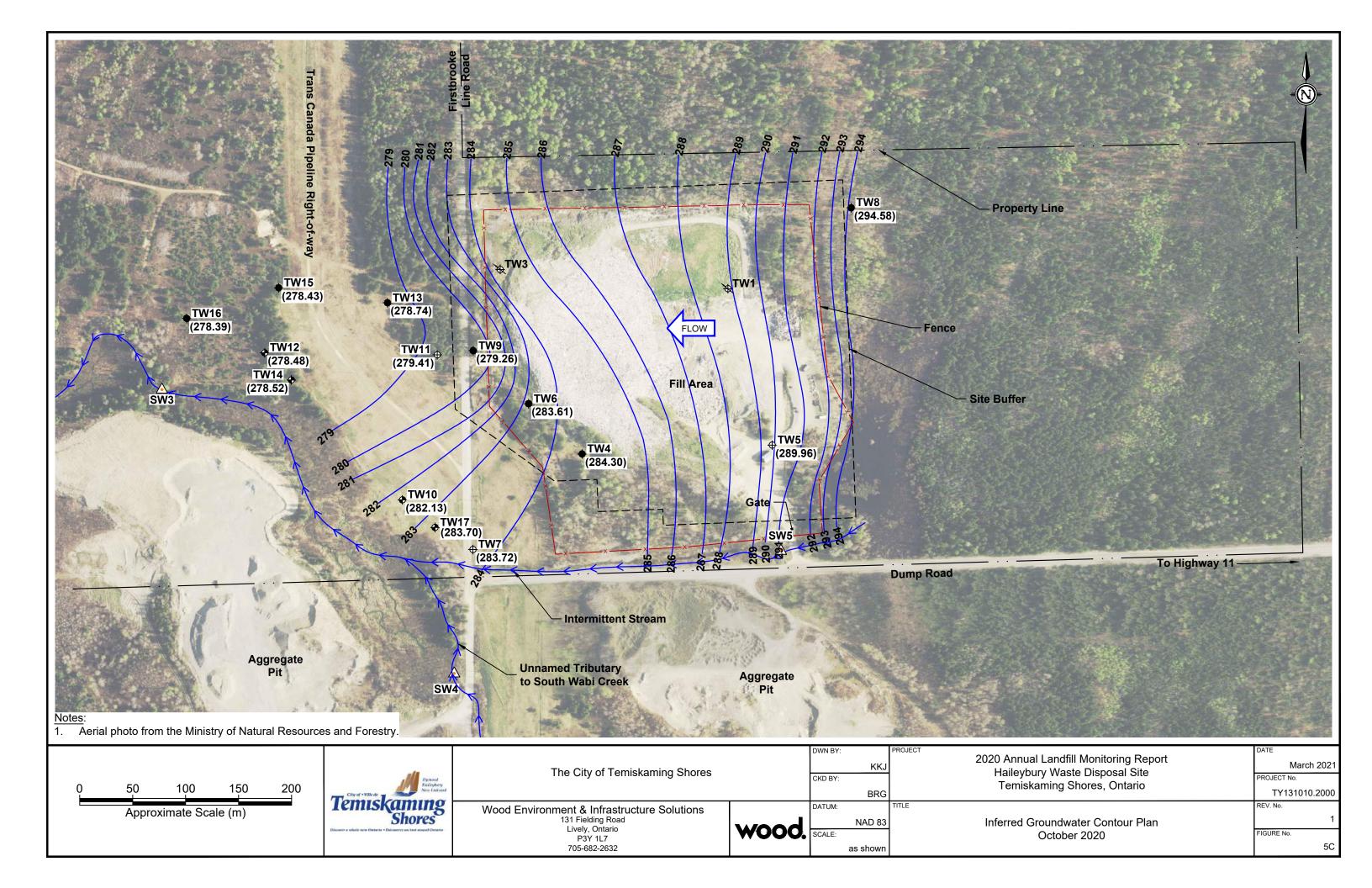



9.0 REFERENCES


Exp Services Inc. 2016. Haileybury Landfill Site Closure Plan, City of Temiskaming Shores, Final Report, December 2016.


Exp Services Inc. 2019. 2019 Haileybury Landfill Site, – Job # NWL-01901034, Technical Memorandum, October 2019.


Exp Services Inc. 2020. 2020 Haileybury Landfill Site, – Job # NWL-02001008, Technical Memorandum, May 2020.



2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX A CERTIFICATE OF APPROVAL NO. A570402

Wood Project No.: TY131010

RECEIVED

Ministry of the Environment Ministère de l'Environnement

AMENDMENT TO PROVISIONAL CERTIFICATE OF APPROVAL

WASTE DISPOSAL SITE NUMBER A570402

Notice No. 2

Issue Date: December 18, 2009

The Corporation of the City of Temiskaming Shores 325 Farr Dr PO Box 2250 Temiskaming Shores, Ontario POJ 1KO

Site Location: Haileybury Landfill Lot 1, Concession 2

Haileybury Town, District of Timiskaming

You are hereby notified that I have amended Provisional Certificate of Approval No. A570402 issued on November 10, 1998 and amended on November 10, 1999 and April 27, 2009 for the use and operation of a 5.8 hectare Landfill Site within a 32.4 hectare total site area, as follows:

Conditions 1 to 27 in the Certificate dated November 10, 1998 and Condition 1 in the notice dated November 10, 1999 are hereby revoked.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"Certificate" means this entire provisional Certificate of Approval A570402 document, issued in accordance with section 39 of the EPA, and includes any notices, schedules to it, the application and the supporting documentation listed in Schedule "A";

"Director" means any Ministry employee appointed in writing by the Minister pursuant to section 5 of the EPA as a Director for the purposes of Part V of the EPA;

"District Manager" means the District Manager of the local district office of the Ministry in which the Site is geographically located;

"Drainage Act" means Drainage Act, R.S.O. 1990, c.D. 17, as amended;

- "EPA" means Environmental Protection Act, R.S.O. 1990, c. E. 19, as amended;
- "Fill Area" means the portion of the Site where waste may be disposed as delineated by the "Limit of Sanitary Landfill Fill Area" shown on Sheet 10 of Item 2 in Schedule "A" and described in Item 5 in Schedule "A";
- "finished compost" means compost that meets the time, temperature and turning requirements specified in Condition 11(1)(h) and the parameters listed in Schedule "B";
- "leaf and yard waste" means waste consisting of leaves, grass clippings, natural Christmas trees and other plant materials, but not tree stumps, limbs or other woody materials in excess of seven (7) centimetres in diameter;
- "Ministry" means the Ontario Ministry of the Environment;
- "NMA" means Nutrient Management Act, 2002, S.O. 2002, c. 4, as amended from time to time;
- "Operator" means any person, other than the Owner's employees, authorized by the Owner as having the charge, management or control of any aspect of the Site and includes its successors or assigns;
- "Owner" means any person that is responsible for the establishment or operation of the Site being approved by this Certificate, and includes The Corporation of the City of Temiskaming Shores its successors and assigns;
- "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended;
- "PA" means the Pesticides Act, R.S.O. 1990, c. P-11, as amended from time to time;
- "Provincial Officer" means any person designated in writing by the Minister as a provincial officer pursuant to Section 5 of the OWRA or Section 5 of the EPA or Section 17 of PA or Section 4 of NMA or Section 8 of SDWA.
- "Regional Director" means the Regional Director of the local Regional Office of the Ministry in which the Site is located.
- "Regulation 347" or "Reg. 347" means Regulation 347, R.R.O. 1990, made under the EPA, as amended;
- "rejected compost" means waste that has gone through the composting process but did not meet the time, temperature or turning requirements specified in Condition 11 (1) (h) or exceeds the parameters listed in Schedule "B". Rejected compost is considered a waste and must be handled and disposed in accordance with Ontario Regulation 347.
- "SDWA" means Safe Drinking Water Act, 2002, S.O. 2002, c. 32, as amended from time to time;

"Site" means the 32.4 hectare landfill site including the *Fill Area* and buffer zone on Lot 1, Concession 2 in the Town of Haileybury, District of Timiskaming as shown on the Plan of Survey, Sheet No. 2 of Item 2 in Schedule "A";

"Trained personnel" means knowledgeable in the following through instruction and/or practice:

- a. relevant waste management legislation, regulations and guidelines;
- b. major environmental concerns pertaining to the waste to be handled;
- c. occupational health and safety concerns pertaining to the processes and wastes to be handled;
- d. management procedures including the use and operation of equipment for the processes and wastes to be handled;
- e. emergency response procedures;
- f. specific written procedures for the control of nuisance conditions;
- g. specific written procedures for refusal of unacceptable waste loads; and
- h. the requirements of this Certificate; and

"unfinished compost" means waste that has gone through all but the final curing stage of the composting process.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL

Compliance

- (1) The Owner and Operator shall ensure compliance with all the conditions of this Certificate and shall ensure that any person authorized to carry out work on or operate any aspect of the Site is notified of this Certificate and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Any person authorized to carry out work on or operate any aspect of the Site shall comply with the conditions of this Certificate.

In Accordance

(3) Except as otherwise provided by this Certificate, the Site shall be designed, developed, built, operated and maintained in accordance with the documentation listed in the attached Schedule "A".

Interpretation

- (4) Where there is a conflict between a provision of any document listed in Schedule "A" in this Certificate, and the conditions of this Certificate, the conditions in this Certificate shall take precedence.
- (5) Where there is a conflict between the application and a provision in any document listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the *Ministry* approved the amendment.
- (6) Where there is a conflict between any two documents listed in Schedule "A", the document bearing the most recent date shall take precedence.
- (7) The conditions of this Certificate are severable. If any condition of this Certificate, or the application of any condition of this Certificate to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this Certificate shall not be affected thereby.

Other Legal Obligations

- (8) The issuance of, and compliance with, this Certificate does not:
 - (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or
 - (b) limit in any way the authority of the *Ministry* to require certain steps be taken or to require the *Owner* and *Operator* to furnish any further information related to compliance with this *Certificate*.

Adverse Effect

- (9) The Owner and Operator shall take steps to minimize and ameliorate any adverse effect on the natural environment or impairment of water quality resulting from the Site, including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.
- (10) Despite an Owner, Operator or any other person fulfilling any obligations imposed by this Certificate the person remains responsible for any contravention of any other condition of this Certificate or any applicable statute, regulation, or other legal requirement resulting from any act or omission that caused the adverse effect to the natural environment or impairment of water quality.

Change of Ownership

- (11) The Owner shall notify the Director, in writing, and forward a copy of the notification to the District Manager, within 30 days of the occurrence of any changes in the following information:
 - (a) the ownership of the Site;

- (b) the Operator of the Site;
- (c) the address of the Owner or Operator; and
- (d) the partners, where the Owner or Operator is or at any time becomes a partnership and a copy of the most recent declaration filed under the Business Names Act, R. S. O. 1990, c. B.17, shall be included in the notification.
- (12) No portion of this Site shall be transferred or encumbered prior to or after closing of the Site unless the Director is notified in advance and sufficient financial assurance is deposited with the Ministry to ensure that these conditions will be carried out.
- (13) In the event of any change in *Ownership* of the works, other than change to a successor Owner, the *Owner* shall notify the successor of and provide the successor with a copy of this *Certificate*, and the *Owner* shall provide a copy of the notification to the *District Manager* and the *Director*.

Certificate of Requirement/Registration on Title -Site

- (14) The Owner shall:
 - (a) Within sixty (60) days of the date of the issuance of this Certificate, submit to the Director for review, two copies of a completed Certificate of Requirement with a registerable description of the Site; and
 - (b) Within 10 calendar days of receiving the Certificate of Requirement authorized by the *Director*, register the Certificate of Requirement in the appropriate Land Registry Office on title to the *Site* and submit to the *Director* the duplicate registered copy immediately following registration.
- (15) Pursuant to Section 197 of the Environmental Protection Act, neither the Owner nor any person having an interest in the Site shall deal with the Site in any way without first giving a copy of this Certificate to each person acquiring an interest in the Site as a result of the dealing.

Certificate of Requirement/Registration on Title - Contaminant Attenuation Zone

- (16) The Owner shall:
 - (a) Within 60 days of the date of the acquiring the ground water easement to the proposed contaminant attenuation zone and buffer lands, submit to the *Director* for review, two copies of a completed Certificate of Requirement with a registerable description of the Contaminant Attenuation Zone; and
 - (b) Within 10 calendar days of receiving the Certificate of Requirement authorized by the *Director*, register the Certificate of Requirement in the appropriate Land Registry Office on title to the Contaminant Attenuation Zone and submit to the

Director the duplicate registered copy immediately following registration.

Inspections by the Ministry

- (17) No person shall hinder or obstruct a *Provincial Officer* from carrying out any and all inspections authorized by the *OWRA*, the *EPA*, the *PA*, the *SDWA* or the *NMA*, of any place to which this *Certificate* relates, and without limiting the foregoing:
 - (a) to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this Certificate are kept;
 - (b) to have access to, inspect, and copy any records required to be kept by the conditions of this *Certificate*;
 - (c) to inspect the Site, related equipment and appurtenances;
 - (d) to inspect the practices, procedures, or operations required by the conditions of this Certificate; and
 - (e) to sample and monitor for the purposes of assessing compliance with the terms and conditions of this Certificate or the EPA, the OWRA, the PA, the SDWA or the NMA.

Information and Record Retention

- (18) Any information requested, by the *Ministry*, concerning the *Site* and its operation under this *Certificate*, including but not limited to any records required to be kept by this *Certificate* shall be provided to the *Ministry*, upon request, in a timely manner. Records shall be retained for *contaminating life span* of the *Site* except for as otherwise authorized in writing by the *Director*.
- (19) The receipt of any information by the *Ministry* or the failure of the *Ministry* to prosecute any person or to require any person to take any action, under this *Certificate* or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:
 - (a) an approval, waiver, or justification by the *Ministry* of any act or omission of any person that contravenes any term or condition of this *Certificate* or any statute, regulation or other legal requirement; or
 - (b) acceptance by the *Ministry* of the information's completeness or accuracy.
- (20) The Owner shall ensure that a copy of this Certificate, in its entirety and including all its Notices of Amendment, and documentation listed in Schedule "A", are retained at the Site at all times.

2. SITE OPERATION

Operation

(1) The Site shall be operated and maintained at all time including management and disposal of all waste in accordance with the EPA, Regulation 347, and the conditions of this

Certificate. At no time shall the discharge of a contaminant that causes or is likely to cause an adverse effect be permitted

Signs

- (2) A sign shall be installed and maintained at the main entrance/exit to the Site on which is legibly displayed the following information:
 - (a) the name of the Site and Owner;
 - (b) the number of the Certificate;
 - (c) the name of the Operator;
 - (d) the normal hours of operation;
 - (e) the allowable and prohibited waste types;
 - (f) the telephone number to which complaints may be directed;
 - (g) a warning against unauthorized access;
 - (h) a twenty-four (24) hour emergency telephone number (if different from above); and
 - (i) a warning against dumping outside the Site.
- (3) The Owner shall install and maintain signs to direct vehicles to working face and any other recycling and composting areas including, but not limited to, used tires, waste metal, composting and used oil.
- (4) The Owner shall provide signs at all of the recycling and composting locations informing users what materials are acceptable and directing users to appropriate storage area.

Vermin, Vectors, Dust, Litter, Odour, Noise and Traffic

(5) The Site shall be operated and maintained such that the vermin, vectors, dust, litter, odour, noise and traffic do not create a nuisance.

Burning Waste Prohibited

(6) (a) Burning of waste at the Site is prohibited.

Site Access

- (7) Waste shall only be accepted during the following time periods:

 Tuesday to Saturday 8:30 a.m. to 4:30 p.m.
- (8) On-site equipment used for daily site preparation and closing activities may be operated one (1) hour before and one (1) hour after the hours of operation approved by this Certificate.
- (9) With the prior written approval from the *District Manager*, the time periods may be extended to accommodate seasonal or unusual quantities of waste.

Site Security

- (10) No waste shall be received, landfilled or removed from the *Site* unless a site supervisor or attendant is present and supervises the operations during operating hours. The *Site* shall be closed when a site attendant is not present to supervise landfilling operations.
- (11) The Site shall be operated and maintained in a safe and secure manner. During non-operating hours, the Site entrance and exit gates shall be locked and the Site shall be secured against access by unauthorized persons.

3. EMPLOYEE TRAINING

(1) A training plan for all employees that operate any aspect of the Site shall be developed and implemented by the Operator. Only Trained Personnel shall operate any aspect of the Site or carry out any activity required under this Certificate.

4. COMPLAINTS RESPONSE PROCEDURE

- (1) If at any time the *Owner* receives complaints regarding the operation of the *Site*, the *Owner* shall respond to these complaints according to the following procedure:
 - (a) The Owner shall record and number each complaint, either electronically or in a log book, and shall include the following information: the nature of the complaint, the name, address and the telephone number of the complainant if the complainant will provide this information and the time and date of the complaint;
 - (b) The Owner, upon notification of the complaint, shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and
 - (c) The Owner shall complete and retain on-site a report written within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the recurrence of similar incidents.

5. EMERGENCY RESPONSE

- (1) Any spills, fires or other emergency situations shall be forthwith reported directly to the *Ministry's* Spills Action Centre (1-800-268-6060) and shall be cleaned up immediately.
- (2) In addition, the Owner shall submit, to the District Manager a written report within three (3) business days of the emergency situation, outlining the nature of the incident, remedial measures taken, handling of waste generated as a result of the emergency situation and the measures taken to prevent future occurrences at the Site.

- (3) All wastes resulting from an emergency situation shall be managed and disposed of in accordance with O.Reg. 347.
- (4) All equipment and materials required to handle the emergency situations shall be:
 - (a) kept on hand at all times that waste landfilling and/or handling is undertaken at the Site; and
 - (b) adequately maintained and kept in good repair.
- (5) The Owner shall ensure that the emergency response personnel are familiar with the use of such equipment and its location(s).

6. RECORD KEEPING AND REPORTING

Daily Log Book

- (1) A daily log shall be maintained in written format and shall include the following information:
 - (a) the type, date and time of arrival, hauler, and quantity (tonnes) of all industrial and commercial waste and cover material received at the Site;
 - (b) the area of the Site in which waste disposal operations are taking place;
 - (c) a record of litter collection activities and the application of any dust suppressants;
 - (d) a record of the daily inspections; and
 - (e) a description of any out-of-service period of any control, treatment, disposal or monitoring facilities, the reasons for the loss of service, and action taken to restore and maintain service.
- (2) Any information requested, by the *Director* or a *Provincial Officer*, concerning the *Site* and its operation under this *Certificate*, including but not limited to any records required to be kept by this *Certificate* shall be provided to the *Ministry*, upon request.

Daily Inspections and Log Book

- (3) An inspection of the entire Site and all equipment on the Site shall be conducted each day the Site is in operation to ensure that: the Site is secure; that the operation of the Site is not causing any nuisances; that the operation of the Site is not causing any adverse effects on the environment and that the Site is being operated in compliance with this Certificate. Any deficiencies discovered as a result of the inspection shall be remedied immediately, including temporarily ceasing operations at the Site if needed.
- (4) A record of the inspections shall be kept in a daily log book that includes:
 - (a) the name and signature of person that conducted the inspection;
 - (b) the date and time of the inspection;
 - (c) the list of any deficiencies discovered;
 - (d) the recommendations for remedial action; and
 - (e) the date, time and description of actions taken.

(5) A record shall be kept in the daily log book of all refusals of waste shipments, the reason(s) for refusal, and the origin of the waste, if known.

Annual Report

- (6) A written report on the development, operation and monitoring of the Site, shall be completed annually (the "Annual Report"). The Annual Report shall be submitted to the District Manager, by April 30th of the year following the period being reported upon.
- (7) The Annual Report shall include the following:
 - (a) the results and an interpretive analysis of the results of all leachate, groundwater surface water and landfill gas monitoring, including an assessment of the need to amend the monitoring programs;
 - (b) an assessment of the operation and performance of all engineered facilities, the need to amend the design or operation of the Site, and the adequacy of and need to implement the contingency plans;
 - (c) site plans showing the existing contours of the Site; areas of landfilling operation during the reporting period; areas of intended operation during the next reporting period; areas of excavation during the reporting period; the progress of final cover, vegetative cover, and any intermediate cover application; previously existing site facilities; facilities installed during the reporting period; and site preparations and facilities planned for installation during the next reporting period;
 - (d) calculations of the volume of waste, daily and intermediate cover, and final cover deposited or placed at the Site during the reporting period and a calculation of the total volume of Site capacity used during the reporting period;
 - (e) a calculation of the remaining capacity of the Site and an estimate of the remaining Site life;
 - (f) a summary of the weekly, maximum daily and total annual quantity (tonnes) of waste received at the Site;
 - (g) a summary of any complaints received and the responses made;
 - (h) a discussion of any operational problems encountered at the Site and corrective action taken:
 - (i) any changes to the Design and Operations Report and the Closure Plan that have been approved by the *Director* since the last *Annual Report*;
 - (j) a report on the status of all monitoring wells and a statement as to compliance with Ontario Regulation 903;
 - (k) any other information with respect to the Site which the Regional Director may require from time to time; and
 - (1) a summary and analysis of all hydraulic and geochemical monitoring results.

7. LANDFILL DESIGN AND DEVELOPMENT

Approved Waste Types

- (1) Only solid non-hazardous municipal waste as defined under *Reg.* 347 shall be accepted at the *Site* for landfilling.
- (2) The Owner shall develop and implement a program to inspect waste to ensure that the waste received at the Site is of a type approved for acceptance under this Certificate.
- (3) The Owner shall ensure that all loads of waste are properly inspected by Trained personnel prior to acceptance at the Site and that the waste vehicles are directed to the appropriate areas for disposal or transfer of the waste. The Owner shall notify the District Manager, in writing, of load rejections at the Site within one (1) business day from their occurrence.

Capacity

- (4) Waste disposal shall be limited to the Fill Area.
- (5) (a) Waste may only be placed above ground level to the final contour elevations shown on Sheet No. 10 of Item 2 of Schedule "A";
 - (b) Waste may only be placed below ground level in trenches as shown in trenches on Sheet No. 4 of Item 2 of Schedule "A" and to depths of approximately 3 meters below ground level but not exceeding 3.66 meters;
 - (c) Approved maximum volumetric capacity of the Site, consisting of the waste, daily cover and intermediate cover, but excluding the final cover is 470,000 cubic metres.
- (6) There shall be no further final disposal of Waste in the Bulk Material Storage Area shown on Sheet No. 10 of Item 2 of Schedule "A".

Service Area

(7) Only waste that is generated within the boundaries of the City of Temiskaming Shores and the Town of Cobalt may be accepted at the Site.

Cover

(8) Alternative materials to soil may be used as weekly and interim cover material, based on an application with supporting information and applicable fee for a trial use or permanent use, submitted by the Owner to the Director, copied to the District Manager and as approved by the Director via an amendment to this Certificate. The alternative material shall be non-hazardous according to Reg. 347 and will be expected to perform at least as well as soil in relation to the following functions:

- (a) Control of blowing litter, odours, dust, landfill gas, gulls, vectors, vermin and fires;
- (b) Provision for an aesthetic condition of the landfill during the active life of the Site:
- (c) Provision for vehicle access to the active tipping face; and
- (d) Compatibility with the design of the Site for groundwater protection, leachate management and landfill gas management.
- (9) Cover material shall be applied as follows:
 - (a) Daily Cover Weather permitting, deposited waste should be covered at the end of each working day in a manner acceptable to the *District Manager* so that no waste is exposed to the atmosphere;
 - (b) Intermediate Cover In areas where landfilling has been temporarily discontinued for six (6) months or more, a minimum thickness of 300 millimetre of soil cover or an approved thickness of alternative cover material shall be placed; and
 - (c) Final Cover In areas where landfilling has been completed to final contours, a minimum 600 millimetre thick layer of soil of medium permeability and 150 millimetres of top soil (vegetative cover) shall be placed. Fill areas shall be progressively completed and rehabilitated as landfill development reaches final contours.

Stormwater Management Works Approvals

- (10) This Certificate does not provide an approval for any works subject to approval under the OWRA, Drainage Act, or any other legislation that may be applicable.
- (11) The Owner shall complete the construction of the swale ditches, the sedimentation ponds, and the diversion ditch as outlined in Section 3.2 of Item 3 of Schedule "A" within twelve (12) months from the date of this Certificate.
- (12) Within six (6) months of the date of this Certificate, the Owner shall submit to the Director an application for approval under the OWRA of the on-site stormwater management works. The Owner shall fulfil the requirement under the Drainage Act, or any other legislation that may be applicable.

8. LANDFILL MONITORING

Landfill Gas

(1) The Owner shall ensure that any buildings or structures at the Site contain adequate ventilation systems to relieve any possible landfill gas accumulation. Routine monitoring for explosive methane gas levels shall be conducted in all buildings or structures at the Site, especially enclosed structures which at times are occupied by people.

Compliance Limits

- (2) The Site shall be operated in such a way as to ensure compliance with the following:
 - (a) Reasonable Use Guideline B-7 for the protection of the groundwater at the Site; and
 - (b) Provincial Water Quality Objectives included in the July 1994 publication entitled "Water Management Policies, Guidelines, Provincial Water Quality Objectives, as amended from time to time or limits set by the Regional Director, for the protection of the surface water at and off the Site.

Surface Water and Ground Water

- (3) The Owner shall monitor surface water and groundwater as per documents in the Schedule "A".
- (4) A certified Professional Geoscientist or Engineer possessing appropriate hydrogeologic training and experience shall execute or directly supervise the execution of the groundwater monitoring and reporting program.

Groundwater Wells and Monitors

- (5) The Owner shall ensure that all groundwater monitoring wells which form part of the monitoring program are properly capped, secured and protected from damage.
- (6) Where landfilling is to proceed around monitoring wells, suitable extensions shall be added to the wells and the wells shall be properly re-secured.
- (7) Any groundwater monitoring well included in the on-going monitoring program that are damaged shall be assessed, repaired, replaced or decommissioned by the Owner, as required.
 - (a) The Owner shall repair or replace any monitoring well which is destroyed or in any way made to be inoperable for sampling such that no more than one regular sampling event is missed.
 - (b) All monitoring wells which are no longer required as part of the groundwater monitoring program, and have been approved by the *District Manager* for abandonment, shall be decommissioned by the *Owner*, as required, in accordance with *O.Reg. 903*, that will prevent contamination through the abandoned well. A report on the decommissioning of the well shall be included in the Annual Report for the period during which the well was decommissioned.

Trigger Mechanisms and Contingency Plans

- (8) (a) Within one (1) year from the date of this Certificate, the Owner shall submit to the Director, for approval, and copies to the District Manager, details of a trigger mechanisms plan for surface water and groundwater quality monitoring for the purpose of initiating investigative activities into the cause of increased contaminant concentrations at the Contaminant Attenuation Zone (CAZ) limit.
 - (b) Within one (1) year from the date of this Certificate, the Owner shall submit to the Director for approval, and copies to the District Manager, details of a contingency plan to be implemented in the event that the surface water or groundwater quality exceeds the a trigger mechanism at the CAZ limit.
- (9) In the event of a confirmed exceedence of a site-specific trigger level relating to leachate mounding or groundwater or surface water impacts due to leachate, the *Owner* shall immediately notify the *District Manager*, and an investigation into the cause and the need for implementation of remedial or contingency actions shall be carried out by the *Owner* in accordance with the approved trigger mechanisms and associated contingency plans.
- (10) If monitoring results, investigative activities and/or trigger mechanisms indicate the need to implement contingency measures, the *Owner* shall ensure that the following steps are taken:
 - (a) The Owner shall notify the District Manager, in writing of the need to implement contingency measures, no later than 30 days after confirmation of the exceedences:
 - (b) Detailed plans, specifications and descriptions for the design, operation and maintenance of the contingency measures shall be prepared and submitted by the *Owner* to the *District Manager* for approval; and
 - (c) The contingency measures shall be implemented by the Owner upon approval by the District Manager.
- (11) The Owner shall ensure that any proposed changes to the site-specific trigger levels for leachate impacts to the surface water or groundwater, are approved in advance by the Director via an amendment to this Certificate.

Changes to the Monitoring Plan

- (12) The Owner may request to make changes to the monitoring program(s) to the District

 Manager in accordance with the recommendations of the annual report. The Owner shall

 make clear reference to the proposed changes in separate letter that shall accompany the
 annual report.
- (13) Within fourteen (14) days of receiving the written correspondence from the *District*Manager confirming that the *District Manager* is in agreement with the proposed changes

to the environmental monitoring program, the Owner shall forward a letter identifying the proposed changes and a copy of the correspondences from the District Manager and all other correspondences and responses related to the changes to the monitoring program, to the Director requesting the Certificate be amended to approve the proposed changes to the environmental monitoring plan prior to implementation.

(14) In the event any other changes to the environmental monitoring program are proposed outside of the recommendation of the annual report, the *Owner* shall follow current ministry procedures for seeking approval for amending the *Certificate*.

Contaminant Attenuation Zone

- (15) The proposed Contaminant Attenuation Zone of 28 hectares is hereby approved.
- (16) Within one (1) year from the date of this *Certificate*, the *Owner* shall complete acquiring the ground water easement (property rights) to the proposed contaminant attenuation zone.
- (17) The Owner must continue to own the property rights to the Contaminant Attenuation Zone for all of the contaminating life span of the Site.
- (18) The ownership of the property rights must include the right to:
 - (a) discharge contaminants from the operations at the Site into the Contaminant Attenuation Zone;
 - (b) enter into the Contaminant Attenuation Zone and onto the surface above the Contaminant Attenuation Zone for purposes of testing, monitoring, intercepting contaminants and carrying out remedial work;
 - (c) install, operate and maintain works, for the purposes mentioned in clause (b), in the Contaminant Attenuation Zone, including on the surface above the Contaminant Attenuation Zone; and
 - (d) prevent the owner(s) of the land(s) in which the Contaminant Attenuation Zone is located from paving, erecting a structure or making any use of land(s) above or in the vicinity of the contaminant attenuation zone that would interfere with the functioning of the Contaminant Attenuation Zone or with the exercise of any of the rights mentioned in this subsection.
- (19) The Owner shall notify the Director in writing within thirty (30) days after any change in his, her or its ownership of the property rights in the Contaminant Attenuation Zone.
- (20) The Owner shall ensure that the written easement agreement, specified in Condition 8 (16) includes an agreement of the property owner(s) of the land(s) required for the Contaminant Attenuation Zone, to register a Certificate of Requirement on title to the land(s) to be used as the Contaminant Attenuation Zone.

9. CLOSURE PLAN

- (1) At least 3 years prior to the anticipated date of closure of this Site, the Owner shall submit to the Director for approval, with copies to the District Manager, a detailed Site closure plan pertaining to the termination of landfilling operations at this Site, post-closure inspection, maintenance and monitoring, and end use. The plan shall include the following:
 - (a) a plan showing Site appearance after closure;
 - (b) a description of the proposed end use of the Site;
 - (c) a descriptions of the procedures for closure of the Site, including:
 - (i) advance notification of the public of the landfill closure;
 - (ii) posting of a sign at the Site entrance indicating the landfill is closed and identifying any alternative waste disposal arrangements;
 - (iii) completion, inspection and maintenance of the final cover and landscaping;
 - (iv) Site security;
 - (v) removal of unnecessary landfill-related structures, buildings and facilities;
 - final construction of any control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and landfill gas; and
 - (vii) a schedule indicating the time-period for implementing sub-conditions (i) to (vi) above;
 - (d) descriptions of the procedures for post-closure care of the Site, including:
 - operation, inspection and maintenance of the control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and landfill gas;
 - (ii) record keeping and reporting; and
 - (iii) complaint contact and response procedures;
 - (e) an assessment of the adequacy of and need to implement the contingency plans for leachate and methane gas; and
 - (f) an updated estimate of the contaminating life span of the *Site*, based on the results of the monitoring programs to date.
- (2) The Site shall be closed in accordance with the closure plan as approved by the Director.

10. WASTE DIVERSION

- (1) The Owner shall ensure that:
 - (a) all bins and waste storage areas are clearly labelled;
 - (b) all lids or doors on bins shall be kept closed during non-operating hours and during the high wind events; and
 - (c) if necessary to prevent litter, waste storage areas shall be covered during the high winds events.

- (2) The Owner shall provide a segregated area for the storage of Refrigerant Appliances so that the following are ensured:
 - (a) all Refrigerant Appliances have been tagged to indicate that the refrigerant has been removed by a licensed technician. The tag number shall be recorded in the log book and shall remain affixed to the appliance until transferred from the Site; or
 - (b) all Refrigerant Appliances accepted at the Site, which have not been tagged by a licensed technician to verify that the equipment no longer contains refrigerants, are stored segregated, in a clearly marked area, in an upright position and in a manner which allows for the safe handling and transfer from the Site for removal of refrigerants as required by O.Reg. 189; and
 - (c) all Refrigerant Appliances received on-site shall either have the refrigerant removed prior to being transferred from the Site or shall be shipped off-site only to facilities where the refrigerants can be removed by a licensed technician in accordance with O.Reg. 189.
- (3) Propane cylinders shall be stored in a segregated area in a manner which prevents cylinders from being knocked over or cylinder valves from breaking.
- (4) The Owner shall transfer waste and recyclable materials from the Site as follows:
 - (a) recyclable materials shall be transferred off-site once their storage bins are full;
 - (b) scrap metal shall be transferred off-site at least twice a year;
 - (c) tires shall be transferred off-site as soon as a load for the contractor hired by the Owner has accumulated or as soon as the accumulated volume exceeds the storage capacity of its bunker; and
 - (d) immediately, in the event that waste is creating an odour or vector problem.
- (5) The Owner shall notify the appropriate contractors that waste and recyclable wastes that are to be transferred off-site are ready for removal. Appropriate notice time, as determined by the contract shall be accommodated in the notification procedure.

11. LEAF AND YARD WASTE COMPOSTING

On site Leaf and Yard Waste Composting shall be carried out subject to the following conditions:

- (1) The Owner shall ensure that composting is conducted in accordance with the "Interim Guidelines for the Production and Use of Aerobic Compost in Ontario" dated November 1991 or its latest amendment, and with the requirements as listed below:
 - (a) waste accepted for composting shall be limited to leaf and yard waste. Leaf and yard waste received at the Site shall not exceed the maximum concentrations for metals listed in Schedule "B";
 - (b) no more than 2000 tonnes of leaf and yard waste, unfinished compost and finished

compost shall be stored on Site at any one time;

- (c) all activities associated with the composting operation shall take place on the designated pad constructed of wood chips;
- (d) waste shall be incorporated into windrows within four (4) days of receipt.

 Finished compost shall be stored on Site for a maximum of twelve (12) months after the curing phase is complete;
- (f) windrows shall be arranged in a manner which allows equipment access for efficient turning of windrows and to allow access for emergency vehicles;
- (g) windrows shall be constructed at bulk densities and heights which promote aerobic conditions;
- (h) all waste being composted shall be held at a temperature of at least 55 °C for a minimum of fifteen (15) cumulative days to ensure proper bacteria growth and pathogen inactivation. During this period, the temperature of the waste being composted shall be monitored and recorded on each day that the Site is in operation, and the windrows shall be turned a minimum of five (5) times. During the remainder of the composting process, the temperature shall be monitored and recorded on a weekly basis at a minimum; and
- (i) compost shall be cured for a minimum of six (6) months.
- (2) (a) For the first two (2) years of operation, a representative composite sample of compost that has completed the curing phase shall be taken at least once per year and analyzed for the parameters listed in Schedule "B".
 - (b) After two (2) years of operation, the sampling schedule may be adjusted with the prior written consent of the District Manager.
- (3) (a) Finished compost may be released from the Site for unrestricted use.
 - (b) Rejected compost which meets the parameters listed in Schedule "B", but does not meet the requirements of Condition 10 (1), may be returned to the composting process as waste for re-processing.
 - (c) Rejected compost, which does not meet the parameters listed in Schedule "B" shall be disposed of as waste or as daily cover.

Following items are added to the Schedule "A"

SCHEDULE "A"

- 8. Report titled "City of Temiskaming Shores, Application to amend Provincial Certificate of Approval Waste Disposal Site No. A570402, Appendices" dated June 2008.
- Letter dated June 10, 2008 from Maria Story, P.Eng., Story Environmental Services, to Mr. Tesfaye Gebrezghi, P.Eng., Ministry of the Environment, Environmental Assessment and Approvals Branch.
- Letter dated October 30, 2009 addressed to Larry McCormack, Senior Environmental Officer, Ministry of the Environment from Maria Story, P.Eng., Story Environmental Services RE: Corporation of the City of Temiskaming Shores Haileybury Landfill Site No. A570402-Recommendation Regarding Ongoing Monitoring Program.

Schedule "B"

This Schedule "B" forms part of Certificate of Approval No. A600903.

Parameter	Maximum Concentration
Aetal:	
arsenic	13 ppm
cadmium	3 ррт
chromium	210 ppm
cobalt	34 ppm
copper	100 ppm
lead	150 ppm
mercury	0,8 ppm
molybdenum	5 ppm
nickel	62 ppm
selenium	2 ppm
zinc	500 ppm
oreign material:	
plastic particles greater than 3 mm in any direction	1%
non-biodegradable material greater than 3 mm in any direction	2%

The reasons for this amendment to the Certificate of Approval are as follows:

GENERAL

- 1. The reason for Conditions 1(1), (2), (4), (5), (6), (7), (8), (9), (10), (18), (19) and (20) is to clarify the legal rights and responsibilities of the Owner and Operator under this Certificate of Approval.
- 2. The reasons for Condition 1(3) is to ensure that the Site is designed, operated, monitored and maintained in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.
- 3. The reasons for Condition 1(11) are to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval and to ensure that the Director is informed of any changes.
- 4. The reasons for Condition 1(12) are to restrict potential transfer or encumbrance of the Site without the approval of the Director and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this Certificate of Approval.
- 5. The reason for Condition 1(13) is to ensure that the successor is aware of its legal responsibilities.
- 6. Conditions 1 (14), (15) and (16) are included, pursuant to subsection 197(1) of the *EPA*, to provide that any persons having an interest in the *Site* are aware that the land has been approved and used for the purposes of waste disposal.
- 7. The reason for Condition 1(17) is to ensure that appropriate Ministry staff has ready access to the Site for inspection of facilities, equipment, practices and operations required by the conditions in this Certificate of Approval. This Condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the Act, the OWRA, the PA, the NMA and the SDWA.

SITE OPERATION

- 8. The reasons for Conditions 2(1), 2(5) and 6(3) are to ensure that the Site is operated, inspected and maintained in an environmentally acceptable manner and does not result in a hazard or nuisance to the natural environment or any person.
- The reason for Conditions 2 (2), 2(3) and 2(4) is to ensure that users of the Site are fully aware of
 important information and restrictions related to Site operations and access under this
 Certificate.
- 10. The reason for Condition 2(6) (a) is that open burning of municipal waste is unacceptable because of concerns with air emissions, smoke and other nuisance affects, and the potential fire hazard.

- 11. The reasons for Condition 2(7), 2(8) and 2(9) are to specify the hours of operation for the landfill site and a mechanism for amendment of the hours of operation, as required.
- 12. The reasons for Condition 2(10) and 2(11) are to ensure that the *Site* is supervised by properly trained staff in a manner which does not result in a hazard or nuisance to the natural environment or any person and to ensure the controlled access and integrity of the *Site* by preventing unauthorized access when the Site is closed and no site attendant is on duty.

EMPLOYEE TRAINING

13. The reason for Condition 3(1) is to ensure that the *Site* is supervised and operated by properly trained staff in a manner which does not result in a hazard or nuisance to the natural environment or any person.

COMPLAINTS RESPONSE PROCEDURE

14. The reason for Condition 4(1) is to ensure that any complaints regarding landfill operations at this *Site* are responded to in a timely and efficient manner.

EMERGENCY RESPONSE

- 15. Conditions 5(1) and 5(2) are included to ensure that emergency situations are reported to the Ministry to ensure public health and safety and environmental protection.
- 16. Conditions 5(3), 5(4) and 5(5) are included to ensure that emergency situations are handled in a manner to minimize the likelihood of an adverse effect and to ensure public health and safety and environmental protection.

RECORD KEEPING AND REPORTING

- 17. The reason for Conditions 6(1) and 6(2) is to ensure that accurate waste records are maintained to ensure compliance with the conditions in this Certificate of Approval (such as fill rate, site capacity, record keeping, annual reporting, and financial assurance requirements), the EPA and its regulations.
- 18. The reason for Conditions 6(4) and 6(5) is to ensure that detailed records of *Site* inspections are recorded and maintained for inspection and information purposes.
- 19. The reasons for Conditions 6(6) and 6(7) are to ensure that regular review of site development, operations and monitoring data is documented and any possible improvements to site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing site activities and for determining the effectiveness of site design.

LANDFILL DESIGN AND DEVELOPMENT

- 20. The reason for Conditions 7(1) to 7(7) inclusive is to specify the approved areas from which waste may be accepted at the *Site* and the types and amounts of waste that may be accepted for disposal at the *Site*, based on the *Owner* 's application and supporting documentation.
- 21. Condition 7(8) is to provide the Owner the process for getting the approval for alternative daily and intermediate cover material.
- 22. The reasons for Condition 7(9) are to ensure that daily/weekly and intermediate cover are used to control potential nuisance effects, to facilitate vehicle access on the *Site*, and to ensure an acceptable site appearance is maintained. The proper closure of a landfill site requires the application of a final cover which is aesthetically pleasing, controls infiltration, and is suitable for the end use planned for the *Site*.
- 23. The reason for Conditions 7 (10), (11) and (12) are to make ensure that the *Owner* has obtained other approvals required to carry out the work and complete the construction of the swales and ditches in a timely manner.

LANDFILL MONITORING

- 24. Reasons for Condition 8(1) are to ensure that off-site migration of landfill gas is monitored and all buildings at the *Site* are free of any landfill gas accumulation, which due to a methane gas component may be explosive and thus create a danger to any persons at the *Site*.
- 25. Condition 8(2) is included to provide the groundwater and surface water limits to prevent water pollution at the Site.
- 26. Conditions 8(3) and 8(4) are included to require the Owner to demonstrate that the Site is performing as designed and the impacts on the natural environment are acceptable. Regular monitoring allows for the analysis of trends over time and ensures that there is an early warning of potential problems so that any necessary remedial/contingency action can be taken.
- 27. Conditions 8(5), 8(6) and 8(7) are included to ensure the integrity of the groundwater monitoring network so that accurate monitoring results are achieved and the natural environment is protected.
- 28. Conditions 8(8) to 8(11) inclusive are added to ensure the *Owner* has a plan with an organized set of procedures for identifying and responding to potential issues relating to groundwater and surface water contamination at the *Site's* compliance point.
- 29. Reasons for conditions 8(12), 8(13) and 8(14) are included to streamline the approval of the changes to the monitoring plan.
- 30. Condition 8(15) to 8(20) inclusive is included to require the Owner to obtain property rights to

land(s) that is required for a Contaminant Attenuation Zone that is necessary for attenuation of contamination resulting from the operation of the Site to bring the Site into compliance with Reasonable Use Policy Objectives.

CLOSURE PLAN

31. The reasons for Condition 9 are to ensure that final closure of the *Site* is completed in an aesthetically pleasing manner, in accordance with Ministry standards, and to ensure the long-term protection of the health and safety of the public and the environment.

WASTE DIVERSION

32. Condition 10 is included to ensure that the recyclable materials are stored in their temporary storage location in a manner as to minimize a likelihood of an adverse effect or a hazard the natural environment or any person.

This Notice shall constitute part of the approval issued under Provisional Certificate of Approval No. A570402 dated November 10, 1998 as amended

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u>, provides that the Notice requiring the hearing shall state:

- The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- The date of the Certificate of Approval;
- The name of the Director;
- The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, 15th Floor
Toronto, Ontario
MSG 1E5

AND

The Director
Section 39, Environmental Protection Act
Ministry of the Environment
2 St. Clair Avenue West, Ploor 12A
Toronto, Ontario
M4V 1L5

^{*} Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act,

DATED AT TORONTO this 18th day of December, 2009

Tesfaye Gebrezghi, P.Eng.

Director

Section 39, Environmental Protection Act

RM/

:: District Manager, MOE North Bay Maria Story, P.Eng., Story Environmental Services **The City of Temiskaming Shores**

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX B BOREHOLE LOGS

Wood Project No.: TY131010

LOG of BOREHOLE

Method Hollow Stem Auger CLIENT TOWN OF HATLEYBURY I.D. 3 3/4" Digmeter_ ELEV M.P.(S) 295.905 AGL (S) 0.775mAGL GL 295.130m

BOREHOLE No TW 1/91 S and D ELEV. M.P. (D) 295.659 AGL (S) 0.57 m AGL 295.089 m Date March 8, 1991 SUBSURFACE PROFILE SAMPLES DEPTH GROUND WATER meters IEZOMET NUMBER SYMBO DESCRIPTION REMARKS OWS TW 1/91(D) Med. sand, light brown, slightly moist Piezometer construct is SCH 40 50 mm dia. pipe with 2 SS 15 10 slot screen Med./coarse sand, brown, dry installed from 9.75m BGL to 8.23 m 3 SS. Sandy silt, some clay, greyish brown, Silica sand from moist 10.36 m BGL to 8.23 m BGL. 5 Silty clay, some gravel, minor send, few 4 SS Bentonite seal from boulders, brownish grey, saturated 8.23 m BGL to 7.5 m BGL. Backfill with 5 65 SS drillings to .5 m Wet bentonite seal at surface. 46 6 SS 7 SS TW 1/91(S) 9.6 Bedrock near vertical thorizontal Piezometer construct fracturing RC is SCH 40 50 mm dia. pipe with 10 slot screen installed from 6.01 m BGL to 4.57m BGL Silica sand from 6.01 m BGL to 4.0 m BGL Backfill with drillings to .5 m bentonite seal at surface Water level taken on March 26/91 at TW 1/91(D) 7.44m BMP SAMPLE_TYPES International Water Consultants Ltd. Auger Sh Shelby

RC Rock Core SS Split Spoon Sidewall

SASKATOON - BARRIE - MONTREAL -

LOG of BOREHOLE

1H014-A Hollow Stem Auger JOB NO. Diam Drill Method. HS - I.D. 3 3/4" Diameter DD - O.D. 3.78" CLIENT TOWN OF HAILEYBURY BOREHOLE NO TW 3/91 ELEV. M.P.296,697 AGL M.P.0.879 AGL GL295.818 Dote March 21, 1991 SUBSURFACE PROFILE SAMPLES EZOMETE GROUND WATER DEPTH meters NUMBER SYMBO DESCRIPTION REMARKS . N N N N N Piezometer SS Garbage & med. sand, dry, odour construction is SCH 40 50 mm dia. pipe with 10 slot ŝs screen from 13.87 m BGL to 10.82 m BGL 3 SS Silica sand from 14.63 m BGL to above the screen 5 SS Backfill with drillings .5 m bentonite 5 SS seal at surface Water level taken on March 26/91 SS 10.89 m BMP 15 Med. sand, black, slightly moist, strong SS 10 SS 14 Bedrock, near vertical and subhorizontal RC fracturing RC 10 14.63 SAMPLE TYPES AS Auger Sh

Rock Core Split Spoon Sw

Shelby Sidewoll International Water Consultants Ltd. SASKATOON - BARRIE - MONTREAL -

LOG of BOREHOLE

1H014-A JOB NQ. Hollow Stem Auger Method . TOWN OF HAILEYBURY CLIENT I.D. 3 3/4" Diameter. TW 4/91 March 15, 1991 ELEV. M.P. 288.660 AGL _ M.P.O.654mAGL GL288.006m Date _ _ BOREHOLE NO. PROFILE SUBSURFACE SAMPLES PIEZOMETER DEPTH GROUND WATER meters NUMBER Alams/t SYMBO DESCRIPTION REMARKS TYPE Piezometer Med./fine sand, reddish brown, slightly SS construction is moist SCH 40 PVC 50 mm dia. pipe with 10 slot screen 2 SS 14 installed from 10.67 m BGL to 7.62 m BGL 3 SS. 16 Medium sand, brown, moist Silica sand from 10.67 m BGL to 5 6.1 m BGL SS 6 .5 m bentonite seal at surface 5 SS 6 Water level taken on March 26/91 5.99 m BMTP б SS 7 SS 10 SS 8 Clay, some silt, minor sand, minor gravel, grey, moist 9 SS 18 10 100 58 15 Clay, some rocks, minor silt, few pebbles grey, hard, dry SS 11 100 16.5 Refusal SAMPLE TYPES Auger:

ΔS Rock Core Split Spoon Sh Shelby Sidewall International Water Consultants Ltd. SASKATOON - BARRIE - MONTREAL .

OG of BOREHOLE

1H014-A JOB NO. Method Hollow Stem Auger TOWN OF HAILEYBURY CLIENT Diameter I.D. 3 3/4" BOREHOLE NO __ TW 5/91 __ ELEV. M.P.297.019 AGL _ M.P.1.04m AGL GL, 295.979m Date March 12, 1991 SUBSURFACE PR.OFILE SAMPLES EZOMETE DEPTH meters GROUND WATER SYMBOL NUMBER , Z XO REMARKS DESCRIPTION TYPE 0 Piezometer Med., light brown sand, few stringers SS construction is of coarser sand, minor pebbles, SCH 40 PVC 50 mm slightly moist dia. pipe with 2 S\$ 23 10 slot screen installed from 6.70m to 9.75m 3 SS. 13 Bentonite bottom seal from 10.7m 5 SS 14 to 9.75m BGL, silica sand from 9.75m to 5.2m BGL, bentonite seal SS 4 from 5.2 m to Silty clay, grey, very moist 4.5 m BGL, backfill to 0.5 m BGL, 0.5 m Fine sand, some silt, minor clay, few SS 8 bentonite surface coarser components, yellowish brown, seal Water level taken 7 SS 80 10 on March 26/91 Silty clay, minor sand, minor gravel, 7.73 m BMP few larger rocks, grey, very hard, dry 8 SS 7100 9 SS 7100 Clay, some to minor silt, minor gravel, grey, hard, dry 10 SS 7100 Wet 11 RC Bedrock, some fracturing 14

SAMPLE TYPES

Auger Rock Core Split Spaon Sh Shelby Sw Sidewoll International Water Consultants Ltd. SASKATOON - BARRIE - MONTREAL .

		LOG	OF B	OREH	OLE			
1	NT TOWN OF HAILEY							Method HSA
_	HOLE No. TW 6/9 M.P. 288.916 m.A.S.L. G.L		 112_m.A	.S.L	. M.P.	0.80 n		Diameter 10 cm ID Nov 28/94
F		ROFIL				AMPL		<u> </u>
DEPTH metres	DESCRIPTION	106	WATER LEVEL (m.B.G.L.)	PIEZONETER	INTERVAL	TYPE	BLOWS/FT	REMARKS
3.6l 5	brown fine grained SAND trace silt, medium dense brown SILT and CLAY gray-brown fine to medium SAND, trace silt, medium dense to loose saturated below 6 metres		×		2 - 3 - 4 - 5	\$\$ \$\$ \$\$ \$\$	10 19 27 17 19	Piezometer Installation 50 mm PVC 10 slot screen Screen 7.32 - 8.84 m Sandpack 7.01 - 8.84 Bentonite 0 - 7.01 m S.W.L. Dec 20/94 6.95 m.B.M.P.
15	end of hole 9.75 m							*
AS R¢ 88	SAMPLE TYPES Auger Sh Shelby Rock Core Sw Sidewa Spilt Spoon CS Continu Sample	10U#	Inte	rnati				nsultants Ltd.

			L0G ()F B0	REHOL	. E	<u></u>		
ገ		TOWN OF HAILEYBU	RY	<u></u>	····				Method <u>HSA</u>
J		HOLE No. <u>TW 7/98</u> M.P. <u>284.961 m.A.S.L.</u> G.L.	784 3	121 m A S	1	м D	ብ አለ m		Diameter <u>10 cm ID</u> Date <u>Sept 10/98</u>
٦		SUBSURFACE PR		ET HATTO	· <u>···</u>				Date <u>Sept 10/98</u>
J		SOBSURFACE FRO	I	<u> </u>			AMPL:	<u> </u>	
]]	DEPTH metre	DESCRIPTION	907	WATER LEVEL (m.B.G.L.)	PIEZOMETER	INTERVAL	TYPE	BLOWS/FT	REMARKS
J		brown fine silty SAND	111			-			Piezometer Installation
]	-		† 					<u> </u>	50 mm PVC
֧֧֓֞֝֟֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟		saturated below 2 metres		┫		_ 1	SS	7	- 10 slot screen
	-	brown sandy SILT	+			2	SS	1	Bentonite 0 – 1.52 Sandpack 1.52 – 4.68 m
ָ ֓֞֓֞֞֞֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֡֓֡֓֓֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡	 	brown silty SAND,		•			33	1	Screen 4.68 - 6.2
َ ل ا	5 –	gravel, stones					SS	30 58	S.W.L. Sept 10/98 3.2 m.B.M.P.
]	_							78	3.2 m.o.r.r.
ر-		end of hole 6.2 m							
<u>ا</u> ا	1	Includes Stick-up	Ť	:	7	•			
]	-	Includes Stoking		Ì	1	-			
ا۲		•	ŀ		ŧ	-			
ال	10 –	-	<u> </u>		4	-			ν,
٦!									· ·
اد. اد					ŀ				
		- ,			Ţ	·			
) I	1	-			1	•			,
_] 			-		ł	•			
ַ	15 -	- -	_		4	-			
٦									
7		·						<u>.</u>	
		SAMPLE TYPES Augus Sh Shelby Tube	,	In	ternat	ional	Wate	r Car	sultants Ltd.
١		Rock Core &w Sidewall Split Speen CS Continuous		111	·ot Hat	MONTREAL	- BARRIE	. SASKAT	IOUITABLO LIV.

Samples

			OF B	OREH	OLE			
	NT TOWN OF HAIL							Method HSA
BORE	HOLE No. TW 8	/ 9 4	9.41 m A	\$1	М Б	0 90 n		Diameter 10 cm ID Date Nov 29/94
ELEV.								T
	SUBSURFACE	PROFI	LE	<u> </u>		AMPL		-
DEPTH metre	DESCRIPTION	106	WATER LEVEL (m.B.G.L.)	PIEZONETER	INTERVAL	TYPE	BLOWS/F1	REMARKS
0.3	— organic deposits	1.1	▼ .					Piezoneter Installation
2 44	gray silty fine SAND. trace gravel saturated below 0.3 m		, , , , , , , , , , , , , , , , , , ,					50 mm PVC 10 slot screen
2.44	REFUSAL TO AUGERING ON BEDROCK AT 2.44 m							Screen 0.92 - 2.44 Sandpack 0.6 - 2.44 Bentonite 0 - 0.6 m
5 -				_	_			S.W.L. Dec 20/94 1.25 m.B.M.P.
_		1		4	-			
-				<u>-</u>	.			
		+			_			
10 -	_	†		_	_			
		1						š
		+			•			
		+					,	
,15 <i>-</i>	<u> </u>	†		_	-			
		Ţ		_				
AS RC SS	Spilt Spoon OS Con	by wall tinuous plor	Inter	natio				nsultants Ltd.

BORE	NT <u>TOWN OF HAILEYB</u> HOLE No. <u>TW 9/9</u> M.P. <u>289.040 m.A.S.L.</u> G.	BURY B (Replac			0.74 m		Method <u>HSA</u> Diameter <u>10 cm ID</u> Date <u>Sept 10/98</u>
	SUBSURFACE P	ROFILE		S	AMPLE	S	
DEPTH metres	DESCRIPTION	907	WATER LEVEL (m.B.G.L.) PIEZOMETER	INTERVAL	TYPE	BLOWS/FT	REMARKS
10 -	brown fine to medium SAND some coarse layers grey medium SAND brown silty SAND w stones end of hole 12.95 m Includes Stick-up			1 2 - 3 - 5 - 6 - 7 - 8 7	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	5 9 10 15 11 10 11 11 12 12 11 12 12 11 11 11 11 11 11	Piezometer Installation 50 mm PVC 10 slot screen Bentonite 0 - 10.53 Sandpack 10.53 - 11.43 m Screen 11.43 - 12.95 S.W.L. Sept 10/98 10.64 m.B.M.P.
AS RC 88	SAMPLE TYPES Auger Sh Shelby T Reck Gore Sw Sidewall Split Spaon . CS Continue Samp	49	Interna		Water		sultants Ltd.

]	CLIF	NT TOWN OF HAILEYBU	L0G 0	F BO	REHOL	E	<u>-</u> .		Method <u>HSA</u>
7		HOLE No	•						Diameter <u>10 cm ID</u>
J		M.P. <u>283.981 m.A.S.L.</u> G.L				M.P.	0.68 m		
,		SUBSURFACE PR	OFILE			S	AMPLI	E S	
ן ן	DEPTH metres	DESCRIPTION	901	WATER LEVEL (m.B.G.L.)	PIEZONETER	INTERVAL	TYPE	BLOWS/FT	REMARKS
		grey medium to coarse SAND some silt grey medium to coarse SAND		Y		1	\$\$	16	Piezometer Installation 50 mm PVC 10 slot screen Bentonite 0 - 4.58
	,	some silt		-		-	\$\$	1	Sandpack 4.58 - 5.18 m Screen 5.18 - 6.7
֓֞֞֞֟֞֟֟֝֟֟֟֟֟֟֟֟ ֓֓֞֓֞֓֞֞֓֞֞֓֞֞֓֞֓֓֞֞֞֞֞֓֞֞֞֞֞֞֓֓֞֞֞֞֞֞֡֓	5					_ 3	SS	30 58	S.W.L. Sept 10/98 3.48 m.B.M.P.
 آر		grey medium to coarse SAND some silt				4	SS	7 13	
_] _]		end of hole 6.7 m	†						
ָ ֖֖֖֖֖֖֖֖֖֖֖֖֓֝	10 -	Includes Stick-up	 						દ
]	10 -		<u></u>						¢
		<u>†</u> †	1		-	<u>-</u>		,	
j	15 -		+			- :		.,	
) . i .			•	_	- -			
]			1					<u> </u>	<u> </u>
	AS AC SS	SAMPIF TYPES Auger Sh Shelby Tu Rock Care Sw Sidewall Split Speen CS Centinuou Sample	,	In			Wate		nsultants Ltd.

BOREHOLE NO. TW-11

PAGE 1 OF 1

PROJECT NAME: HAILEYBURY LANDFILL SITE	PROJECT NO.: 041708.00
CLIENT: CITY OF TEMISKAMING SHORES	DATE: NOVEMBER 15, 2004
BOREHOLE TYPE: HOLLOW STEM AUGER, 203 mm (8") O.D.	SUPERVISOR: DJW
GROUND ELEVATION:	REVIEWER: BDT

	- 1	· - · · · · · · · · · · · · · · · · · ·			Г.				_					_		_	
1	i		🖺					AMPL			CENE!	ONE FRATION		W	TER		
l	ŀ		STRATIGRAPHY	l					*	1	"N" \	/ALUE	\dashv	CÓN	TENT	Υ.	Th Cold A Marian
DEPT: (m)	H	STRATIGRAPHIC DESCRIPTION	👼	MON	TOR AILS	l ∌∷	7	% WATER	RECOVERY	8	10	20 30			20 3	0	REMARKS
"""	ļ		🖇	1		TYPE	VALUE	A	ğ		+	' 	╅	<u> </u>		_	
0	•		₹		•		<u> </u>	#	罗	36	SHEAR STREN	COMPA COMPA	ı	We	1	WL:	
- 		FINE SAND:		77	7						1	TT	Ť			_	STICK UP IS 0.79 m.
ļ	ı	FINE SAND: MEDIUM BROWN FINE SAND, TRACE SILT,	Į.	\prec	$\langle \langle \cdot \rangle$												
		MOIST.			1//							1 1	-				
<u> </u>					${\cal N}_{\cal N}$	i —	<u> </u>			1			1	-			
2	ĺ										1		1			١.	
			l	\mathbb{N}]	1 1	1	ì			
			l		<i>///</i>					L			1				
				///							I						
				///						<u> </u>			-				
4					1//				L	<u> </u>		11		ĺ	Ì		
			1		11)	<u> </u>	<u></u>		L	ļ				1			
	4.9			///			ļ	ļ		ļ				1	1		
		FINE TO MEDIUM SAND:		V/	1//			<u> </u>		<u> </u>]			1			
<u>. </u>		FINE TO MEDIUM SAND: GREY FINE TO MEDIUM SAND, TRACE SILT, MOIST TO SATURATED.			V/		<u> </u>	 	<u> </u>	<u> </u>							
đ	ĺ			///		├	 	<u> </u>	 	<u> </u>]						
				111		ļ	ļ		 	 	1	1	ŀ				
	i	'	1		$\mathcal{N}\mathcal{N}$		├	 -	├	├—		1	ļ				
<u> </u>						├ ─	 	 -		ļ		11				1	
						-	├─-	ļ		├	1		-				
8	i	:			\mathcal{N}	├	\vdash	\vdash	 	╌	11	11		1			STATIC WATER LEVEL AT Q.O.
<u> </u>					14	<u> </u>	ļ			 	11		1				STATIC WATER LEVEL AT 9.0 mBGL ON DECEMBER 1, 2004.
-			1		汉	ļ	 			╁	1	1	- {		1		
			1		17/	╀─	-			 	1				1		
10					$V\!/$	} -	 			_	1			ļ			
"	1)	†				11				ł	l	1
i			1		///	┤		${}^{\vdash}$	1	1	1	11					
					<u> </u>	1					1	1	١	-			•
i					生ごで]		- 1			*	
12					E //	1	<u> </u>]		- 1	1	1		
			1		1			<u> </u>		<u> </u>] [11	- 1				
			l	1.3	T . /	<u> </u>		<u> </u>		<u>.</u>	1	11	- 1				
	13.3		<u>L_</u>	2.3.73			<u> </u>	ļ	<u> </u>	↓	1		-		-		
		BOREHOLE TERMINATED AT 13.3 m IN SAND.					 	<u> </u>	<u> </u>	 	4.		- [
14		·		1		<u> </u>	┦—	 	⊢		4						[
						-	 	┼	<u> </u>	-	-			Ì			
\square						—	-├	 	┼	-	-						
 						<u> </u>	 	·	 	-	-		ļ	1			1
						-	╂	 	·	-	-						}
16			1			\vdash	+-	+-	+	+	1	11					
 							╁─	 	 	1	1		-			1	}
						-	┨──	\vdash	t^{-}	┤──	1 1					1	
			ı				╁	 	 	+	1					1	
18			1				一	┪	T	†	1			-		1	
H			1				\top	†	T	1	1		ļ			1	
			1	1			T		†	1	1						
			1				1	1	1	7	7			Ì		1	
							L] [1	
20				\perp												<u> </u> _	<u> </u>
TACAR			_	_													

Jacom Hos Lourso

BOREHOLE NO. TW-12

PAGE 1 OF 1

	•	CITY OF TEMISKAMING SHORES		_							-			_			MBER 16, 2004_
OR	EHO	LE TYPE: HOLLOW STEM AUGE	R, 20	3 mm	(8 ^m)	O.D.					-	SUI	PE	R۷	'ISC)R <u>:</u>	DJW
RO	UND	ELEVATION:									_	RE\	VIE	W	ER:		BDT
			4	"			8	AMPL	E		PENS	ONE TRATIO	,,	١	NATE	R	
DE	PTH	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MON	TOR	,	z.	76	% R			VALUE		CC	NTE	NT %	REMARKS
(m)	•	I X	DET	AILS	147	VALUE	% WATER	RECOVERY	ROB	10	20 30	<u>'</u>		20		
٥_		·	₹				袖	#	2	(%)	SHEAL STREE	\$ 467H	4	Wr		W _L	CTON 150 IS 0.50 as
┥		EINE SAND: LIGHT BROWN FINE SAND, TRACE TO SOME SILT, MOIST.		K	<		<u> </u>	:	_								STICK UP IS 0.56 m.
二		oids moos.															
2						 	 		<u> </u>				١				
								.:						- s.			
					N	-	 		ļ	 							
			1														
4						}—			_			$ \ $					
						<u> </u>	<u> </u>			ļ							
							 	 	 -	 							
В																	
_			1			₩		<u> </u>	_	-		1	'	٠,	1		
	7.3	MEDIUM TO COARSE SAND:			1 .//												
\Box		MEDIUM TO COARSE SAND: GREVISH BROWN AND BLACK MEDIUM TO COARSE SAND, TRACE FINE TO MEDIUM GRAVEL, MOIST TO WET.			≢∴	╙		<u> </u>	_	ļ <u> </u>							
5	8.1	BEDROCK:	┼		Ž	_											STATIC WATER LEVEL AT
	8.7	BOREHOLE TERMINATED AT 8.7 m IN	┿	\$. %/ A	A .				ļ ,.	ļ <u>-</u>							8.4 mBGL ON DECEMBER 1, 2004.
_		BEDROCK.								<u> </u>							
10		-				_	 	_	<u> </u>								*.
Ⅎ							<u> </u>										
\exists							ļ									ď	
12											<u> </u>						
		•					ļ	ļ	ļ	 							
		·						<u></u>		ļ	1						
									-					İ			
14						-	H	╁	\vdash	+	11						
·															[
			İ	1		-		 -			11					1	
16												.					
						-	-	├		-							
_		·				\vdash	╀	1	\vdash	1				1			
18											1						
						\vdash	├—		├		$\ \ $						İ
ᅱ						1	~ 	1	1	+	1		1	1	П		

Jacon Hom Lauren

Sto	ry Envi	ronm	nenta	al Se	rvi	ce	S		Monitoring Well No.: TW1 Ontario Well Tag: A04673
Project	· .	•						Location:	Official Violating 7, 7, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Haile	eybury Lar	ndfill						Haileybur	y, ON
	Method:	lugar	Diamete					Project No.: Date Drilled:	Logged By:
	ow Stem A	_	200		(0-		levation (r	00608 15 11 200	06 KJK
	Surface Elevation (m ,623	nx			89.4			E.E.	
	SPLIT SPOON			SHELBY				☐ CUTTINGS ▼ WATER LEVE	EL
<u> </u>	<u> </u>					, <u>u</u>	¥	-	MONITORING WELL
EPTH (m)	· MOIST	TURE COA (%)	NTENT	TWO COUNTY	SAMPLENO	SAMPLE TYPE	STRATIGRAPHY	SOIL DESCRIPTION	INSTALLATION
	20 4	0 60	80		AS.	3	STR	TODGOU black down and the second l	lanar .
0		$ \ \ $						TOPSOIL, black, clayey, some silt, trace sand, to plasticity, organics (rootlets), damp.	OW /
		$ \ \ $				\angle		SAND, brown, loose, poorly graded, fine to med	dlum .
						·		grained, rootlets to 1.0 m, homogeneous, damp).
_	 	┝╌┼┈╀		+-			32.22		
1						17			
•	$ \ \ \ \ $					K-		- light brown, fine grained at 1.7 m	
				2	3	Γ	789	ngine ordering in the granted dr. 117-119	
2				3	4	X			
_	 	ļ 		1	켰				
'		<u> </u>		3	3	X			
					3			- damp to moist 3.0 m	
3		[1	3	\mathcal{N}	و للد الله	months to traine 414 til	
				3	2	1/			
								- moist at 3.7 m	
		 	$\dashv \downarrow$	2	5	\setminus			
4				5	5	V			
•									
				1 2	3	\setminus	/徐蒙		,
5	╀┼┼	}- - 	$\vdash \vdash \vdash$	1-5	4	1/	$\bigvee_{i\in \mathcal{I}_{i}}$		
Ų				2	7	F	7 //		17/11/2008
•					4	$\parallel \rangle$			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
					4	μ		•	
6				2	7	\vdash	/		·
				3	3	$ \rangle$	(S		
					3	\vdash	4.5		<u>Legend</u>
		 					250 V		50 mm Ø PVC pipe
7							12.	1	50 mm Ø slotted PVC
-	1								p∤pe
		}	$ \ \ $	10	5	Κ	/ \$\$\$	- coarse grained from 7.7 m to 7.9 m	benlonite seat
	╂═┼╌╂┈	1	╎ ╌┤─┤	5	5	1			clean sitica sand beckfill
8					\dashv	ŕ		- loose to medium dense at 8.2 m	
<u>-</u>								1	
									·
9	 	++-			\dashv	F		- medium dense at 9.1 m	
					6	-	<u> </u>	- silt seem (50 mm thick) at 9.4 m	
-		$ \ \ $		6	6	L	<u>V::::</u>		
		1			l				

Sto		ry	E	'n	vi	ro	nı	me	en	ıta	18	er	vic	e	S				nitoring Well No.: TW1: tario Well Tag: A04673
Project Hail	le			уl	_aı	nd	fill											/bury, Ol	
	lo¹	W	Şt				gei			eler (Project No.; 00608	Date Drille 15 11	± 2006	Logged By: KJK
^{Ground} 288				eveli	on (n	n):						[™] 28			ievation (m):			
<u> </u>	SI	PLIT	SP	001	1					:	SHEL					CUTTINGS	▼ WATE	R LEVEL	
EPTH (m)						((%)	ONTE				BLOW COUNT	SAMPLE NO.	SAMPLE TYPE	STRATIGRAPHY	SO Descri	HL IPTION		MONITORING WELL INSTALLATION
10			20	,		D		50		30		0/5		X		- continued - brown, coarse grained an	nd wet at 10.7 n	п	15/11/2008
12		•										0/0 1/3	7	X		- blackish grey, coarse grai gravel at 12.2 m	ined, poorly gra	ded, trace	
13														Z		- slight odour at 13.4 m			Legend Sommø Pyceppe
14			į					ļ Ļ_											50 mm Ø slotted PVC pipa bentonite eoal clean silica send backtit
15															11.57	End of Borehole at 15.2 m	<u>-</u>	,	- <u>□261</u> ₹
16		i									•						:		
17				•														f ,	
18				:															
19	+	1											:						

	ry En	vira	nm	ent	al Se	erv	ic	es	; 		Monitoring Well No.: TW1 Ontario Well Tag: A04673
	eybury	Land	fill							Haileybury, (
Drilling f	_{Method:} ow Ster	n Au	ger		er (mm):					Project No.: Dala Drilled: 00608 15 11 2006	Logged By: KJK
Ground	Surface Eleval				To	•		-	n) noissy		
	.887			<u></u>		86	.67	73			
X	SPLIT SPOOF	N	<u></u>		SHELBY	$\overline{}$	_	1		CUTTINGS ▼ WATER LEVEL	MONITORING WELL
DEPTH (m)			(%)			SCOW COOK	SAMPLE NO.	SAMPLE TYPE	STRATIGRAPHY	SOIL DESCRIPTION	INSTALLATION
0	20	40	60	<u>80</u>	<u>' </u>	+		99	U)	TOPSOIL, black, dayey, some silt, trace sand, low plasticity, organics (roollets), damp.	
·								Z		SAND, brown (rustic), slity, foose, fine grained, some oxidation, organic odour, damp. - brown, poorly graded, homogeneous at 0.9 m	
1					2	4		Z		- light brown to grey, some silt at 1.5 m	
2		-			2	4		\bigvee			
3					2/3	∄		X			:
4						<u></u>		v\		- light to olive brown at 3.7 m	
· -										- medium dense, moist at 4.6 m	
· · ·		<u> </u>			7	7		X		- moist to wet at 4.9 m	*
5						7					(
6					3	0		X		- medium grained at 6.1 m	
7										f	16/11/2006
8					6	<u> </u>		X		make to the ma	Legend
9			 		0	<u></u>				- wet at 8.5 m - sand is heaving at 9.1 m	50 mm (2) PVC pipe S0 mm (2) stotled PVC pipe bentonite
: -						0		K		- coarse grained at 9.8 m	clean silica

Story Environmental Services Ont														nitoring Well No.: TW14 tario Well Tag: A046737																
Project: Hail		ybi	ur	y L	.ar	ndf	ill																ailey	/bui	y, Ol	N				
Drilling Holl	l٥١	w S	Ste				jer			ler(n) m	nm): 1111							Project N 0060				Da	te Orille 5 11	1 :				KJK		
_{Ground} 285				valic	ın (m	ı):						28			levalion	(m):														
<u> </u>	ŞF	PLIT	SPC	ON						s	HEL					Z] CI	JTTINGS	}		1	7	WATE	R LEV	EL					
EPTH (m)	MOISTURE CONTENT (%)								BLOW COUNT	PLE NO.	SAMPLE NO.	STRATIGRAPHY		SOIL DESCRIPTI			OIL RIPTIO	N					MONITORING WELL INSTALLATION							
	L	_	20		40		6	0	8	<u>, </u>		<u>M</u>	8	8	STEA	<u> </u>		•								_				- 19
10																A. C. C. C. C. C. C. C. C. C. C. C. C. C.	- conti	nued											·	
11																100 M 100 M 200 M											1		ı	
12																***********												3end 50 mm 6 PVC pip 50 mm 6 stotted P pipe	vvc	
					_		-511-52						:				End of	Boreho	ole at	13.7 n								bentoniti seal clean sil send ba		
14																										ŧ	;			
15								Ĭ																		*				
16																										:				
17																									f J					
18	-					-																								
19																														

	ry E	nv	Iroi	nm 	ien	ital	Se	rvi 	ce	:\$ 			ntario Well Tag: A05878
	eybur	y La	ındf	ill								Haileybury, O	
	ow Ste		-	er		eter (m	m				Project No.: 00608	Date Drilled: 13 09 2007	Logged By: KJK
286.	Surface Ele 883	vation ((m):						^{авілд} 791	Elevation (i	n):		ļ
X 5	SPLIT SPO	OON			5	ŝ	HELBY				CUTTINGS	▼ WATER LEVEL	
OEPTH (m)				%)		••	BLOW COUNT	, 041	SAMPLE NO.	STRATIGRAPHY	SOIL DESCRIPTH	ON	MONITORING WELL INSTALLATION
0	20	T	40	60	-	30	† <u> </u>	-			TOPSOIL, black, some clay ar plasticity, organics (rootlets), d	nd silt, trace sand, low amp.	
-											SAND, brown, loose to medium graded, medium grained, orga	m dense, poorly	
1									/				
2								:			- coarse grained at 2.1 m		
3		-					F	3					
-			:					4	1	\ - - -	- slight grey and moist at 3.5 n	1	
4							2,		_				
5							4	3 6			- dense at 5.0 m - auger resistance and pebble	in split spoon at 5.2 m	. ;
-													
6	:						3 6	4			- grey at 6,1 m		Legend 50 mm Ø PVC pipe
7		-										7	PVC pipe stotted PVC pipe bentonke
							6	16			7		seal clean silica sand backfill
8									K		- cobble layer at 8.5 m		alough Chawwe material
9					1		 6	13			- water 9.3 m		25/09/2007

Sto	or	у	E	n۱	/ir	O	nr	ne	n	ta	I S	èe:	rvi	ce	s						toring Well No.: TW19 rlo Well Tag: A05878
_{Project:} Hail	ley			 / L	.ar	ıdf	ill				_		•						Location: Haileybur	y, ON	
Drilling Holl	lo۱	w S	Ste				er				um):						Project No.: 00608	· · · · · · · · · · · · · · · · · · ·	Date Drilled: 13 09 200	7	Logged By: KJK
@round 286				valio	n (m)); 								79°	Elevatio 1	ж (п	u): 				
3	SP	'UT:	SPC	XON							SHEL	٠.		<u> </u>	. 1 3	_	CUTTINGS		WATER LEVE	i.	MONITORING WELL
EPTH (m)				MC		Ċ	%)	NTE				BLOW COUNT		SHAPLE NO.	VIOLE STATE STATES			SOIL DESCRIPTION	ı		INSTALLATION
10			20		40		6	J	8					- 10			- continued				
11		 -								_											
13		 -	-				···														
																***	End of Borehole a	it 13.4 m			- HIE
14																					n.
15													·	;						Š	
16																					
17																					Legend
18																					50 mm Ø PVC pipe 50 mm Ø slotted PVC pipe bentonite seal
19			- -									į									clean stilica sand back@) slough hative material

Sto	ory E	nvi	on	me	enta	al Se	۲۱	vic	e	3			Monitoring Well No.: TW16 Ontario Well Tag: A058780
	leybur	y Lar	ıdfill							_		Location: Haileybury	
Holl	Method: low St				19mete 200	mm					Project No.: 00608	Date Drilled: 13 09 2007	Logged By: 7 KJK
	1 Surface Ele 530	walion (m):					rcest 5.51		levation (m):		
×	SPLIT SPO	OON				SHELBY		_			CUTTINGS	▼ WATER LEVEL	<u> </u>
DEPTH (m)		MOIST	(%)				SLUVE COUNT	SAMPLE NO.	SAMPLE TYPE	STRATIGRAPHY	SOIL DESCRIP	TION	MONITORING WELL INSTALLATION
0	20	40		60	80				v)	Б 2	TOPSOIL, black, some clay plasticity, organics (rootlets),	and silt, trace sand, ic damp.	Wic
											ŞAND, brown, loose, mediur dry.	m to coarse grained,	
1	: : :					5	0		Z		- course grained sand seam (less than 50 mm thick) and	s present in split spoo dry at 1.5 m	; inc
2						3,	7		· ·		- trace pebbles, sand coarse	grained, dry to moist	at
4		:				4	6		X		3.0 m		:
5		_				3	4 4		X		- grey at 4.6 m		
5													
6						5	11		X		- very dense and difficult to a m to 7.9 m - water at 6.4 m	dvance auger from 6.	25/09/2008
7						9,	7		7			, ,	
8							7		X		End of Borehole, Refusal at 7	7.9 m	Legend 50 mm Ø PVC pipe 50 mm Ø slotted PVC pipe
9						6	13		X,				clean silica sand backsii slough salive material

Sto	ρņ	y E	Ξn	viı	ro	nn	ne	ent	al	Se	en	/ic	e	3			Monitoring Well No.; TW17 Ontario Well Tag: A058780
Project: Hail	ley		ry l	Laı	ndf	îll										teration: Haileybury	
Holl	o۷	v S				jer			er (mii Mr	n					Project No.: 00608	Date Drilled: 14 09 2007	7 KJK
Ground 284			levali	T) noi	1);						гор от 2 8 5			evalion ((m):		
X	SP	.n s	200I	١ .					SH	ELB/	′				☐ CUTTINGS ▼	WATER LEVEL	
DEPTH (m)					C	E CO %)					BLOW COUNT	SAMPLE NO.	SAMPLE TYPE	STRATIGRAPHY	SOIL DESCRIPTION		MONITORING WELL INSTALLATION
0	<u> </u>	2	0	4	0	60	•	<u> </u>	T	+	- ES		Ø	S	TOPSOIL, black, clayey, some si (rootlets), damp.	lit, organics	
															SAND, brown, medium dense, m	nedium grained,	/
1													Z		Sll.T, brown, some clay, trace sa plasticity, moist. - wet at 1.2 m	and, firm, mediun	en ,
2									;						- soft at 2.1 m		24/09/2007
3	_										20		X		• very soft at 3.0 m		
										<u> </u>	2				End of Borehole, Refusal at 4.0 r	···	
4															End of Borolous, Notices at 4.01	"	· v
5	-											l					ş.
6							:					:					
7		<u> </u>														; >	f
8															·		Legend 50 mm Ø PVC pipe 50 mm Ø skoliked PVC pipe
9			_														benkonite sea! clean silica sand becklil slough netwe material

The City of Temiskaming Shores

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX C GROUNDWATER ELEVATIONS

Wood Project No.: TY131010

The City of Temiskaming Shores
2020 Annual Groundwater and Surface Water Monitoring Report
Haileybury Waste Disposal Site
Haileybury, Ontario
March 2021

Monitor	UTM Coo	ordinates	Measuring Point														Eleva	ation of	Water (n	nasl)¹													
No.	Easting	Northing	Elevation (masl) ¹	May-03	Aug-03	Nov-03	May-04	Aug-04	Nov-04	May-05	Sep-05	Nov-05	May-06	Sep-06	Dec-06	Jun-07	Sep-07	Nov-07	May-08	Sep-08	Dec-08	May-09	Sep-09	Nov-09	May-10	Aug-10	Nov-10	May-11	Aug-11	Nov-11	May-12	2 Aug-12	2 Nov-12
TW1	593793	5253023	295.66	288.95	288.50	288.93	289.08	288.45	288.35	288.80	289.22	288.87	288.85	288.36	288.90	288.65	288.22	288.23	289.03	288.35	288.45	289.22	288.23					Dest	royed				
TW3	593578	5253041	296.70	285.34	285.31	285.38	285.39	285.26	285.09	285.30	286.13	285.27	285.28	285.14	ND	285.27	285.10	285.01	285.31	285.22	285.29	285.32	285.18	285.29	285.30	285.10	285.30	285.34	285.21	285.22	285.30	285.11	285.15
TW4	593656	5252867	288.66	283.78	283.40	284.05	284.61	283.92	282.90	283.99	282.64	283.85	284.42	282.99	284.51	283.89	282.64	282.26	285.02	283.54	283.80	285.37	283.40	284.31	283.74	282.60	283.70	285.02	283.48	284.58	284.34	282.72	284.16
TW5	593835	5252876	297.02	289.74	289.67	289.60	289.72	289.84	289.45	289.72	289.29	289.65	289.96	289.43	289.61	289.56	289.18	289.14	289.61	289.50	289.50	289.97	289.52	289.58	289.56	289.36	289.60	289.89	289.67	289.62	289.79	289.32	289.56
TW6	593605	5252915	288.92	283.04	282.70	283.10	283.80	283.28	282.23	283.17	282.04	282.92	283.67	282.35	283.53	283.06	282.06	281.73	283.99	282.84	282.97	284.46	282.72	283.37	283.00	282.07	282.93	284.17	282.86	283.42	283.57	282.19	282.86
TW7	593553	5252777	284.96	283.31	282.79	283.69	283.74	283.25	282.51	283.26	282.17	283.31	283.54	282.56	283.71	283.40	282.12	281.75	283.86	283.08	283.24	284.09	282.94	283.51	283.06	282.26	283.05	283.80	282.89	283.68	283.46	282.14	283.93
TW8	593910	5253100	295.78	294.56	294.44	294.63	294.61	294.49	294.47	294.55	294.25	294.58	294.52	294.37	294.57	294.52	293.84	294.17	294.54	294.42	294.53	294.56	294.39	294.56	294.54	294.38	294.53	294.55	294.03	294.56	294.52	294.15	294.64
TW9	593553	5252965	289.04	279.09	279.20	279.14	280.04	280.12	278.74	279.35	278.21	278.55	280.18	278.97	279.69	279.52	278.41	277.90	279.92	279.34	279.15	281.01	279.52	279.48	279.17	278.14	278.82	280.13	279.39	279.01	279.94	278.52	2 278.11
TW10	593486	5252824	283.98	281.40	281.50	281.69	282.07	281.99	281.48	281.75	280.69	281.44	282.16	281.49	281.99	281.96	280.28	280.77	281.95	281.75	281.58	282.51	281.82	282.02	281.78	281.60	281.79	282.22	281.77	281.83	282.07	280.92	281.08
TW11	593519	5252961	288.80					ND	278.98	279.01	278.24	278.41	279.96	279.19	279.57	279.56	278.63	278.12	279.48	279.39	279.12	280.91	279.77	279.51	279.10	278.25	278.61	279.80	279.47	279.06	279.94	278.81	278.28
TW12	593356	5252963	287.26					ND	278.32	DRY	DRY	DRY	278.53	278.34	278.33	278.48	DRY	DRY	DRY	278.37	278.13	279.28	278.89	278.44	DRY	DRY	DRY	278.13	278.44	278.02	278.69	278.08	B DRY
TW13	593472	5253010	289.49												278.65	278.77	278.10	277.68	278.19	278.66	278.39	279.81	279.17	278.74	278.25	277.70	277.74	278.53	278.74	278.28	279.04	278.29	277.77
TW14	593381	5252937	286.67												278.39	278.52	277.95	277.58	277.88	278.43	278.17	279.37	278.94	278.49	278.01	277.55	277.55	278.18	278.49	278.07	278.76	278.12	2 277.64
TW15	593369	5253024	287.79														277.87	277.50	277.77	278.34	278.09	279.27	278.85	278.41	277.92	277.48	277.46	278.10	278.40	277.99	278.65	278.05	277.58
TW16	593282	5252995	285.51														277.84	277.39	277.76	278.31	278.07	279.22	278.82	278.37	277.89	277.45	277.43	278.07	278.37	277.96	278.61	278.02	2 277.56
TW17	593517	5252798	285.07														282.11	281.75	283.91	283.06	283.20	284.05	282.92	283.49	283.07	282.25	283.06	283.76	282.88	283.67	283.44	282.14	283.88

Notes:

Wood Project No.: TY131010 Page 1 of 2

⁽¹⁾ masl - metres above sea level.

⁽²⁾ ND - no data available.

The City of Temiskaming Shores
2020 Annual Groundwater and Surface Water Monitoring Report
Haileybury Waste Disposal Site
Haileybury, Ontario
March 2021

Monitor	UTM Cod	ordinates	Measuring Point											Ele	vation of	Water (ma	sl) ¹										
No.	Easting	Northing	Elevation (masl) ¹	May-13	Jul-13	Sep-13	Jun-14	Jul-14	Sep-14	May-15	Jul-15	Sep-15	May-16	Jul-16	Sep-16	May-17	Jul-17	Sep-17	May-18	Jul-18	Oct-18	May-19	Jul-19	Sep-19	Jun-20	Aug-20	Oct-20
TW1	593793	5253023	295.66												Destr	royed											
TW3	593578	5253041	296.70	285.28	285.20	285.14	285.30	285.21	285.31									Dest	royed								
TW4	593656	5252867	288.66	285.33	283.72	283.08	285.37	283.82	284.51	284.56	283.47	282.91	285.47	283.86	283.22	285.26	283.92	282.93	285.42	283.55	282.93	285.83	284.26	283.41	284.73	284.31	284.30
TW5	593835	5252876	297.02	289.98	289.56	289.36	290.15	ND	290.05	290.02	289.86	289.26	290.31	290.02	289.68	290.02	289.92	289.47	289.97	289.68	289.47	290.58	290.12	289.69	290.05	289.97	289.96
TW6	593605	5252915	288.92	284.42	283.11	282.49	284.62	283.22	283.70	283.87	282.91	282.34	284.56	283.29	282.65	284.35	283.32	282.40	284.46	283.00	282.40	285.16	283.76	282.90	284.13	283.70	283.61
TW7	593553	5252777	284.96	284.03	283.08	282.58	284.02	ND	283.76	284.44	282.94	281.96	284.04	283.21	282.74	283.93	283.22	282.49	284.00	283.02	282.49	284.19	283.41	282.99	283.72	283.51	283.72
TW8	593910	5253100	295.78	294.58	294.40	294.47	294.57	294.50	294.59	294.56	294.22	293.68	294.56	294.25	293.97	294.53	294.47	294.25	294.54	294.43	294.25	294.57	294.37	294.56	294.52	294.53	294.58
TW9	593553	5252965	289.04	280.66	279.78	278.92	281.02	279.96	279.90	280.14	279.36	278.15	280.91	279.92	278.98	280.01	279.44	277.26	279.56	279.09	277.26	281.52	280.39	279.35	280.29	279.49	279.26
TW10	593486	5252824	283.98	282.39	281.81	281.40	282.46	ND	282.13	282.16	281.50	278.64	282.45	281.86	281.26	282.11	281.79	280.86	282.03	281.43	280.86	282.75	282.12	281.74	282.32	282.15	282.13
TW11	593519	5252961	288.80	280.45	279.96	279.23	280.82	ND	279.98	280.20	279.63	278.50	280.84	280.17	279.33	279.70	279.49	278.50	279.36	279.22	278.50	281.13	280.65	279.71	280.12	279.65	279.41
TW12	593356	5252963	287.26	278.74	278.94	278.48	279.10	ND	278.86	278.93	278.73	278.19	279.08	279.19	278.59	<277.99	278.39	278.13	DRY	278.27	DRY	279.01	279.51	278.93	278.77	278.66	278.48
TW13	593472	5253010	289.49	279.20	279.24	278.70	279.59	279.29	279.17	279.30	278.99	277.99	279.61	279.47	278.80	278.39	278.68	277.85	278.23	278.48	277.85	279.63	279.93	279.19	279.12	278.95	278.74
TW14	593381	5252937	286.67	278.81	278.98	278.51	279.17	ND	277.91	279.00	278.78	278.25	279.15	279.20	<273.36	278.04	278.45	277.84	277.96	278.32	277.84	279.06	279.60	278.97	278.84	278.72	278.52
TW15	593369	5253024	287.79	278.72	278.89	278.43	279.05	279.13	278.82	278.90	278.68	278.15	279.04	279.02	278.54	277.94	278.35	277.78	277.99	277.84	277.78	278.94	279.52	278.90	278.73	278.64	278.43
TW16	593282	5252995	285.51	278.66	278.86	278.40	279.02	279.38	278.78	278.90	278.64	278.11	279.01	279.07	278.48	277.91	278.31	277.75	277.88	278.19	277.75	278.92	279.46	278.86	278.67	278.58	278.39
TW17	593517	5252798	285.07	284.00	283.05	282.55	283.98	ND	283.71	283.59	282.90	281.73	283.99	283.19	282.71	283.90	283.22	282.47	283.96	283.00	282.47	284.16	283.40	282.97	283.69	283.48	283.70

Notes:

Wood Project No.: TY131010 Page 2 of 2

⁽¹⁾ masl - metres above sea level.

⁽²⁾ ND - no data available.

The City of Temiskaming Shores

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX D

2020 LABORATORY ANALYTICAL REPORTS

Wood Project No.: TY131010

CLIENT NAME: WOOD CANADA LTD. 131 FIELDING ROAD LIVELY, ON P3Y1L7 (705) 682-2632

ATTENTION TO: Emily Lemieux PROJECT: Haileybury GW

AGAT WORK ORDER: 20T610147

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Jun 17, 2020

PAGES (INCLUDING COVER): 14 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

ŀ	*Notes
1	
1	
1	
1	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
1	
1	
1	
1	
1	
1	
1	
L	

Disclaimer:

**!---

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 14

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T610147

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

DATE RECEIVED: 2020-06-06									DATE REPORTE	D: 2020-06-17	7
	S		CRIPTION: PLE TYPE: SAMPLED:	TW-4 Water 2020-06-03		TW-6 Water 2020-06-03	TW-8 Water 2020-06-03		TW-9 Water 2020-06-03		TW-13 Water 2020-06-03
Parameter	Unit	G/S	RDL	1180785	RDL	1180786	1180787	RDL	1180788	RDL	1180789
BOD (5)	mg/L		5	<5	5	<5	<5	5	8	5	6
рН	pH Units	6.5-8.5	NA	7.71	NA	7.32	7.65	NA	7.87	NA	7.65
Alkalinity (as CaCO3)	mg/L	30-500	5	226	5	80	90	5	782	5	108
Electrical Conductivity	uS/cm		2	1110	2	361	202	2	2380	2	313
Hardness (as CaCO3) (Calculated)	mg/L	80-100	0.5	432	0.5	104	90.8	0.5	645	0.5	38.6
Total Dissolved Solids	mg/L	500	20	696	20	178	102	20	1180	20	92
Fluoride	mg/L		0.05	<0.05	0.05	<0.05	<0.05	0.13	<0.13	0.05	< 0.05
Chloride	mg/L	250	0.50	38.7	0.10	11.5	0.76	2.0	152	0.10	10.5
Nitrate as N	mg/L		0.25	22.9	0.05	5.26	0.06	1.0	<1.0	0.05	0.15
Nitrite as N	mg/L		0.25	0.76	0.05	< 0.05	<0.05	1.0	<1.0	0.05	0.27
Sulphate	mg/L	500	0.50	204	0.10	44.8	4.49	2.0	193	0.10	4.52
Phosphate as P	mg/L		0.50	<0.50	0.10	<0.10	<0.10	2.0	<2.0	0.10	<0.10
Ammonia as N	mg/L		0.02	0.96	0.02	<0.02	<0.02	0.4	37.2	0.4	14.5
Total Kjeldahl Nitrogen	mg/L		0.10	1.38	0.10	0.44	0.19	0.10	43.6	0.10	15.7
Organic Nitrogen	mg/L		0.10	0.42	0.10	0.44	0.19	0.10	6.40	0.10	1.20
Dissolved Organic Carbon	mg/L	5	0.5	4.8	0.5	2.9	1.9	1.0	36.0	0.5	5.7
Chemical Oxygen Demand	mg/L		5	30	5	18	12	10	123	5	27
Phenols	mg/L		0.001	<0.001	0.001	<0.001	<0.001	0.001	0.011	0.001	0.001
Dissolved Calcium	mg/L		0.25	123	0.25	26.7	20.9	0.25	164	0.05	8.19
Dissolved Magnesium	mg/L		0.25	30.4	0.25	8.97	9.38	0.25	57.2	0.05	4.40
Dissolved Potassium	mg/L		0.25	15.4	0.25	12.3	0.56	0.25	54.0	0.05	13.9
Dissolved Sodium	mg/L		0.25	13.9	0.25	15.3	2.10	0.25	136	0.05	8.27
Dissolved Aluminum	mg/L		0.004	0.012	0.004	0.010	0.006	0.004	0.024	0.004	0.044
Dissolved Arsenic	mg/L		0.003	< 0.003	0.003	0.003	0.004	0.003	0.026	0.003	0.008
Dissolved Barium	mg/L		0.002	0.089	0.002	0.031	0.008	0.002	0.268	0.002	0.025
Dissolved Beryllium	mg/L		0.001	<0.001	0.001	<0.001	<0.001	0.001	<0.001	0.001	<0.001
Dissolved Bismuth	mg/L		0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Boron	mg/L		0.010	0.440	0.010	0.342	0.011	0.1	2.594	0.010	0.097
Dissolved Cadmium	mg/L		0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Chromium	mg/L		0.003	<0.003	0.003	<0.003	< 0.003	0.003	0.006	0.003	< 0.003

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T610147

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

			,	,		0				
DATE RECEIVED: 2020-06-06								DATE REPORTE	D: 2020-06-17	,
	S	AMPLE DESCRIPTION	: TW-4		TW-6	TW-8		TW-9		TW-13
		SAMPLE TYPE	: Water		Water	Water		Water		Water
		DATE SAMPLED	2020-06-03		2020-06-03	2020-06-03		2020-06-03		2020-06-03
Parameter	Unit	G/S RDL	1180785	RDL	1180786	1180787	RDL	1180788	RDL	1180789
Dissolved Cobalt	mg/L	0.001	0.001	0.001	<0.001	<0.001	0.001	0.012	0.001	<0.001
Dissolved Copper	mg/L	0.003	0.006	0.003	0.004	<0.003	0.003	< 0.003	0.003	< 0.003
Dissolved Iron	mg/L	0.010	0.060	0.010	<0.010	0.649	0.1	26.540	0.010	0.804
Dissolved Lead	mg/L	0.001	<0.001	0.001	<0.001	<0.001	0.001	<0.001	0.001	<0.001
Dissolved Manganese	mg/L	0.002	0.390	0.002	<0.002	0.174	0.02	4.404	0.002	0.159
Dissolved Mercury	mg/L	0.0001	<0.0001	0.0001	<0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001
Dissolved Molybdenum	mg/L	0.002	< 0.002	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Nickel	mg/L	0.003	< 0.003	0.003	0.025	<0.003	0.003	0.016	0.003	< 0.003
Dissolved Phosphorus	mg/L	0.050	< 0.050	0.050	< 0.050	<0.050	0.050	0.079	0.050	<0.050
Dissolved Selenium	mg/L	0.004	<0.004	0.004	<0.004	0.009	0.004	0.021	0.004	0.029
Dissolved Silicon	mg/L	0.050	5.40	0.050	3.33	5.88	0.5	16.991	0.050	5.09
Dissolved Silver	mg/L	0.002	< 0.002	0.002	< 0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Strontium	mg/L	0.005	0.412	0.005	0.135	0.036	0.005	0.744	0.005	0.036
Dissolved Sulphur	mg/L	0.25	54.8	0.25	14.6	1.82	0.25	60.6	0.05	1.62
Dissolved Thallium	mg/L	0.006	<0.006	0.006	<0.006	<0.006	0.006	<0.006	0.006	<0.006
Dissolved Tin	mg/L	0.002	< 0.002	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Titanium	mg/L	0.002	<0.002	0.002	0.002	<0.002	0.002	0.006	0.002	0.002
Dissolved Uranium	mg/L	0.002	< 0.002	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Vanadium	mg/L	0.002	< 0.002	0.002	<0.002	<0.002	0.002	0.006	0.002	0.004
Dissolved Zinc	mg/L	0.005	<0.005	0.005	<0.005	<0.005	0.005	<0.005	0.005	<0.005

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T610147

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

				11011010		arrate ae.	9				
DATE RECEIVED: 2020-06-06								[DATE REPORTE	ED: 2020-06-17	
	S	AMPLE DES	CRIPTION:	TW-15		TW-16	HB GW DUP1	TW-10	TW-12	TW-14	TW-17
		SAMI	PLE TYPE:	Water		Water	Water	Water	Water	Water	Water
		DATES	SAMPLED:	2020-06-03		2020-06-03	2020-06-03	2020-06-03	2020-06-03	2020-06-03	2020-06-03
Parameter	Unit	G/S	RDL	1180790	RDL	1180791	1180792	1180793	1180794	1180795	1180796
BOD (5)	mg/L		5	<5	5	<5	<5	<5	<5	<5	<5
pH	pH Units	6.5-8.5	NA	8.05	NA	7.42	7.67	7.00	7.91	7.30	7.85
Alkalinity (as CaCO3)	mg/L	30-500	5	340	5	87	93	30	96	38	90
Electrical Conductivity	uS/cm		2	980	2	230	244	251	226	132	240
Hardness (as CaCO3) (Calculated)	mg/L	80-100	0.5	382	0.5	93.1	53.2	70.8	96.7	38.7	52.1
Total Dissolved Solids	mg/L	500	20	506	20	108	126	132	122	60	120
Fluoride	mg/L		0.05	<0.05	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
Chloride	mg/L	250	0.50	34.2	0.10	10.2	8.44	46.3	1.13	8.18	8.33
Nitrate as N	mg/L		0.25	15.1	0.05	< 0.05	0.46	0.87	0.06	1.37	0.44
Nitrite as N	mg/L		0.25	0.47	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Sulphate	mg/L	500	0.50	35.3	0.10	4.23	6.83	5.50	7.94	3.59	6.64
Phosphate as P	mg/L		0.50	<0.50	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ammonia as N	mg/L		0.02	0.54	0.02	<0.02	<0.02	<0.02	0.03	<0.02	< 0.02
Total Kjeldahl Nitrogen	mg/L		0.10	1.25	0.10	0.17	0.31	0.22	0.40	0.17	0.31
Organic Nitrogen	mg/L		0.10	0.71	0.10	0.17	0.31	0.22	0.37	0.17	0.31
Dissolved Organic Carbon	mg/L	5	0.5	2.7	0.5	1.3	2.1	1.9	1.1	0.7	2.0
Chemical Oxygen Demand	mg/L		5	13	5	9	15	11	8	<5	16
Phenols	mg/L		0.001	<0.001	0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001
Dissolved Calcium	mg/L		0.10	109	0.05	28.7	14.3	18.5	32.1	10.3	14.1
Dissolved Magnesium	mg/L		0.10	26.7	0.05	5.21	4.24	5.98	4.01	3.16	4.10
Dissolved Potassium	mg/L		0.10	13.9	0.05	0.43	0.43	0.73	0.76	0.46	0.42
Dissolved Sodium	mg/L		0.10	27.1	0.05	3.34	4.32	10.7	2.33	6.52	4.24
Dissolved Aluminum	mg/L		0.004	0.009	0.004	0.031	0.022	0.062	0.078	0.012	0.019
Dissolved Arsenic	mg/L		0.003	<0.003	0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.004
Dissolved Barium	mg/L		0.002	0.099	0.002	0.006	0.008	0.009	0.011	0.002	0.004
Dissolved Beryllium	mg/L		0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Dissolved Bismuth	mg/L		0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002
Dissolved Boron	mg/L		0.010	0.436	0.010	0.012	0.018	0.012	<0.010	0.019	0.013
Dissolved Cadmium	mg/L		0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002
Dissolved Chromium	mg/L		0.003	<0.003	0.003	< 0.003	< 0.003	< 0.003	<0.003	<0.003	< 0.003

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T610147

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

DATE RECEIVED: 2020-06-06							Ī	DATE REPORTI	ED: 2020-06-17	
		SAMPLE DESCRIPTION:	TW-15		TW-16	HB GW DUP1	TW-10	TW-12	TW-14	TW-17
		SAMPLE TYPE:	Water		Water	Water	Water	Water	Water	Water
		DATE SAMPLED:	2020-06-03		2020-06-03	2020-06-03	2020-06-03	2020-06-03	2020-06-03	2020-06-03
Parameter	Unit	G/S RDL	1180790	RDL	1180791	1180792	1180793	1180794	1180795	1180796
Dissolved Cobalt	mg/L	0.001	0.001	0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001
Dissolved Copper	mg/L	0.003	0.007	0.003	< 0.003	0.005	< 0.003	<0.003	<0.003	< 0.003
Dissolved Iron	mg/L	0.010	<0.010	0.010	0.035	0.023	0.013	0.101	<0.010	0.016
Dissolved Lead	mg/L	0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Dissolved Manganese	mg/L	0.002	0.583	0.002	< 0.002	0.002	0.003	0.005	<0.002	<0.002
Dissolved Mercury	mg/L	0.0001	<0.0001	0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001
Dissolved Molybdenum	mg/L	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Dissolved Nickel	mg/L	0.003	0.005	0.003	<0.003	< 0.003	0.008	<0.003	<0.003	<0.003
Dissolved Phosphorus	mg/L	0.050	<0.050	0.050	0.081	< 0.050	< 0.050	<0.050	0.097	< 0.050
Dissolved Selenium	mg/L	0.004	<0.004	0.004	0.025	0.014	<0.004	<0.004	0.007	0.014
Dissolved Silicon	mg/L	0.050	6.70	0.050	5.38	3.58	3.69	4.51	5.12	3.64
Dissolved Silver	mg/L	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Dissolved Strontium	mg/L	0.005	0.267	0.005	0.034	0.038	0.065	0.052	0.029	0.043
Dissolved Sulphur	mg/L	0.10	12.0	0.05	1.93	2.33	2.11	2.89	1.34	2.34
Dissolved Thallium	mg/L	0.006	<0.006	0.006	<0.006	<0.006	< 0.006	<0.006	<0.006	< 0.006
Dissolved Tin	mg/L	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Dissolved Titanium	mg/L	0.002	0.004	0.002	<0.002	0.002	<0.002	0.006	<0.002	<0.002
Dissolved Uranium	mg/L	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Dissolved Vanadium	mg/L	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Dissolved Zinc	mg/L	0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T610147

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

				Haileybur	y Groundwater Package
DATE RECEIVED: 2020-06-06					DATE REPORTED: 2020-06-17
Parameter	S Unit		CRIPTION: PLE TYPE: SAMPLED: RDL	HB GW DUP2 Water 2020-06-03 1180797	
BOD (5)	mg/L		5	14	
pH	pH Units	6.5-8.5	NA	7.98	
Alkalinity (as CaCO3)	mg/L	30-500	5	781	
Electrical Conductivity	uS/cm		2	2380	
Hardness (as CaCO3) (Calculated)	mg/L	80-100	0.5	654	
Total Dissolved Solids	mg/L	500	20	1190	
Fluoride	mg/L		0.13	<0.13	
Chloride	mg/L	250	2.0	150	
Nitrate as N	mg/L		1.0	<1.0	
Nitrite as N	mg/L		1.0	<1.0	
Sulphate	mg/L	500	2.0	198	
Phosphate as P	mg/L		2.0	<2.0	
Ammonia as N	mg/L		0.4	37.2	
Total Kjeldahl Nitrogen	mg/L		0.10	43.6	
Organic Nitrogen	mg/L		0.10	6.40	
Dissolved Organic Carbon	mg/L	5	1.0	32.4	
Chemical Oxygen Demand	mg/L		10	124	
Phenols	mg/L		0.001	0.011	
Dissolved Calcium	mg/L		0.25	166	
Dissolved Magnesium	mg/L		0.25	58.2	
Dissolved Potassium	mg/L		0.25	54.7	
Dissolved Sodium	mg/L		0.25	136	
Dissolved Aluminum	mg/L		0.004	0.022	
Dissolved Arsenic	mg/L		0.003	0.024	
Dissolved Barium	mg/L		0.002	0.279	
Dissolved Beryllium	mg/L		0.001	<0.001	
Dissolved Bismuth	mg/L		0.002	<0.002	
Dissolved Boron	mg/L		0.1	2.514	
Dissolved Cadmium	mg/L		0.002	<0.002	
Dissolved Chromium	mg/L		0.003	0.008	

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T610147

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

			Haileybury Groundwater Pac	ckage
DATE RECEIVED: 2020-06-06				DATE REPORTED: 2020-06-17
	(SAMPLE DESCRIPTION:	HB GW DUP2	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	2020-06-03	
Parameter	Unit	G/S RDL	1180797	
Dissolved Cobalt	mg/L	0.001	0.012	
Dissolved Copper	mg/L	0.003	<0.003	
Dissolved Iron	mg/L	0.1	25.742	
Dissolved Lead	mg/L	0.001	<0.001	
Dissolved Manganese	mg/L	0.02	4.307	
Dissolved Mercury	mg/L	0.0001	<0.0001	
Dissolved Molybdenum	mg/L	0.002	<0.002	
Dissolved Nickel	mg/L	0.003	0.021	
Dissolved Phosphorus	mg/L	0.050	0.187	
Dissolved Selenium	mg/L	0.004	<0.004	
Dissolved Silicon	mg/L	0.5	16.205	
Dissolved Silver	mg/L	0.002	<0.002	
Dissolved Strontium	mg/L	0.005	0.757	
Dissolved Sulphur	mg/L	0.25	63.0	
Dissolved Thallium	mg/L	0.006	<0.006	
Dissolved Tin	mg/L	0.002	<0.002	
Dissolved Titanium	mg/L	0.002	0.004	
Dissolved Uranium	mg/L	0.002	<0.002	
Dissolved Vanadium	mg/L	0.002	0.007	
Dissolved Zinc	mg/L	0.005	<0.005	
1				

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards - Aesthetic Objectives and Operational Guidelines Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1180785-1180797 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 20T610147

PROJECT: Haileybury GW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WOOD CANADA LTD.

ATTENTION TO: Emily Lemieux

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1180785	TW-4	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	432
1180785	TW-4	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	696
1180786	TW-6	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	104
1180788	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Alkalinity (as CaCO3)	mg/L	30-500	782
1180788	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	36.0
1180788	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	645
1180788	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	1180
1180789	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	5.7
1180789	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	38.6
1180790	TW-15	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	382
1180790	TW-15	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	506
1180792	HB GW DUP1	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	53.2
1180793	TW-10	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	70.8
1180795	TW-14	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	38.7
1180796	TW-17	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	52.1
1180797	HB GW DUP2	ON 169/03 AO&OG	Haileybury Groundwater Package	Alkalinity (as CaCO3)	mg/L	30-500	781
1180797	HB GW DUP2	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	32.4
1180797	HB GW DUP2	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	654
1180797	HB GW DUP2	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	1190

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury GW

AGAT WORK ORDER: 20T610147 ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

				Wate	er Ar	nalys	is								
RPT Date: Jun 17, 2020			С	UPLICATE	Ē		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
TATONINETER	Baton	ld	Бар // 1	Bup #2			Value	Lower	Upper	110001019	Lower	Upper	rtocovery	Lower	Upper
Haileybury Groundwater Packa	ge														
BOD (5)	1180790 1	180790	<5	<5	NA	< 5	101%	75%	125%						
pH	1180824		8.05	7.87	2.3%	NA	100%	90%	110%						
Alkalinity (as CaCO3)	1180824		349	350	0.3%	< 5	97%	80%	120%						
Electrical Conductivity	1180824		731	730	0.1%	< 2	98%	80%	120%						
Total Dissolved Solids	1174763		320	314	1.9%	< 20	100%	80%	120%						
Fluoride	1180785 1	180785	<0.05	<0.05	NA	< 0.05	98%	90%	110%	103%	90%	110%	106%	85%	115%
Chloride	1180785 1	180785	38.7	36.6	5.6%	< 0.10	96%	70%	130%	108%	80%	120%	109%	70%	130%
Nitrate as N	1180785 1	180785	22.9	21.8	4.9%	< 0.05	103%	70%	130%	106%	80%	120%	97%	70%	130%
Nitrite as N	1180785 1	180785	0.76	0.76	0.0%	< 0.05	98%	70%	130%	108%	80%	120%	111%	70%	130%
Sulphate	1180785 1	180785	204	193	5.5%	< 0.10	104%	70%	130%	104%	80%	120%	91%	70%	130%
Phosphate as P	1180785 1	180785	<0.50	<0.50	NA	< 0.10	97%	70%	130%	99%	80%	120%	101%	70%	130%
Ammonia as N	1174727		<0.02	<0.02	NA	< 0.02	97%	70%	130%	99%	80%	120%	93%	70%	130%
Total Kjeldahl Nitrogen	1180785 1	180785	1.38	1.51	9.0%	< 0.10	102%	70%	130%	105%	80%	120%	95%	70%	130%
Dissolved Organic Carbon	1180785 1	180785	4.8	4.8	0.0%	< 0.5	97%	90%	110%	101%	90%	110%	83%	80%	120%
Chemical Oxygen Demand	1180785 1	180785	30	34	12.5%	< 5	100%	90%	110%	94%	90%	110%	106%	70%	130%
Phenols	1183572		<0.001	<0.001	NA	< 0.001	102%	90%	110%	102%	90%	110%	102%	80%	120%
Dissolved Calcium	1180789 1	180789	8.19	8.25	0.7%	< 0.05	99%	70%	130%	99%	80%	120%	104%	70%	130%
Dissolved Magnesium	1180789 1	180789	4.40	4.45	1.1%	< 0.05	105%	70%	130%	106%	80%	120%	110%	70%	130%
Dissolved Potassium	1180789 1	180789	13.9	14.0	0.7%	< 0.05	101%	70%	130%	101%	80%	120%	109%	70%	130%
Dissolved Sodium	1180789 1	180789	8.27	8.34	0.8%	< 0.05	100%	70%	130%	99%	80%	120%	105%	70%	130%
Dissolved Aluminum	1180785 1	180785	0.012	0.012	NA	< 0.004	94%	70%	130%	100%	80%	120%	107%	70%	130%
Dissolved Arsenic	1180785 1	180785	<0.003	< 0.003	NA	< 0.003	105%	70%	130%	104%	80%	120%	103%	70%	130%
Dissolved Barium	1180785 1	180785	0.089	0.089	0.0%	< 0.002	97%	70%	130%	100%	80%	120%	99%	70%	130%
Dissolved Beryllium	1180785 1	180785	<0.001	<0.001	NA	< 0.001	101%	70%	130%	103%	80%	120%	108%	70%	130%
Dissolved Bismuth	1180785 1	180785	<0.002	<0.002	NA	< 0.002	96%	70%	130%	101%	80%	120%	94%	70%	130%
Dissolved Boron	1180785 1	180785	0.440	0.436	0.9%	< 0.010	102%	70%	130%	102%	80%	120%	108%	70%	130%
Dissolved Cadmium	1180785 1	180785	<0.002	<0.002	NA	< 0.002	101%	70%	130%	102%	80%	120%	97%	70%	130%
Dissolved Chromium	1180785 1	180785	< 0.003	< 0.003	NA	< 0.003	96%	70%	130%	100%	80%	120%	97%	70%	130%
Dissolved Cobalt	1180785 1	180785	0.001	0.001	NA	< 0.001	99%	70%	130%	102%	80%	120%	98%	70%	130%
Dissolved Copper	1180785 1	180785	0.006	0.006	NA	< 0.003	99%	70%	130%	102%	80%	120%	98%	70%	130%
Dissolved Iron	1180785 1	180785	0.060	0.037	NA	< 0.010	98%	70%	130%	103%	80%	120%	98%	70%	130%
Dissolved Lead	1180785 1		<0.001	<0.001	NA	< 0.001	98%	70%	130%	102%	80%	120%	100%		130%
Dissolved Manganese	1180785 1		0.390	0.401	2.8%	< 0.002		70%	130%	100%	80%	120%	100%		130%
Dissolved Mercury	1180785 1		<0.0001	<0.0001	NA	< 0.0001		70%	130%	98%		120%	99%		130%
Dissolved Molybdenum	1180785 1		<0.002	<0.002	NA	< 0.002		70%	130%	105%		120%	102%	70%	130%
Dissolved Nickel	1180785 1	180785	<0.003	<0.003	NA	< 0.003	99%	70%	130%	103%	80%	120%	97%	70%	130%
Dissolved Phosphorus	1180785 1		<0.050	<0.050	NA	< 0.050	75%	70%	130%	99%		120%	110%		130%
Dissolved Selenium	1180785 1		<0.004	<0.004	NA	< 0.004	102%	70%	130%	105%	80%	120%	102%		130%
Dissolved Silicon	1180785 1		5.40	5.94	9.5%	< 0.050		70%		106%		120%	121%		130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

AGAT WORK ORDER: 20T610147 PROJECT: Haileybury GW ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

OF THE COLLE	THE ENGLOSIE.														
		١	Nater	⁻ Ana	lysis	(Cor	ntinu	ed)							
RPT Date: Jun 17, 2020				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		1 1		Accep Limi		Recovery	1 1 1 1 1	eptable mits
		lu lu					Value	Lower	Upper		Lower	Upper		Lower	Upper
Dissolved Silver	1180785	1180785	<0.002	<0.002	NA	< 0.002	100%	70%	130%	100%	80%	120%	96%	70%	130%
Dissolved Strontium	1180785	1180785	0.412	0.425	3.1%	< 0.005	99%	70%	130%	109%	80%	120%	95%	70%	130%
Dissolved Sulphur	1180789	1180789	1.62	1.63	0.6%	< 0.05	100%	70%	130%	100%	80%	120%	112%	70%	130%
Dissolved Thallium	1180785	1180785	<0.006	<0.006	NA	< 0.006	97%	70%	130%	99%	80%	120%	98%	70%	130%
Dissolved Tin	1180785	1180785	<0.002	<0.002	NA	< 0.002	100%	70%	130%	100%	80%	120%	97%	70%	130%
Dissolved Titanium	1180785	1180785	<0.002	<0.002	NA	< 0.002	102%	70%	130%	114%	80%	120%	104%	70%	130%
Dissolved Uranium	1180785	1180785	<0.002	<0.002	NA	< 0.002	95%	70%	130%	107%	80%	120%	107%	70%	130%
Dissolved Vanadium	1180785	1180785	<0.002	<0.002	NA	< 0.002	97%	70%	130%	103%	80%	120%	98%	70%	130%
Dissolved Zinc	1180785	1180785	<0.005	<0.005	NA	< 0.005	102%	70%	130%	105%	80%	120%	98%	70%	130%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Haileybury Groundwater Package

, , .	3											
рН	1180789 1180789	7.65	7.69	0.5%		100%	90%	110%	NA		NA	
Alkalinity (as CaCO3)	1180789 1180789	108	107	1.2%	< 5	97%	80%	120%	NA		NA	
Electrical Conductivity	1180789 1180789	313	308	1.6%	< 2	102%	80%	120%	NA		NA	
Phenols	1180790 1180790	< 0.001	< 0.001	NA	< 0.001	98%	90%	110%	NA	90% 110	0% 101%	80% 120%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury GW

AGAT WORK ORDER: 20T610147 ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

DADAMETED	A C A T C C D	LITEDATUDE DESERVACE	ANIAL VITIGAL TECHNICUE
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	INOD on ones	014 5040 B	DOMETER
BOD (5)	INOR-93-6006	SM 5210 B	DO METER
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Phosphate as P	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA
Total Kjeldahl Nitrogen	INOR-93-6048	modified from EPA 351.2 and SM 4500-NORG D	LACHAT FIA
Organic Nitrogen		SM 4500-Norg A	CALCULATION
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Chemical Oxygen Demand	INOR-93-6042	SM 5220 D	SPECTROPHOTOMETER
Phenols	INOR-93-6050	MOE ROPHEN-E 3179 & SM 5530 D	TECHNICON AUTO ANALYZER
Dissolved Calcium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Magnesium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Potassium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Aluminum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Bismuth	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Iron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Manganese	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS

Method Summary

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury GW

AGAT WORK ORDER: 20T610147 ATTENTION TO: Emily Lemieux

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Phosphorus	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silicon	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Strontium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Sulphur	MET-93-6105	modified from EPA 200.8 and EPA 3005A	ICP/OES
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Tin	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Titanium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS

Ph: 905,712,5100 Fax: 905,712,5122

Laboratory Use Only
Work Order #: 20 T 61014 7 5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 webearth.agatlabs.com

Chain of C	ustody Record	d If this is a	Drinking Wa	ter sample, pl	ease use	Drinking Water Chain of	Custody Form (potable v	water d	onsume	d by huma	ns)			Arı	ival Te	mper	ature	0	17:8	6	8-1	9	8-1	9		
Report Inform	nation: Wood					Regulatory Requ		<u> </u>	No R	egula	tory Re	quire	me	nt		stody (Seal I	ntact	9	□Yes			Vo	_	N/A		
Contact	Emily Lemieux					Regulation 153/04	Sewe	rUse	1	Пв	Regulation	558				===		==	U	70							
Address:	131 Fielding Road									_					Tu	marc	ипо	d Tir	ne (ie (TAT) Required:							
	Lively, ON P3Y 1L7					Table ————————————————————————————————————	□San	itary			CME				Re	gular	TAT		Ē	∄ 5 t	o 7 Bi	ışıness	Days				
Phana	705-682-2632	Fax:	5-682-2260		_	Res/Park	□Stor	m			rov. Wate				Rus	sh TA	T (Ros	h Sarch	arges A	ipply)							
Phone: Reports to be sent to: 1. Email:	emily.lemieux@woodplo				_ :	☐Agriculture Soil Texture (Check One) ☐Coarse	Region	ita One	-	Ø	bjectives other		0)			1 1 -	Busic Bys	néss] 21 Da	Busine iys	·SS	□ Ne	ext Busi	iness		
2. Email:		-				Fine	MISA			÷	ODU	One	_			0	R Da	te Rec	quirec	(Rus	h Surc	harges	Мау Арг	ply):			
Project Information: Project: Site Location:	mation: Haileybury GW					Is this submission Record of Site Co			Cer		Guldell te of A		is				AT Is	exclus	ive o	f week	ends a	ation fo and stat	utory h	oildays			
Sampled By:					_		5 90 00		ur.			T					-	1				_					
AGAT Quote #:	17252	P0:				Sample Matrix Le	gend	5		O. Re							3			□Pc8s		ē		167	A .		
Invoice Infor	Please note: if quotation number is		Bill To Same:			B Biota GW Ground Water	Sena	, Hg, Crvi		Hydrides) (Incl. Hydrides)				Z	DTHM					9(a)P		paramete					
Company: Contact: Address:						O OII P Paint S Soil		Field Filtered - Metals,	ganics	Metals (excl. Hy 153 Metals (Inc	므품		Regulation/Custom Metals	DIND, THEN	O STEX			1 Amelora	Pesticides	Xs □ ABNs □							
Email:	**************************************				- 11	SD Sediment SW Surface Water		Field Filts	and Inorganics	tals 153	ORPs: DB-HWS DCI	Full Metals Scan	ition/Cust	NES: CITP (ss: □ voc	F1 - F4	5	PAHS DOBe - Clotal	(e)]M&I □ vocs	Use	Groundwater					
Samp	le Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix			Y/N	Metals	☐ All Metals ☐ Hydride Me	ORPS:	Fell	Regula	Nutrients:	Volatiles:	PHCs F1 -	ABNS	PAHS P.B.	Organ	TCLP: M&	Sewer	5	350	12			
TW-4		June 3/20	11:00	8	Water	DOC Field	Fillered	4	18		2								ij.			Ø					
TW-6		l l	1	8	Water	1	(MA)	4									-	3	1) III			
TW-8				8	Water		1	Û			101							3		1000		7	15	15.			
TW-9				8	Water			4																			
TW-13				8	Water			4												lei		Ø	N _S				
TW-15				8	Water			Y			100							10	4	ů.		Z					
TW-16				В	Water			4	B		153.0				45					The second			(68)				
HB GW DUP1				8	Water			4	X						7/6							Ø					
TW-10				8	Water	Spring only		4			109 = 3							į.				V					
TW-12				8	Water	Spring only	5	Y	10			d	M									Ø					
TW-14		1	4	8	Water	Spring only		4					-		elix			10				Ø					
Samples Relinquished By (Po	l (outchesn)	2.	Date	5/20 Tir	120	Samples Received By IF	Print Name and Sign	Ø	2	V		Ju	1	,	12	ם דייי		-: 2	20	Pr	り Page	, 1	_ of 2				
Samples Polinguished By (P	ifin Name and Signic		Date:	Tir	กล	Samples Received By (F	annt Name and Sign)						Da	le		Tin	14			Nº:							

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph; 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use	Only		
Work Order #:2	076	1014	7
Cooler Quantity:			
Arrival Temperatures:	-		
Custody Seal Intact:	Yes	□No	□N/A

Chain of Custody Record	If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

	ustody Recor	U If this is	a Drinking Wat	er sampla, p			iln of Custody Form													_			1	
Report Inform Company:	nation: Wood				R (Pr	legulatory Ri	equirements:	_ r	No R	egulai	tory Red	quire	me	nt		stody	Seal	Intact	:	□Ye	s		No	□N/A
Contact:	Emlly Lemieux				[Regulation 153/	04 Sew	er Use	ľ	□R	egulation	558			7			4 91.		TAT) D-	quire	y.	
Address:	131 Fielding Road					Table Indicate One	Sa	nitanz		По	¢ме								пец	įımı	j Ke	quire	a:	
	Lively, ON P3Y 1L7							-						0	Re	gula	r TAI	•	E	7 5	to 7 E	Business	Days	
Phone:	705-682-2632	Fax:	5-682-2260			☐Res/Park ☐Agriculture	□St	ım			rov. Water bjectives				Rus	sh T/	AT (Ru	ıh Surah	harges A	Apply)				
Reports to be sent to: 1; Email:	emily.lemieux@woodpl	c.com			Sc	oll Texture (Check On	Region		_	<u>⊠</u> 0		(FWQ	U)		١.	_ :	3 Busi	ness	г	_ 2	Busin	1655	☐ Ne:	rt Business
1, Cilidii.					_	□ Coarse		ale One	ľ		Aper	2					Days			⊔ Da	ays		⊔ Day	4
2. Email:						Fine	MISA	A	_ [Undicate	One	_	_			OR Da	ite Re	quirec	d (Rus	h Sur	charges	Мау Арр	ity):
Project Inform	nation:					Is this submi					Buldellr					-	- 01				- 414	. 4) 4		-
Project:	Halleybury GW					Record of Site		1	Cer	tificat	te of An					*							or rush Ta tutory ho	
Site Location:					- 11	☐ Yes	□ No			Yes		N	0		F	For '5	ame I	Day'a	nalys	ls, ple	385 e (contact	your AGA	T CPM
Sampled By:	17252				— -			ı i	I	O. Reg	153						11.0	T	To	Bs		24		
AGAT Quote #:	Please note: If quotation number i	PO: is not provided, client w	ill be billed full price	foranalysis,		ample Matrix	Legend	S		les)	R- 7									DPCBs		paramete	7 7	
Invoice Inform	nations		Bill To Same:	Van 🗆 No	В	Blote W Ground Wate	ar.	並		- Hydrides) (Incl. Hydrides)	1			. 3	≩				0.0	B(a)P		छ		
	nation.		Bill to Same:	Yes 🖂 Nu	` ŏ	••	•	Metals,	N.	L Hyd	는 다른 보		se l	TY .	D THM							ba	1.75	
Company: Contact:					— Р	Paint			0	s (exc Retals	50		heta	+ NO.	Петбх		aj.	1 8	ide:	DABNs				11
Address:					s			Filtered -	andc	Metal 153 M	១និ		Ę.	E 2			4,1	Araclassa 🗆	Sesti A	1 2		at		
Email:	-				S	D SedimentW Surface Wate		#	100	153	\$ D	can	Vist	4	000 				i e	O vocs		3		
						W Sullace Wat		Fleid	and	Days D	DB-HWS DCF DC DEC DFOC DHg	tak	tion/(N N	- i	F1.F4		غُ	chlor	D M&I		5		
Sample	e Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Special	nments/ Instructions	Y/N	Metafs	☐ All Metals ☐ 153 Metals (excl. ☐ Hydride Metals ☐ 153 Metals (ORPS: 08-H	Full Metals Scan	Regulation/Custom Metals	Nutrients: DTP DNH, DTKN DNO, -NO, -NO, -NO, -NO, -NO, -NO, -NO, -	Volatiles:	PHCs F	ABNS	PAHs	Organochlorine Pesticides	TCUP:	Sewer Use	Groundwater		
TW-17		June 3/20	15/00	8	Water	Spring only	DOC Filleway	Y												1			100	
HB GW DUP2		6	Ł	8	Water	Spring only	Į.	Y															IE	
								200			3.4				1					10				
											=V()(al T		Ų.	1					N W	
																			П	D 3				
								500			li est													<u> </u>
											14-8		2		Wi			Ti.		18				J.
															=34									
																	L, N		8					
													20		=			13		w				
																						7.8	100	ce:
Samples Relinquished By (Prin			Date	5/20 TI	12:0	Samples Receive	d By (Print Name and Sign)	8	7	_		kr	Dat	6/	20	T	ma V	22	201	Pn	7			
Samples Relinquished By (Pro	(OUNCHOSK) Int Name and Sign)		Date	TIP	no v	Sambles Receive	dBy Print Name and Sign					<i>/-</i>	DAM	-		Ti	me				Page	e 2	of 2	
amoles Relingue Med By (Pn)	ACCOUNTS RAME AND SIGN!		Date	Ter	ne	Samples Receive	d By (Print Name and Sign)						Dat	8		Ti	imo		1	Nº:				
													_			_			_				Variable N	NOSTOS SELECT

Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT

CLIENT NAME: WOOD CANADA LTD. 131 FIELDING ROAD LIVELY, ON P3Y1L7 (705) 682-2632

ATTENTION TO: Emily Lemieux PROJECT: Haileybury SW

AGAT WORK ORDER: 20T610143

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Jun 15, 2020

PAGES (INCLUDING COVER): 9 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 9

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T610143

PROJECT: Haileybury SW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Surface Water Package

				-	-						
DATE RECEIVED: 2020-06-06								D	ATE REPORT	ED: 2020-06-15	
	S	SAMPLE DES	CRIPTION:	SW-3		SW-4		SW-5		BH SW DUP	
		SAM	PLE TYPE:	Water		Water		Water		Water	
		DATE S	SAMPLED:	2020-06-03		2020-06-03		2020-06-03		2020-06-03	
Parameter	Unit	G/S	RDL	1178038	RDL	1178046	RDL	1178047	RDL	1178048	
pH	pH Units	6.5-8.5	NA	7.75	NA	7.80	NA	7.06	NA	7.98	
Alkalinity (as CaCO3)	mg/L		5	83	5	90	5	13	5	88	
Electrical Conductivity	uS/cm		2	628	2	591	2	53	2	588	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	91.5	0.5	107	0.5	13.0	0.5	99.9	
Total Dissolved Solids	mg/L		20	246	20	282	20	44	20	278	
Total Suspended Solids	mg/L		10	<10	10	<10	10	19	10	<10	
Chloride	mg/L		0.20	91.2	0.20	106	0.10	3.90	0.20	105	
Sulphate	mg/L		0.20	5.58	0.10	6.59	0.10	1.05	0.10	6.56	
Ammonia as N	mg/L		0.02	<0.02	0.02	< 0.02	0.02	0.02	0.02	<0.02	
Dissolved Organic Carbon	mg/L		0.5	6.5	0.5	7.2	0.5	10.0	0.5	7.1	
Chemical Oxygen Demand	mg/L		5	15	5	15	5	29	5	17	
Phenols	mg/L	0.001	0.001	0.002	0.001	0.002	0.001	0.004	0.001	0.002	
Turbidity	NTU		0.5	2.4	0.5	2.4	0.5	5.7	0.5	2.3	
Total Calcium	mg/L		0.25	25.72	0.25	30.08	0.25	3.51	0.25	28.12	
Total Magnesium	mg/L		0.25	6.63	0.25	7.70	0.25	1.04	0.25	7.20	
Total Potassium	mg/L		0.25	0.80	0.25	1.03	0.25	<0.25	0.25	0.95	
Total Sodium	mg/L		0.25	40.06	0.25	50.05	0.25	1.54	0.25	47.14	
Aluminum (dissolved)	mg/L	0.075	0.004	0.008	0.004	0.006	0.004	0.028	0.004	0.007	
Total Arsenic	mg/L	0.1	0.003	<0.003	0.003	<0.003	0.003	<0.003	0.003	< 0.003	
Total Barium	mg/L		0.002	0.016	0.002	0.018	0.002	0.004	0.002	0.019	
Total Beryllium	mg/L	*	0.0005	<0.0005	0.0005	<0.0005	0.0005	<0.0005	0.0005	<0.0005	
Total Bismuth	mg/L		0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002	
Total Boron	mg/L	0.2	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	
Total Cadmium	mg/L	0.0002	0.0001	<0.0001	0.0001	<0.0001	0.0001	< 0.0001	0.0001	<0.0001	
Total Chromium	mg/L		0.003	<0.003	0.003	< 0.003	0.003	<0.003	0.003	<0.003	
Total Cobalt	mg/L	0.0009	0.0005	<0.0005	0.0005	< 0.0005	0.0005	<0.0005	0.0005	<0.0005	
Total Copper	mg/L	0.005	0.002	<0.002	0.002	<0.002	0.002	0.006	0.002	<0.002	
Total Iron	mg/L	0.3	0.010	0.233	0.010	0.275	0.010	0.887	0.010	0.312	
Total Lead	mg/L	*	0.001	<0.001	0.001	<0.001	0.001	<0.001	0.001	<0.001	
Total Manganese	mg/L		0.002	0.033	0.002	0.030	0.002	0.027	0.002	0.029	

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T610143

PROJECT: Haileybury SW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Surface Water Package

				· · · · · · · · · · · · · · · · · · ·	· ,		9 -				
DATE RECEIVED: 2020-06-06								D	ATE REPORT	ED: 2020-06-15	
	(SAMPLE DES	CRIPTION: PLE TYPE:	SW-3 Water		SW-4 Water		SW-5 Water		BH SW DUP Water	
			SAMPLED:	2020-06-03		2020-06-03		2020-06-03		2020-06-03	
Parameter	Unit	G/S	RDL	1178038	RDL	1178046	RDL	1178047	RDL	1178048	
Total Molybdenum	mg/L	0.040	0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002	
Total Nickel	mg/L	0.025	0.003	<0.003	0.003	< 0.003	0.003	<0.003	0.003	<0.003	
Total Phosphorus	mg/L		0.10	<0.10	0.10	<0.10	0.10	<0.10	0.10	<0.10	
Total Selenium	mg/L	0.1	0.004	<0.004	0.004	<0.004	0.004	<0.004	0.004	<0.004	
Total Silicon	mg/L		0.050	0.667	0.050	0.296	0.050	0.378	0.050	0.463	
Total Silver	mg/L	0.0001	0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	
Total Strontium	mg/L		0.005	0.074	0.005	0.079	0.005	0.021	0.005	0.073	
Total Sulphur	mg/L		0.250	2.001	0.250	2.492	0.250	0.584	0.250	2.171	
Total Thallium	mg/L	0.0003	0.0003	<0.0003	0.0003	<0.0003	0.0003	<0.0003	0.0003	<0.0003	
Total Tin	mg/L		0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002	
Total Titanium	mg/L		0.002	0.002	0.002	0.002	0.002	0.007	0.002	0.004	
Total Uranium	mg/L	0.005	0.0005	<0.0005	0.0005	<0.0005	0.0005	<0.0005	0.0005	<0.0005	
Total Vanadium	mg/L	0.006	0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002	
Total Zinc	mg/L	0.030	0.005	<0.005	0.005	<0.005	0.005	0.006	0.005	<0.005	
Lab Filtration Performed				у		У		у		У	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1178038-1178048 Dissolved Aluminum and DOC analysis completed on a lab filtered sample.

Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTENED CHARTE

Guideline Violation

AGAT WORK ORDER: 20T610143

PROJECT: Haileybury SW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WOOD CANADA LTD.

ATTENTION TO: Emily Lemieux

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1178038	SW-3	ON PWQO	Haileybury Surface Water Package	Phenols	mg/L	0.001	0.002
1178046	SW-4	ON PWQO	Haileybury Surface Water Package	Phenols	mg/L	0.001	0.002
1178047	SW-5	ON PWQO	Haileybury Surface Water Package	Phenols	mg/L	0.001	0.004
1178047	SW-5	ON PWQO	Haileybury Surface Water Package	Total Copper	mg/L	0.005	0.006
1178047	SW-5	ON PWQO	Haileybury Surface Water Package	Total Iron	mg/L	0.3	0.887
1178048	BH SW DUP	ON PWQO	Haileybury Surface Water Package	Phenols	mg/L	0.001	0.002
1178048	BH SW DUP	ON PWQO	Haileybury Surface Water Package	Total Iron	mg/L	0.3	0.312

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury SW

SAMPLING SITE:

AGAT WORK ORDER: 20T610143 ATTENTION TO: Emily Lemieux

SAMPLED BY:

			Wate	er Ar	nalys	is								
RPT Date: Jun 15, 2020		1	DUPLICAT	E		REFEREN	NCE MA	ΓERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
DADAMETED	Sample Sample	9 5 "4	D #0	DDD	Method Blank	Measured	Acceptable ured Limits			Liv	eptable mits	_	Lir	ptable
PARAMETER	Batch Id	Dup #1	Dup #2	RPD		Value	Lower Upper	Recovery	Lower	Upper	Recovery	Lower	Upper	
Haileybury Surface Water Pac	kage				•						•			•
pH	1173852	8.01	7.93	1.0%	NA	100%	90%	110%						
Alkalinity (as CaCO3)	1173852	1620	1610	0.6%	< 5	100%	80%	120%						
Electrical Conductivity	1173852	5580	5560	0.4%	< 2	102%	80%	120%						
Total Dissolved Solids	1174763	320	314	1.9%	< 20	100%	80%	120%						
Total Suspended Solids	1186069	228	208	9.2%	< 10	100%	80%	120%						
Chloride	1175074	1.63	1.54	5.7%	< 0.10	100%	70%	130%	108%	80%	120%	109%	70%	130%
Sulphate	1175074	9.96	10.9	9.0%	< 0.10	107%	70%	130%	108%	80%	120%	111%	70%	130%
Ammonia as N	1177626	2.15	2.16	0.5%	< 0.02	102%	70%	130%	105%	80%	120%	101%	70%	130%
Dissolved Organic Carbon	1174727	24.3	24.6	1.2%	< 0.5	102%	90%	110%	102%	90%	110%	109%	80%	120%
Chemical Oxygen Demand	1175194	22	23	NA	< 5	94%	90%	110%	102%	90%	110%	92%	70%	130%
Phenols	1178038 1178038	0.002	0.002	NA	< 0.001	102%	90%	110%	102%	90%	110%	112%	80%	120%
Turbidity	1177626	11.3	10.2	10.2%	< 0.5	98%		120%	.0270	0070		/	0070	
Total Calcium	1177046	89.85	93.39	3.9%	< 0.05	97%		130%	97%	80%	120%	114%	70%	130%
Total Magnesium	1177046	22.66	23.37	3.1%	< 0.05	99%		130%	100%	80%	120%	113%	70%	130%
Total Potassium	1177046	1.32	1.36	3.0%	< 0.05	104%		130%	104%	80%	120%	127%	70%	130%
Total Sodium	1177046	8.53	8.63	1.2%	< 0.05	96%	70%	130%	96%	80%	120%	115%	70%	130%
Aluminum (dissolved)	1178038 1178038		<0.004	1.2 70 NA	< 0.004	101%		130%	99%	80%	120%	97%	70%	130%
Total Arsenic	1177046	<0.003	<0.004	NA	< 0.004	101%		130%	101%	80%	120%	105%	70%	130%
Total Barium	1177046	0.06	0.06	0.0%	< 0.003	104%		130%	101%	80%	120%	103%	70%	130%
Total Beryllium	1177046	<0.005	<0.005	NA	< 0.002			130%	99%	80%	120%	102%	70%	130%
Total Bismuth	1177046	<0.02	<0.02	NIA	< 0.000	000/	700/	1200/	050/	900/	1200/	1000/	700/	130%
	1177046	<0.02	< 0.02	NA	< 0.002	98%		130%	95%	80%	120%	102%	70%	
Total Boron	1177046	0.022	0.024	NA	< 0.010	105%		130%	106%	80%	120%	107%	70%	130%
Total Characters	1177046	<0.001	<0.001	NA	< 0.0001	100%	70%	130%	102%	80%	120%	100%	70%	130%
Total Chromium Total Cobalt	1177046 1177046	<0.03 <0.005	<0.03 <0.005	NA NA	< 0.003 < 0.0005	103% 103%		130% 130%	101% 102%	80% 80%	120% 120%	105% 107%	70% 70%	130% 130%
Total Gobalt	1177040	٠٥.005	٧٥.٥٥٥	INA	· 0.0000	10370	7070	100 70	102 /0	00 70	120 /0	107 70	1070	150 70
Total Copper	1177046	<0.02	<0.02	NA	< 0.002	103%	70%	130%	102%	80%	120%	106%	70%	130%
Total Iron	1177046	0.49	0.49	0.0%	< 0.010	105%	70%	130%	105%	80%	120%	106%	70%	130%
Total Lead	1177046	<0.01	<0.01	NA	< 0.001	98%	70%	130%	104%	80%	120%	105%	70%	130%
Total Manganese	1177046	0.14	0.15	6.9%	< 0.002	104%	70%	130%	99%	80%	120%	105%	70%	130%
Total Molybdenum	1177046	<0.02	<0.02	NA	< 0.002	108%	70%	130%	106%	80%	120%	116%	70%	130%
Total Nickel	1177046	<0.003	<0.003	NA	< 0.003	103%	70%	130%	100%	80%	120%	107%	70%	130%
Total Phosphorus	1177046	<1.0	<1.0	NA	< 0.10	102%	70%	130%	96%	80%	120%	101%	70%	130%
Total Selenium	1177046	<0.04	<0.04	NA	< 0.004	101%	70%	130%	93%	80%	120%	92%	70%	130%
Total Silicon	1177046	5.93	5.47	8.1%	< 0.050	103%	70%	130%	111%	80%	120%	95%	70%	130%
Total Silver	1177046	<0.001	<0.001	NA	< 0.0001	102%	70%	130%	99%	80%	120%	104%	70%	130%
Total Strontium	1177046	0.44	0.48	8.7%	< 0.005	107%	70%	130%	99%	80%	120%	100%	70%	130%
Total Sulphur	1177046	18.077	18.888	4.4%	< 0.050	97%	70%		99%		120%	123%	70%	130%
Total Thallium	1177046	<0.003	< 0.003	NA	< 0.0003		70%		97%		120%	101%	70%	130%
Total Tin	1177046	<0.02	<0.02	NA	< 0.002	99%	70%		99%		120%	104%		130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury SW

AGAT WORK ORDER: 20T610143

ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

	Water Analysis (Continued)														
, (
RPT Date: Jun 15, 2020				DUPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
						Method		Acceptable				ptable		Accept	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Blank	Measured	easured Limits Value	Recovery	Lin	nits	Recovery	Lir	nits	
		lu lu					value	Lower	Upper		Lower	Upper		Lower	Upper
Total Titanium	1177046		<0.02	<0.02	NA	< 0.002	105%	70%	130%	97%	80%	120%	117%	70%	130%
Total Uranium	1177046		<0.005	<0.005	NA	< 0.0005	95%	70%	130%	106%	80%	120%	109%	70%	130%
Total Vanadium	1177046		<0.02	<0.02	NA	< 0.002	104%	70%	130%	101%	80%	120%	110%	70%	130%
Total Zinc	1177046		< 0.05	< 0.05	NA	< 0.005	103%	70%	130%	106%	80%	120%	97%	70%	130%

Comments: NA signifies Not Applicable.

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Method Summary

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury SW

SAMPLING SITE:

AGAT WORK ORDER: 20T610143 ATTENTION TO: Emily Lemieux

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Chemical Oxygen Demand	INOR-93-6042	SM 5220 D	SPECTROPHOTOMETER
Phenols	INOR-93-6050	MOE ROPHEN-E 3179 & SM 5530 D	TECHNICON AUTO ANALYZER
Turbidity	INOR-93-6044	modified from SM 2130 B	NEPHELOMETER
Total Calcium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Magnesium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Potassium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES
Aluminum (dissolved)	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Barium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Bismuth	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Phosphorus	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS

Method Summary

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury SW

AGAT WORK ORDER: 20T610143 ATTENTION TO: Emily Lemieux

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silicon	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Strontium	INOR-93-6003	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Sulphur	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Thallium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Lab Filtration Performed			FILTRATION

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use	Onty		
Work Order #: 2	<u>076</u>	1014	13
Cooler Quantity:	169	B10	ich
Arrival Temperatures:	2.8	3-2	3.6
A	C.,	-	

Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans) Regulatory Requirements: No Regulatory Requirement Report Information: □Yes □N/A □No (Please check all applicable boxes) Wood Company: Emily Lemieux Contact: Regulation 153/04 Sewer Use Regulation 558 Turnaround Time (TAT) Regulred: 131 Fielding Road Address: Table indicate One □ CCME □ Sanitary Regular TAT Lively, ON P3Y 1L7 □Ind/Com 5 to 7 Business Days Res/Park Prov. Water Quality □Storm 705-682-2632 705-682-2260 Rush TAT (Rush Surcharges Apply) Phone: ■ Agriculture Objectives (PWQ0) Reports to be sent to: emily.lemieux@woodplc.com Other Soil Texture (check one) 2 Business **Next Business** 3 Business Days 1. Email: Indicate One Days Day ☐ Coarse OR Date Required (Rush Surcharges May Apply): Fine MISA 2. Email: Indicate One Is this submission for a Report Guldeline on Project Information: Please provide prior notification for rush TAT Record of Site Condition? Certificate of Analysis Halleybury SW *TAT is exclusive of weekends and statutory holidays Projecti ☐ Yes ☐ No □ No ☐ Yes Site Location: For 'Same Day' analysis, please contact your AGAT CPM Sampled By: O. Reg 153 83 paramet 17252 AGAT Quote #: PO: Sample Matrix Legend Field Filtered - Metals, Hg, GVI Please note: If quotation number is not provided, client will be billed full price for analysis. O B(a)P (59D) T H Ground Water Invoice Information: Bill To Same: Yes 🌠 No 🗆 DTKN きの発 Regulation/Custom Metals ICLP: DM&L DVOCS DABNS Company: ONH, ON ☐ Arodors Organochlorine Pesticides OBTEX Surfacewater Paint Contact: RPs: OBHWS OCI ICA" OEC OPOCE Joh OSAR Soil Address: No. OH O VOC SD Sediment 0 153 | Full Metals Scan PCBs: Total Email: Surface Water PHCs F1 - F4 Nutrients: ONO Comments/ Date Time N of Sample Sample Identification Containers Sampled Sampled Matrix Special Instructions Ø June 3/20 13:00 Water SW-3 10 Ø Water -SW-4 6 Ø SW-5 Water Ø Water BH SW DUP

Samoles Received By (Print Name and Sign)

Document ID: DIV-78-1511,015

Pink Copy - Client | Yellow Copy - AGAT | White Copy - AGAT

Date Issued: March 16, 2018

CLIENT NAME: WOOD CANADA LTD. 131 FIELDING ROAD LIVELY, ON P3Y1L7 (705) 682-2632

ATTENTION TO: Emily Lemieux PROJECT: Haileybury GW

AGAT WORK ORDER: 20T635802

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Aug 19, 2020

PAGES (INCLUDING COVER): 12 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 12

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT WORK ORDER: 20T635802

PROJECT: Haileybury GW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WOOD CANADA LTD.

SAMPLING SITE:

ATTENTION TO: Emily Lemieux SAMPLED BY:Dominique Courchesne

									_				
	BOD												
DATE RECEIVED: 2020-08-11 DATE REPORTED: 2020-08-19													
		SAMPLE DES	CRIPTION:	TW-4	TW-6	TW-8	TW-9	TW-13	TW-15	TW-16	HB GW DUP1		
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water		
		DATE	SAMPLED:	2020-08-10 11:00	2020-08-10 11:00	2020-08-10 11:00	2020-08-10 11:00	2020-08-10 11:00	2020-08-10 11:00	2020-08-10 11:00	2020-08-10 11:00		
Parameter	Unit	G/S	RDL	1341972	1341984	1341985	1341986	1341987	1341988	1341989	1341990		
Biochemical Oxygen Demand, Total	mg/L		2	<2	3	<2	17	10	13	<2	5		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Halifax (unless marked by *)

AGAT WORK ORDER: 20T635802

PROJECT: Haileybury GW

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: WOOD CANADA LTD.

SAMPLING SITE:

ATTENTION TO: Emily Lemieux
SAMPLED BY:Dominique Courchesne

Haileybury Groundwater Package DATE RECEIVED: 2020-08-11 **DATE REPORTED: 2020-08-19** SAMPLE DESCRIPTION: TW-4 TW-6 TW-8 TW-9 TW-13 Water SAMPLE TYPE: Water Water Water Water DATE SAMPLED: 2020-08-10 2020-08-10 2020-08-10 2020-08-10 2020-08-10 11:00 11:00 11:00 11:00 11:00 1341984 Parameter Unit G/S **RDL** 1341972 RDL 1341985 **RDL** 1341986 **RDL** 1341987 NA 7.50 NA NA pH Units 6.5-8.5 NA 7.15 6.78 7.43 7.11 30-500 283 5 Alkalinity (as CaCO3) mg/L 5 129 5 86 5 671 1280 Electrical Conductivity 2 968 958 2 176 2 1920 2 2650 uS/cm 0.5 382 0.5 0.5 0.5 709 Hardness (as CaCO3) (Calculated) 80-100 506 94.5 649 mg/L Total Dissolved Solids 500 20 734 660 20 114 20 1130 20 1380 mg/L Fluoride 0.05 < 0.05 < 0.05 0.05 < 0.05 0.07 < 0.07 0.13 < 0.13 mg/L Chloride 2.0 mg/L 250 0.50 40.9 49.3 0.10 0.71 1.0 176 177 Nitrate as N ma/L 0.25 15.6 27.6 0.05 < 0.05 0.5 < 0.5 1.0 <1.0 Nitrite as N mg/L 0.25 < 0.25 < 0.25 0.05 < 0.05 0.5 < 0.5 1.0 <1.0 500 176 233 2.0 Sulphate mg/L 0.50 0.10 4.12 1.0 203 2.6 Phosphate as P mg/L 0.50 < 0.50 < 0.50 0.10 < 0.10 1.0 <1.0 2.0 <2.0 0.02 Ammonia as N mg/L 0.02 0.64 0.03 0.08 0.4 31.5 0.4 107 Total Kjeldahl Nitrogen 0.10 1.34 0.55 0.10 0.20 0.10 34.4 0.90 mg/L 116 Organic Nitrogen mg/L 0.10 0.70 0.52 0.10 0.12 0.10 2.90 0.10 9.00 Dissolved Organic Carbon mg/L 5 0.5 6.2 6.0 0.5 2.4 1.0 30.8 7 73 Chemical Oxygen Demand 5 13 11 5 <5 5 98 10 191 mg/L Phenols 0.001 < 0.001 < 0.001 0.001 < 0.001 0.001 0.004 0.001 0.010 mg/L Dissolved Calcium 143 98.9 0.05 0.25 ma/L 0.10 21.5 0.05 164 153 Dissolved Magnesium mg/L 0.10 36.1 32.8 0.05 9.91 0.05 58.1 0.25 79.5 0.10 15.2 0.05 0.05 0.25 Dissolved Potassium mg/L 19.8 0.48 51.8 85.3 Dissolved Sodium 0.10 23.7 0.05 2.16 0.25 202 mg/L 49.8 0.05 113 Dissolved Aluminum 0.004 0.024 0.037 0.004 0.023 0.004 0.046 0.004 0.069 mg/L Dissolved Arsenic mg/L 0.003 < 0.003 < 0.003 0.003 < 0.003 0.003 0.018 0.003 0.008 Dissolved Barium mg/L 0.002 0.081 0.104 0.002 0.005 0.002 0.178 0.002 0.399 Dissolved Beryllium mg/L 0.001 < 0.001 < 0.001 0.001 < 0.001 0.001 < 0.001 0.001 <0.001 <0.002 0.002 <0.002 Dissolved Bismuth mg/L 0.002 < 0.002 < 0.002 0.002 < 0.002 0.002 Dissolved Boron 0.678 < 0.010 2.07 0.10 2.32 mg/L 0.010 1.21 0.010 0.10 Dissolved Cadmium ma/L 0.002 < 0.002 < 0.002 0.002 < 0.002 0.002 < 0.002 0.002 < 0.002 Dissolved Chromium 0.003 < 0.003 < 0.003 0.003 < 0.003 0.003 0.005 0.003 0.009 mg/L

Certified By:

Iris Verastegui

AGAT WORK ORDER: 20T635802

PROJECT: Haileybury GW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WOOD CANADA LTD.

SAMPLING SITE:

ATTENTION TO: Emily Lemieux
SAMPLED BY:Dominique Courchesne

SAMPLED BY DOMINIQUE Courchesine											
				Haileyb	ury Ground	vater Pacl	kage				
DATE RECEIVED: 2020-08-11									DATE REPORTE	D: 2020-08-19	9
	\$		CRIPTION: PLE TYPE: SAMPLED:	TW-4 Water 2020-08-10 11:00	TW-6 Water 2020-08-10 11:00		TW-8 Water 2020-08-10 11:00		TW-9 Water 2020-08-10 11:00		TW-13 Water 2020-08-10 11:00
Parameter	Unit	G/S	RDL	1341972	1341984	RDL	1341985	RDL	1341986	RDL	1341987
Dissolved Cobalt	mg/L		0.001	0.001	0.006	0.001	<0.001	0.001	0.014	0.001	0.010
Dissolved Copper	mg/L		0.003	0.004	0.006	0.003	<0.003	0.003	<0.003	0.003	< 0.003
Dissolved Iron	mg/L		0.010	<0.010	<0.010	0.010	0.536	0.10	22.4	0.10	21.5
Dissolved Lead	mg/L		0.001	<0.001	<0.001	0.001	<0.001	0.001	<0.001	0.001	<0.001
Dissolved Manganese	mg/L		0.002	0.715	<0.002	0.002	0.190	0.02	4.11	0.02	3.20
Dissolved Mercury	mg/L		0.0001	<0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001
Dissolved Molybdenum	mg/L		0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Nickel	mg/L		0.003	<0.003	0.003	0.003	<0.003	0.003	0.014	0.003	0.016
Dissolved Phosphorus	mg/L		0.050	0.076	0.054	0.050	0.080	0.050	0.187	0.050	0.060
Dissolved Selenium	mg/L		0.004	<0.004	<0.004	0.004	<0.004	0.004	<0.004	0.004	<0.004
Dissolved Silicon	mg/L		0.050	6.88	4.35	0.050	7.53	0.50	14.1	0.050	7.76
Dissolved Silver	mg/L		0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Strontium	mg/L		0.005	0.503	0.482	0.005	0.037	0.005	0.721	0.005	0.729
Dissolved Sulphur	mg/L		0.10	60.1	76.9	0.05	1.85	0.05	66.7	0.25	6.94
Dissolved Thallium	mg/L		0.006	<0.006	<0.006	0.006	<0.006	0.006	<0.006	0.006	<0.006
Dissolved Tin	mg/L		0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Titanium	mg/L		0.002	<0.002	<0.002	0.002	<0.002	0.002	0.002	0.002	0.008
Dissolved Uranium	mg/L		0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002
Dissolved Vanadium	mg/L		0.002	<0.002	<0.002	0.002	<0.002	0.002	0.005	0.002	0.013
Dissolved Zinc	mg/L		0.005	<0.005	<0.005	0.005	<0.005	0.005	0.007	0.005	0.005
% Difference/ Ion Balance (Calculated)	%		NA	0.0732	2.29	NA	4.53	NA	2.63	NA	3.35

Certified By:

Iris Verastegui

AGAT WORK ORDER: 20T635802

PROJECT: Haileybury GW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WOOD CANADA LTD.

SAMPLING SITE:

ATTENTION TO: Emily Lemieux
SAMPLED BY:Dominique Courchesne

SAMPLING SITE.							OAIVII L	ED 61.Dominique Co	Jui cheshe
				Haileybu	ıry Groun	dwater Packa	ige		
DATE RECEIVED: 2020-08-11								DATE	REPORTED: 2020-08-19
	S	AMPLE DESC	CRIPTION:	TW-15		TW-16		HB GW DUP1	
		SAME	PLE TYPE:	Water		Water		Water	
		DATE S	SAMPLED:	2020-08-10 11:00		2020-08-10 11:00		2020-08-10 11:00	
Parameter	Unit	G/S	RDL	1341988	RDL	1341989	RDL	1341990	
pH	pH Units	6.5-8.5	NA	7.41	NA	7.64	NA	7.49	
Alkalinity (as CaCO3)	mg/L	30-500	5	314	5	81	5	292	
Electrical Conductivity	uS/cm		2	793	2	156	2	787	
Hardness (as CaCO3) (Calculated)	mg/L	80-100	0.5	263	0.5	56.1	0.5	280	
Total Dissolved Solids	mg/L	500	20	490	20	80	20	520	
Fluoride	mg/L		0.05	<0.05	0.05	<0.05	0.05	<0.05	
Chloride	mg/L	250	0.20	23.7	0.10	1.06	0.20	23.9	
Nitrate as N	mg/L		0.10	10.8	0.05	<0.05	0.10	11.0	
Nitrite as N	mg/L		0.10	<0.10	0.05	<0.05	0.10	<0.10	
Sulphate	mg/L	500	0.20	59.7	0.10	2.71	0.20	54.3	
Phosphate as P	mg/L		0.20	<0.20	0.10	<0.10	0.20	<0.20	
Ammonia as N	mg/L		0.02	0.80	0.02	0.06	0.02	1.01	
Total Kjeldahl Nitrogen	mg/L		0.10	1.07	0.10	0.17	0.10	1.56	
Organic Nitrogen	mg/L		0.10	0.27	0.10	0.11	0.10	0.55	
Dissolved Organic Carbon	mg/L	5	0.5	2.4	0.5	1.1	0.5	2.2	
Chemical Oxygen Demand	mg/L		5	<5	5	<5	5	<5	
Phenols	mg/L		0.001	<0.001	0.001	<0.001	0.001	<0.001	
Dissolved Calcium	mg/L		0.05	76.6	0.05	15.4	0.05	80.9	
Dissolved Magnesium	mg/L		0.05	17.5	0.05	4.29	0.05	18.9	
Dissolved Potassium	mg/L		0.05	8.23	0.05	0.34	0.05	8.76	
Dissolved Sodium	mg/L		0.05	15.6	0.05	3.07	0.05	16.1	
Dissolved Aluminum	mg/L		0.004	0.018	0.004	0.016	0.004	0.025	
Dissolved Arsenic	mg/L		0.003	< 0.003	0.003	< 0.003	0.003	<0.003	
Dissolved Barium	mg/L		0.002	0.051	0.002	0.003	0.002	0.053	
Dissolved Beryllium	mg/L		0.001	<0.001	0.001	<0.001	0.001	<0.001	
Dissolved Bismuth	mg/L		0.002	<0.002	0.002	<0.002	0.002	<0.002	
Dissolved Boron	mg/L		0.010	0.315	0.010	<0.010	0.010	0.325	
Dissolved Cadmium	mg/L		0.002	<0.002	0.002	<0.002	0.002	<0.002	
Dissolved Chromium	mg/L		0.003	< 0.003	0.003	< 0.003	0.003	<0.003	

Certified By:

Iris Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T635802

PROJECT: Haileybury GW

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Emily Lemieux

SAMPLED BY:Dominique Courchesne

Haileybury Groundwater Package DATE RECEIVED: 2020-08-11 **DATE REPORTED: 2020-08-19** SAMPLE DESCRIPTION: TW-15 TW-16 HB GW DUP1 SAMPLE TYPE: Water Water Water DATE SAMPLED: 2020-08-10 2020-08-10 2020-08-10 11:00 11:00 11:00 Parameter Unit G/S RDL 1341988 **RDL** 1341989 RDL 1341990 0.001 Dissolved Cobalt mg/L 0.001 < 0.001 0.001 < 0.001 < 0.001 Dissolved Copper mg/L 0.003 0.004 0.003 < 0.003 0.003 0.006 Dissolved Iron < 0.010 0.010 <0.010 0.010 0.010 < 0.010 mg/L Dissolved Lead < 0.001 < 0.001 0.001 < 0.001 mg/L 0.001 0.001 Dissolved Manganese 0.002 0.271 0.002 < 0.002 0.002 0.298 ma/L Dissolved Mercury 0.0001 < 0.0001 0.0001 < 0.0001 0.0001 <0.0001 mg/L Dissolved Molybdenum mg/L 0.002 < 0.002 0.002 < 0.002 0.002 < 0.002 Dissolved Nickel mg/L 0.003 < 0.003 0.003 < 0.003 0.003 < 0.003 Dissolved Phosphorus mg/L 0.050 < 0.050 0.050 < 0.050 0.050 0.052 Dissolved Selenium mg/L 0.004 < 0.004 0.004 < 0.004 0.004 < 0.004 Dissolved Silicon mg/L 0.050 8.10 0.050 6.39 0.050 7.58 Dissolved Silver < 0.002 mg/L 0.002 < 0.002 0.002 0.002 < 0.002 Dissolved Strontium 0.005 0.177 0.005 0.036 0.005 0.179 mg/L Dissolved Sulphur 0.05 8.90 0.05 0.05 9.55 mg/L 1.16 Dissolved Thallium ma/L 0.006 < 0.006 0.006 < 0.006 0.006 < 0.006 Dissolved Tin 0.002 <0.002 0.002 < 0.002 0.002 < 0.002 mg/L Dissolved Titanium mg/L 0.002 < 0.002 0.002 < 0.002 0.002 < 0.002 Dissolved Uranium 0.002 ma/L 0.002 <0.002 0.002 < 0.002 < 0.002 Dissolved Vanadium mg/L 0.002 <0.002 0.002 < 0.002 0.002 < 0.002 Dissolved Zinc mg/L 0.005 < 0.005 0.005 < 0.005 0.005 < 0.005 % Difference/ Ion Balance NA 18.1 NA 14.7 NA 12.2 (Calculated)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards - Aesthetic Objectives and Operational Guidelines Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1341972-1341990 Metals analysis completed on a filtered sample.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Yrus Verastegui

Guideline Violation

AGAT WORK ORDER: 20T635802

PROJECT: Haileybury GW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WOOD CANADA LTD.

ATTENTION TO: Emily Lemieux

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1341972	TW-4	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	6.2
1341972	TW-4	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	506
1341972	TW-4	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	734
1341984	TW-6	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	6.0
1341984	TW-6	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	382
1341984	TW-6	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	660
1341986	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Alkalinity (as CaCO3)	mg/L	30-500	671
1341986	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	30.8
1341986	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	649
1341986	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	1130
1341987	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Alkalinity (as CaCO3)	mg/L	30-500	1280
1341987	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	73
1341987	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	709
1341987	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	1380
1341988	TW-15	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	263
1341989	TW-16	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	56.1
1341990	HB GW DUP1	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	280
1341990	HB GW DUP1	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	520

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury GW

SAMPLING SITE:

AGAT WORK ORDER: 20T635802
ATTENTION TO: Emily Lemieux
SAMPLED BY:Dominique Courchesne

Water Analysis RPT Date: Aug 19, 2020 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE															
RPT Date: Aug 19, 2020			С	UPLICATE	<u> </u>		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
TATO WILL FER		ld	- Bup // .	2 up //2			Value	Lower	Upper		Lower	Upper		Lower	Upper
Haileybury Groundwater Pack	age														
рН	1338613		7.58	7.58	0.0%	NA	99%	90%	110%						
Alkalinity (as CaCO3)	1338613		40	39	2.5%	< 5	88%	80%	120%						
Electrical Conductivity	1338613		<2	<2	NA	< 2	96%	80%	120%						
Total Dissolved Solids	1345998		1050	1060	0.9%	< 20	102%	80%	120%						
Fluoride	1341984 134	11984	<0.05	<0.05	NA	< 0.05	110%	90%	110%	106%	90%	110%	106%	85%	115%
Chloride	1341984 134	11984	49.3	48.0	2.7%	< 0.10	95%	70%	130%	105%	80%	120%	107%	70%	130%
Nitrate as N	1341984 134	11984	27.6	26.8	2.9%	< 0.05	99%	70%	130%	107%	80%	120%	NA	70%	130%
Nitrite as N	1341984 134	11984	<0.25	<0.25	NA	< 0.05	97%	70%	130%	103%	80%	120%	109%	70%	130%
Sulphate	1341984 134	11984	233	226	3.1%	< 0.10	99%	70%	130%	105%	80%	120%	NA	70%	130%
Phosphate as P	1341984 134	11984	<0.50	<0.50	NA	< 0.10	108%	70%	130%	106%	80%	120%	104%	70%	130%
Ammonia as N	1345998		<0.02	<0.02	NA	< 0.02	99%	70%	130%	100%	80%	120%	95%	70%	130%
Total Kjeldahl Nitrogen	1341972 134	11972	1.34	1.45	7.9%	< 0.10	104%	70%	130%	102%	80%	120%	94%	70%	130%
Dissolved Organic Carbon	1341972 134		6.2	6.3	1.6%	< 0.5	103%	90%	110%	109%	90%	110%	99%	80%	120%
Chemical Oxygen Demand	1341972 134		13	13	NA	< 5	105%	90%	110%	107%	90%	110%	110%	70%	130%
Phenols	1351942		<0.001	<0.001	NA	< 0.001	102%	90%	110%	98%	90%	110%	98%	80%	120%
Dissolved Calcium	1341990 134	11990	80.9	80.9	0.0%	< 0.05	100%	70%	130%	100%	80%	120%	104%	70%	130%
Dissolved Magnesium	1341990 134		18.9	19.2	1.6%	< 0.05	107%	70%	130%	106%	80%	120%	110%	70%	130%
Dissolved Potassium	1341990 134		8.76	8.91	1.7%	< 0.05	99%	70%	130%	98%	80%	120%	104%	70%	130%
Dissolved Sodium	1341990 134		16.1	16.4	1.8%	< 0.05	99%	70%	130%	99%	80%	120%	102%	70%	130%
Dissolved Aluminum	1341972 134		0.024	0.025	4.1%	< 0.004	100%	70%	130%	102%	80%	120%	97%	70%	130%
Dissolved Arsenic	1341972 134	11072	<0.003	<0.003	NA	< 0.003	103%	70%	130%	102%	80%	120%	107%	70%	130%
Dissolved Barium	1341972 134		0.081	0.077	5.1%	< 0.002	100%	70%	130%	101%	80%	120%	96%	70%	130%
Dissolved Beryllium	1341972 134		<0.001	<0.001	NA	< 0.002	104%	70%	130%	106%	80%	120%	108%	70%	130%
Dissolved Bismuth	1341972 134		<0.002	<0.001	NA	< 0.001	92%	70%	130%	101%	80%	120%	97%	70%	130%
Dissolved Boron	1341972 134		0.678	0.638	6.1%	< 0.010	106%	70%	130%	113%	80%	120%	115%		130%
Dissolved Cadmium	1341972 134	11072	<0.002	<0.002	NA	< 0.002	104%	70%	130%	108%	80%	120%	109%	70%	130%
Dissolved Chromium	1341972 134		<0.002	<0.002	NA	< 0.002	100%	70%	130%	101%	80%	120%	100%	70%	130%
Dissolved Cobalt	1341972 134		0.001	0.002	NA	< 0.000	99%	70%	130%	104%	80%	120%	98%	70%	130%
Dissolved Copper	1341972 134		0.004	0.002	NA	< 0.003	101%	70%	130%	101%	80%	120%	98%	70%	130%
Dissolved Iron	1341972 134		<0.010	<0.010	NA	< 0.010	106%	70%	130%	112%	80%	120%	104%	70%	130%
Dissolved Lead	1341972 134	11072	<0.001	<0.001	NA	< 0.001	94%	70%	130%	96%	80%	120%	93%	70%	130%
Dissolved Lead Dissolved Manganese	1341972 134		0.715	0.675	5.8%	< 0.001		70%	130%	109%			108%	70%	130%
Dissolved Mercury	1341972 134			<0.0001	9.6% NA	< 0.002			130%	99%		120%	96%		130%
Dissolved Molybdenum	1341972 134		<0.0001	<0.0001	NA	< 0.000		70%	130%	102%	80%	120%	101%	70%	130%
Dissolved Nickel	1341972 134		<0.002	0.002	NA	< 0.002		70%	130%	102%	80%	120%	97%		130%
Dissolved Phosphorus	1341972 134	11072	0.076	<0.050	NA	< 0.050	96%	70%	130%	98%	80%	120%	114%	700/	130%
Dissolved Selenium	1341972 134		< 0.076	<0.030		< 0.000		70%	130%	96% 101%	80%	120%	101%	70%	130%
Dissolved Selenium Dissolved Silicon					NA 8.8%			70% 70%					101%		130%
Dissolved Silver	1341972 134		6.88	6.30		< 0.050			130%	110%	80%	120%			
DISSUIVEU SIIVEI	1341972 134	+19/2	<0.002	<0.002	NA	< 0.002	100%	70%	130%	104%	OU%	120%	95%	10%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury GW

SAMPLING SITE:

AGAT WORK ORDER: 20T635802 ATTENTION TO: Emily Lemieux

SAMPLED BY: Dominique Courchesne

	Water Analysis (Continued)														
RPT Date: Aug 19, 2020				UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample	Dup #1 Dup #2 RPD		Method Blank	Measured Limits			Recovery	Lin	ptable nits	Recovery	1 1 1 1 1	ptable nits		
		la	·	·			value	Lower	Upper		Lower	Upper		Lower	Upper
Dissolved Strontium	1341972	1341972	0.503	0.470	6.8%	< 0.005	102%	70%	130%	106%	80%	120%	101%	70%	130%
Dissolved Sulphur	1341990	1341990	9.55	9.51	0.4%	< 0.05	104%	70%	130%	105%	80%	120%	125%	70%	130%
Dissolved Thallium	1341972	1341972	<0.006	<0.006	NA	< 0.006	103%	70%	130%	100%	80%	120%	98%	70%	130%
Dissolved Tin	1341972	1341972	<0.002	< 0.002	NA	< 0.002	93%	70%	130%	97%	80%	120%	99%	70%	130%
Dissolved Titanium	1341972	1341972	<0.002	< 0.002	NA	< 0.002	112%	70%	130%	112%	80%	120%	107%	70%	130%
Dissolved Uranium	1341972	1341972	<0.002	<0.002	NA	< 0.002	99%	70%	130%	97%	80%	120%	97%	70%	130%
Dissolved Vanadium	1341972	1341972	<0.002	<0.002	NA	< 0.002	101%	70%	130%	105%	80%	120%	100%	70%	130%
Dissolved Zinc	1341972	1341972	<0.005	<0.005	NA	< 0.005	101%	70%	130%	102%	80%	120%	102%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Matrix spike: Spike level < native concentration. Matrix spike acceptance limits do not apply.

BOD

Biochemical Oxygen Demand, Total 1345623

28.6%

< 2

70% 130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Duplicate not within acceptance limits. Sample past hold time.

Certified By:

Ynis Verastegui

Method Summary

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury GW

SAMPLING SITE:

AGAT WORK ORDER: 20T635802
ATTENTION TO: Emily Lemieux
SAMPLED BY:Dominique Courchesne

		_	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Biochemical Oxygen Demand, Total	INOR-121-6023	SM 5210 B	INCUBATOR
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Phosphate as P	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA
Total Kjeldahl Nitrogen	INOR-93-6048	modified from EPA 351.2 and SM 4500-NORG D	LACHAT FIA
Organic Nitrogen		SM 4500-Norg A	CALCULATION
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Chemical Oxygen Demand	INOR-93-6042	SM 5220 D	SPECTROPHOTOMETER
Phenols	INOR-93-6050	MOE ROPHEN-E 3179 & SM 5530 D	TECHNICON AUTO ANALYZER
Dissolved Calcium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Magnesium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Potassium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Aluminum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Bismuth	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Iron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Manganese	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS

Method Summary

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury GW

SAMPLING SITE:

AGAT WORK ORDER: 20T635802
ATTENTION TO: Emily Lemieux
SAMPLED BY:Dominique Courchesne

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Phosphorus	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silicon	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Strontium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Sulphur	MET-93-6105	modified from EPA 200.8 and EPA 3005A	ICP/OES
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Tin	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Titanium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
% Difference/ Ion Balance (Calculated)		SM 1030 E	CALCULATION

5335 Coccess Avenue Masissauga, Ontalla 1,47, 172 Ph: 905,742,5100 Fax: 906,712,5122

Laboratory Use	Only		
Work Order #: 20	276	358	302
Cooler Quantity:	, .	- II- 12	
Arrival Temperatures:	6.9	15-4	15.7

Chain of C	chain of Custody Record If this is a Definking Water sample, p						please use	e Drinking Water Cha	in of Custody Form	(petable	water		ottearth. sed by hyn	_	1S.Co	m —	1			antity: operar			00		5-4		5.2
Report Inform	mation: Wood Emily Lemieux							Regulatory Re	equirements:					_	eme	ent		iusto Voles	,	ea) (ni	tact:		ા¥es	-	4.7	-	5.7 (e)
Contact: Address:	131 Fielding Road		_					Regulation 153/1	04 Sewe	er Use			Regulati	on 558	ļ.		T	irns	PAL	und	Tin	no ()	(TAT)	Pan	uired	4.	
Address,	Lively, ON P3Y 1L7							Table Indicate One	— □Sar	nitary			COME								1141						
	705-682-2632		70	05-682-22	80			□Res/Park	□Sto	FITE			Duni Min		17.6			egul					-	o 7 Bus	siness	Days	
Phone: Reports to be sent to:		Fax:						☐ Agriculture					Prov. Wa Objective				R	ısh	[AT	(Rush S	8 wtchp	іден Арі	ply)				
1. Email:	emily.lemieux@woodp	IC.COM	_					Soil Texture researche		ite Com	-	÷χ	Other							usine	15S	Г		Busines	5S		ext Business
2, Eməll:	-							□ Coarse □ Fine	■MISA				_OD	to Oria	5.				Day:		: Req	ulred	j Day (Rush	. –	iarges '	U Da May Api	*
Project Inform	nation:							Is this submit			R	eport	Guidel	ine o	n												
Project:	Haileybury GW							Record of Site	Condition?	13	Ce	rtifica	ate of A	naly	sis										ption fo nd stat		
Site Location:			_][☐ Yes	□ No		3 6] Yes	3] N	lo			F									
Sampled By:			-				_ [niil.	_	FOI '	5 am	e Da	y an	alysis	, plea	ise coi	ifact y	our AG	AT CPM
AGAT Quote #:	17252 Please oute: 'n avoisition number	PO:		oid the Hitter? S.	O criss for any	horie		Sample Matrix	Legend	CrVI	H	O. Re	eg 153										PCBS	1	2		200
Involce Information Company. Contact: Address: Emeil:	mation:			Bill To Sai	пе: Yesʃl	S. No	-	8 Blote GW Ground Water 0 Oil P Paint S Soll SD Sadiment SW Surface Water		Field Filtered - Metals, Hg. (and Inorganics		HWS CICH CON	Uph OSAR Ful Metals Scan	Regulation/Custom Metals	Nutrients: DTP DNH, GTKN DNO, DNO, +NO.	5: OVOC DSTEX DTHM	1. F4			Total Deroclars	Organochforine Pesticides	TOLR II MASI II WOO, II ABAS III BAA P IINOB	Sewer Use	inuwater paramete		
Sampl	le Identification	Date Sample	d	Time Sample		f of tainers	Sample Matrix		ments/ nstructions	Y/N	Metals and	All Metals	PS Cr	Tul Me	Regulat	Nutrient Ono.	Volatiles:	PHCs F1	ABNS	PAHS	PCBs: []	Organo	TOLPE	Sewer L	5		
TW-4		AUG 101	20	it:a	2	8	Water	DOL FO	ed Filtera	14							Aug			П			i.	Z	0		
TVV-6		0		T.		8	Water	r	1	Y					185						8			2			200
TW-8						S .	Water			4									ijst.				ď	7	2		
TW-9				1		පි	Water	- 1	1	4			100							П				7	2		
TW-13					8	ò	Water	- 1	1	4				1			183		To the					2	3	Vinit	1991
TW-15					5	Š	Water	·		4				п					E					0	3		
TW-16					8	5	Water	- 1		0	T		ESPA						E	П		П		[2	า		
HB GW DUP1				d		3	Water			Ý							Pir							2			
										10/36									10								100
															Î E								1/3				
										1 20					7		l in										
Samples Relinquished by (Pri				Date Da	c 10/2	0 1	5:00		am's Significant	8	A	lea	11/2	020	Dat		9.	r	im ²	00		T					
South on Relinguished By (Pri	e (curcheche.			Detn	0	Tim	na .	Stamples Receiped	Designer Name and Speci		. 1	7	10	00	Date	6		4	JUL.	art.	-	+	С	Page_1		of_l	
Sagroes Religitioner by the	MINIME AND STATE			(Subje	-	Tar	10	Samples Received	By (Print Name and Sign)						Det	ft .		7	me	_		-	_	ogc_		UI	
			_																			No					

DissumentID DIV-78-1511 diff

Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT

CLIENT NAME: WOOD CANADA LTD. 131 FIELDING ROAD LIVELY, ON P3Y1L7 (705) 682-2632

ATTENTION TO: Emily Lemieux PROJECT: Haileybury GW

AGAT WORK ORDER: 20T658827

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Oct 14, 2020

PAGES (INCLUDING COVER): 12 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 12

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

Certificate of Analysis

AGAT WORK ORDER: 20T658827

PROJECT: Haileybury GW

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

ATTENTION TO: Emily Lemieux

SAMPLED BY:

o o o							e, ==				
					BOD-To	ronto					
DATE RECEIVED: 2020-10-02								ı	DATE REPORTI	ED: 2020-10-14	
		SAMPLE DES	CRIPTION:	TW-4		TW-6	TW-8	TW-9	TW-13	TW-15	TW-16
		SAM	PLE TYPE:	Water		Water	Water	Water	Water	Water	Water
		DATE	SAMPLED:	2020-10-01		2020-10-01	2020-10-01	2020-10-01	2020-10-01	2020-10-01	2020-10-01
Parameter	Unit	G/S	RDL	1511272	RDL	1511273	1511274	1511275	1511276	1511277	1511278
Biochemical Oxygen Demand, Total	mg/L		6	<6	2	<2	<2	9	28	4	<2
		SAMPLE DES	CRIPTION:	HB GW DUP1							
		SAM	PLE TYPE:	Water							
		DATE	SAMPLED:	2020-10-01							
Parameter	Unit	G/S	RDL	1511279							
Biochemical Oxygen Demand, Total	mg/L		2	2							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1511272 RDL for BOD is raised due to insufficient DO depletion at selected dilution levels.

Analysis performed at AGAT Halifax (unless marked by *)

CLIENT NAME: WOOD CANADA LTD.

SAMPLING SITE:

Certified By:

Tris Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T658827

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

DATE RECEIVED: 2020-10-02								ļ	DATE REPORT	ED: 2020-10-14	
				SCRIPTION: MPLE TYPE: SAMPLED:	TW-4 Water 2020-10-01		TW-6 Water 2020-10-01	TW-8 Water 2020-10-01		TW-9 Water 2020-10-01	
Parameter	Unit	G / S: A	G / S: B	RDL	1511272	RDL	1511273	1511274	RDL	1511275	
pH	pH Units		6.5-8.5	NA	7.34	NA	6.70	6.79	NA	7.56	
Alkalinity (as CaCO3)	mg/L		30-500	5	379	5	101	102	5	751	
Electrical Conductivity	uS/cm			2	951	2	289	155	2	1850	
Hardness (as CaCO3) (Calculated)	mg/L		80-100	0.5	467	0.5	115	82.4	0.5	692	
Total Dissolved Solids	mg/L		500	20	502[>B]	20	180[<b]< td=""><td>92[<b]< td=""><td>20</td><td>1030[>B]</td><td></td></b]<></td></b]<>	92[<b]< td=""><td>20</td><td>1030[>B]</td><td></td></b]<>	20	1030[>B]	
Fluoride	mg/L	1.5		0.05	<0.05	0.05	<0.05	<0.05	0.07	<0.07	
Chloride	mg/L		250	0.50	36.6[<b]< td=""><td>0.10</td><td>11.0[<b]< td=""><td>0.72[<b]< td=""><td>1.0</td><td>181[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	0.10	11.0[<b]< td=""><td>0.72[<b]< td=""><td>1.0</td><td>181[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	0.72[<b]< td=""><td>1.0</td><td>181[<b]< td=""><td></td></b]<></td></b]<>	1.0	181[<b]< td=""><td></td></b]<>	
Nitrate as N	mg/L	10.0		0.25	11.0[>A]	0.05	5.72[<a]< td=""><td><0.05</td><td>0.5</td><td><0.5</td><td></td></a]<>	<0.05	0.5	<0.5	
Nitrite as N	mg/L	1.0		0.25	<0.25	0.05	<0.05	<0.05	0.5	<0.5	
Sulphate	mg/L		500	0.50	171[<b]< td=""><td>0.10</td><td>44.9[<b]< td=""><td>3.92[<b]< td=""><td>1.0</td><td>257[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	0.10	44.9[<b]< td=""><td>3.92[<b]< td=""><td>1.0</td><td>257[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	3.92[<b]< td=""><td>1.0</td><td>257[<b]< td=""><td></td></b]<></td></b]<>	1.0	257[<b]< td=""><td></td></b]<>	
Phosphate as P	mg/L			0.50	<0.50	0.10	<0.10	<0.10	1.0	<1.0	
Ammonia as N	mg/L			0.02	0.32	0.02	0.03	0.04	0.08	21.4	
Total Kjeldahl Nitrogen	mg/L			0.10	1.77	0.10	0.38	0.15	0.10	25.7	
Organic Nitrogen	mg/L			0.10	1.45	0.10	0.35	0.11	0.10	4.30	
Dissolved Organic Carbon	mg/L		5	0.5	7.9[>B]	0.5	3.3[<b]< td=""><td>2.3[<b]< td=""><td>0.5</td><td>40.1[>B]</td><td></td></b]<></td></b]<>	2.3[<b]< td=""><td>0.5</td><td>40.1[>B]</td><td></td></b]<>	0.5	40.1[>B]	
Chemical Oxygen Demand	mg/L			5	<5	5	<5	<5	5	65	
Phenols	mg/L			0.001	0.001	0.001	<0.001	<0.001	0.001	0.007	
Dissolved Calcium	mg/L			0.05	136	0.05	30.3	19.2	0.10	179	
Dissolved Magnesium	mg/L			0.05	30.9	0.05	9.49	8.36	0.10	59.4	
Dissolved Potassium	mg/L			0.05	14.4	0.05	10.5	0.41	0.10	40.9	
Dissolved Sodium	mg/L	20		0.05	37.0[>A]	0.05	16.2[<a]< td=""><td>2.02[<a]< td=""><td>0.10</td><td>124[>A]</td><td></td></a]<></td></a]<>	2.02[<a]< td=""><td>0.10</td><td>124[>A]</td><td></td></a]<>	0.10	124[>A]	
Dissolved Aluminum	mg/L			0.004	0.023	0.004	0.016	0.028	0.004	0.014	
Dissolved Arsenic	mg/L	0.01		0.003	<0.003	0.003	<0.003	<0.003	0.003	0.018[>A]	
Dissolved Barium	mg/L	1.0		0.002	0.080[<a]< td=""><td>0.002</td><td>0.028[<a]< td=""><td>0.004[<a]< td=""><td>0.002</td><td>0.167[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	0.002	0.028[<a]< td=""><td>0.004[<a]< td=""><td>0.002</td><td>0.167[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	0.004[<a]< td=""><td>0.002</td><td>0.167[<a]< td=""><td></td></a]<></td></a]<>	0.002	0.167[<a]< td=""><td></td></a]<>	
Dissolved Beryllium	mg/L			0.001	<0.001	0.001	<0.001	<0.001	0.001	<0.001	
Dissolved Bismuth	mg/L			0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	
Dissolved Boron	mg/L	5.0		0.010	0.754[<a]< td=""><td>0.010</td><td>0.343[<a]< td=""><td>0.011[<a]< td=""><td>0.10</td><td>2.37[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	0.010	0.343[<a]< td=""><td>0.011[<a]< td=""><td>0.10</td><td>2.37[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	0.011[<a]< td=""><td>0.10</td><td>2.37[<a]< td=""><td></td></a]<></td></a]<>	0.10	2.37[<a]< td=""><td></td></a]<>	
Dissolved Cadmium	mg/L	0.005		0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	
Dissolved Chromium	mg/L	0.05		0.003	<0.003	0.003	<0.003	<0.003	0.003	0.004[<a]< td=""><td></td></a]<>	
Dissolved Cobalt	mg/L			0.001	0.001	0.001	<0.001	< 0.001	0.001	0.016	

Certified By:

Yrus Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T658827

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

DATE RECEIVED: 2020-10-02							Ι	DATE REPORT	ED: 2020-10-14	
			SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	TW-4 Water 2020-10-01		TW-6 Water 2020-10-01	TW-8 Water 2020-10-01		TW-9 Water 2020-10-01	
Parameter	Unit	G / S: A	G / S: B RDL	1511272	RDL	1511273	1511274	RDL	1511275	
Dissolved Copper	mg/L		0.003	0.006	0.003	<0.003	<0.003	0.003	<0.003	
Dissolved Iron	mg/L		0.010	<0.010	0.010	<0.010	0.349	0.10	20.1	
Dissolved Lead	mg/L	0.010	0.001	<0.001	0.001	<0.001	<0.001	0.001	<0.001	
Dissolved Manganese	mg/L		0.002	0.673	0.002	<0.002	0.091	0.02	3.70	
Dissolved Mercury	mg/L	0.001	0.0001	<0.0001	0.0001	<0.0001	<0.0001	0.0001	<0.0001	
Dissolved Molybdenum	mg/L		0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	
Dissolved Nickel	mg/L		0.003	0.003	0.003	< 0.003	< 0.003	0.003	0.016	
Dissolved Phosphorus	mg/L		0.050	<0.050	0.050	< 0.050	< 0.050	0.050	0.086	
Dissolved Selenium	mg/L	0.05	0.004	<0.004	0.004	<0.004	<0.004	0.004	<0.004	
Dissolved Silicon	mg/L		0.050	5.99	0.050	3.59	6.55	0.50	10.2	
Dissolved Silver	mg/L		0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	
Dissolved Strontium	mg/L		0.005	0.466	0.005	0.141	0.035	0.005	0.772	
Dissolved Sulphur	mg/L		0.05	51.4	0.05	16.0	1.33	0.10	78.1	
Dissolved Thallium	mg/L		0.006	<0.006	0.006	<0.006	<0.006	0.006	<0.006	
Dissolved Tin	mg/L		0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	
Dissolved Titanium	mg/L		0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	
Dissolved Uranium	mg/L	0.02	0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	
Dissolved Vanadium	mg/L		0.002	<0.002	0.002	<0.002	<0.002	0.002	0.004	
Dissolved Zinc	mg/L		0.005	<0.005	0.005	<0.005	< 0.005	0.005	<0.005	
% Difference/ Ion Balance (Calculated)	%		NA	6.69	NA	5.84	10.2	NA	7.81	

Certified By:

Ynis Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T658827

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

					, 0.04.14.						
DATE RECEIVED: 2020-10-02									DATE REPORT	ED: 2020-10-14	
				SCRIPTION: MPLE TYPE: SAMPLED:	TW-13 Water 2020-10-01		TW-15 Water 2020-10-01		TW-16 Water 2020-10-01	HB GW DUP1 Water 2020-10-01	
Parameter	Unit	G / S: A	G / S: B	RDL	1511276	RDL	1511277	RDL	1511278	1511279	
рН	pH Units		6.5-8.5	NA	7.62	NA	7.48	NA	6.65	6.66	
Alkalinity (as CaCO3)	mg/L		30-500	5	878	5	412	5	53	95	
Electrical Conductivity	uS/cm			2	1610	2	933	2	74	281	
Hardness (as CaCO3) (Calculated)	mg/L		80-100	0.5	304	0.5	343	0.5	27.1	113	
Total Dissolved Solids	mg/L		500	20	888[>B]	20	504[>B]	20	40[<b]< td=""><td>154[<b]< td=""><td></td></b]<></td></b]<>	154[<b]< td=""><td></td></b]<>	
Fluoride	mg/L	1.5		0.05	<0.05	0.05	<0.05	0.05	<0.05	<0.05	
Chloride	mg/L		250	0.50	99.2[<b]< td=""><td>0.50</td><td>51.7[<b]< td=""><td>0.10</td><td>0.26[<b]< td=""><td>10.9[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	0.50	51.7[<b]< td=""><td>0.10</td><td>0.26[<b]< td=""><td>10.9[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	0.10	0.26[<b]< td=""><td>10.9[<b]< td=""><td></td></b]<></td></b]<>	10.9[<b]< td=""><td></td></b]<>	
Nitrate as N	mg/L	10.0		0.25	<0.25	0.25	6.88[<a]< td=""><td>0.05</td><td><0.05</td><td>5.72[<a]< td=""><td></td></a]<></td></a]<>	0.05	<0.05	5.72[<a]< td=""><td></td></a]<>	
Nitrite as N	mg/L	1.0		0.25	<0.25	0.25	<0.25	0.05	<0.05	<0.05	
Sulphate	mg/L		500	0.50	0.79[<b]< td=""><td>0.50</td><td>107[<b]< td=""><td>0.10</td><td>2.38[<b]< td=""><td>43.7[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	0.50	107[<b]< td=""><td>0.10</td><td>2.38[<b]< td=""><td>43.7[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	0.10	2.38[<b]< td=""><td>43.7[<b]< td=""><td></td></b]<></td></b]<>	43.7[<b]< td=""><td></td></b]<>	
Phosphate as P	mg/L			0.50	<0.50	0.50	<0.50	0.10	<0.10	<0.10	
Ammonia as N	mg/L			0.4	88.0	0.02	2.84	0.02	<0.02	<0.02	
Total Kjeldahl Nitrogen	mg/L			0.10	90.5	0.10	3.75	0.10	0.14	0.39	
Organic Nitrogen	mg/L			0.10	2.50	0.10	0.91	0.10	0.14	0.39	
Dissolved Organic Carbon	mg/L		5	1.0	38.6[>B]	0.5	5.1[>B]	0.5	1.0[<b]< td=""><td>3.2[<b]< td=""><td></td></b]<></td></b]<>	3.2[<b]< td=""><td></td></b]<>	
Chemical Oxygen Demand	mg/L			10	94	5	10	5	<5	<5	
Phenols	mg/L			0.001	0.003	0.001	0.004	0.001	< 0.001	0.001	
Dissolved Calcium	mg/L			0.10	69.1	0.05	99.3	0.05	6.99	29.9	
Dissolved Magnesium	mg/L			0.10	32.0	0.05	23.0	0.05	2.34	9.31	
Dissolved Potassium	mg/L			0.10	53.7	0.05	19.8	0.05	0.31	10.3	
Dissolved Sodium	mg/L	20		0.10	90.2[>A]	0.05	23.2[>A]	0.05	3.93[<a]< td=""><td>16.1[<a]< td=""><td></td></a]<></td></a]<>	16.1[<a]< td=""><td></td></a]<>	
Dissolved Aluminum	mg/L			0.008	0.087	0.004	0.014	0.004	0.023	0.028	
Dissolved Arsenic	mg/L	0.01		0.006	0.008[<a]< td=""><td>0.003</td><td>< 0.003</td><td>0.003</td><td>< 0.003</td><td>< 0.003</td><td></td></a]<>	0.003	< 0.003	0.003	< 0.003	< 0.003	
Dissolved Barium	mg/L	1.0		0.004	0.193[<a]< td=""><td>0.002</td><td>0.115[<a]< td=""><td>0.002</td><td>0.003[<a]< td=""><td>0.029[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	0.002	0.115[<a]< td=""><td>0.002</td><td>0.003[<a]< td=""><td>0.029[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	0.002	0.003[<a]< td=""><td>0.029[<a]< td=""><td></td></a]<></td></a]<>	0.029[<a]< td=""><td></td></a]<>	
Dissolved Beryllium	mg/L			0.002	<0.002	0.001	<0.001	0.001	< 0.001	<0.001	
Dissolved Bismuth	mg/L			0.004	<0.004	0.002	<0.002	0.002	<0.002	<0.002	
Dissolved Boron	mg/L	5.0		0.020	1.04[<a]< td=""><td>0.010</td><td>0.485[<a]< td=""><td>0.010</td><td>0.020[<a]< td=""><td>0.346[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	0.010	0.485[<a]< td=""><td>0.010</td><td>0.020[<a]< td=""><td>0.346[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	0.010	0.020[<a]< td=""><td>0.346[<a]< td=""><td></td></a]<></td></a]<>	0.346[<a]< td=""><td></td></a]<>	
Dissolved Cadmium	mg/L	0.005		0.004	<0.004	0.002	<0.002	0.002	<0.002	<0.002	
Dissolved Chromium	mg/L	0.05		0.006	0.008[<a]< td=""><td>0.003</td><td>< 0.003</td><td>0.003</td><td>< 0.003</td><td>< 0.003</td><td></td></a]<>	0.003	< 0.003	0.003	< 0.003	< 0.003	
Dissolved Cobalt	mg/L			0.002	0.005	0.001	0.002	0.001	<0.001	<0.001	

Certified By:

Ynis Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T658827

PROJECT: Haileybury GW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Groundwater Package

			•	•		•				
DATE RECEIVED: 2020-10-02								DATE REPORT	ED: 2020-10-14	
			SAMPLE DESCRIPTION:	TW-13		TW-15		TW-16	HB GW DUP1	
			SAMPLE TYPE:	Water		Water		Water	Water	
			DATE SAMPLED:	2020-10-01		2020-10-01		2020-10-01	2020-10-01	
Parameter	Unit	G / S: A	G / S: B RDL	1511276	RDL	1511277	RDL	1511278	1511279	
Dissolved Copper	mg/L		0.006	<0.006	0.003	0.009	0.003	< 0.003	0.004	
Dissolved Iron	mg/L		0.020	12.0	0.010	<0.010	0.010	0.010	<0.010	
Dissolved Lead	mg/L	0.010	0.002	<0.002	0.001	<0.001	0.001	<0.001	<0.001	
Dissolved Manganese	mg/L		0.004	1.75	0.002	0.930	0.002	0.011	<0.002	
Dissolved Mercury	mg/L	0.001	0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	<0.0001	
Dissolved Molybdenum	mg/L		0.004	<0.004	0.002	<0.002	0.002	<0.002	<0.002	
Dissolved Nickel	mg/L		0.006	0.010	0.003	0.005	0.003	< 0.003	<0.003	
Dissolved Phosphorus	mg/L		0.100	<0.100	0.050	<0.050	0.050	<0.050	<0.050	
Dissolved Selenium	mg/L	0.05	0.008	<0.008	0.004	<0.004	0.004	<0.004	<0.004	
Dissolved Silicon	mg/L		0.100	7.05	0.050	7.05	0.050	5.37	3.54	
Dissolved Silver	mg/L		0.004	<0.004	0.002	<0.002	0.002	<0.002	<0.002	
Dissolved Strontium	mg/L		0.010	0.352	0.005	0.284	0.005	0.022	0.133	
Dissolved Sulphur	mg/L		0.10	1.18	0.05	20.7	0.05	0.71	15.9	
Dissolved Thallium	mg/L		0.012	<0.012	0.006	<0.006	0.006	<0.006	<0.006	
Dissolved Tin	mg/L		0.004	<0.004	0.002	<0.002	0.002	<0.002	<0.002	
Dissolved Titanium	mg/L		0.004	0.004	0.002	0.002	0.002	<0.002	<0.002	
Dissolved Uranium	mg/L	0.02	0.004	<0.004	0.002	<0.002	0.002	<0.002	<0.002	
Dissolved Vanadium	mg/L		0.004	0.010	0.002	<0.002	0.002	<0.002	<0.002	
Dissolved Zinc	mg/L		0.010	<0.010	0.005	<0.005	0.005	<0.005	<0.005	
% Difference/ Ion Balance (Calculated)	%		NA	7.14	NA	18.3	NA	21.6	4.51	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards. Na value derived from O. Reg 248, B Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards - Aesthetic Objectives and Operational Guidelines

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1511272-1511279 Metals analysis completed on a filtered sample.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verastegui

Exceedance Summary

AGAT WORK ORDER: 20T658827

PROJECT: Haileybury GW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WOOD CANADA LTD.

ATTENTION TO: Emily Lemieux

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1511272	TW-4	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	7.9
1511272	TW-4	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	467
1511272	TW-4	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	502
1511272	TW-4	ON 169/03 MAC/IMAC	Haileybury Groundwater Package	Dissolved Sodium	mg/L	20	37.0
1511272	TW-4	ON 169/03 MAC/IMAC	Haileybury Groundwater Package	Nitrate as N	mg/L	10.0	11.0
1511273	TW-6	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	115
1511275	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Alkalinity (as CaCO3)	mg/L	30-500	751
1511275	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	40.1
1511275	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	692
1511275	TW-9	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	1030
1511275	TW-9	ON 169/03 MAC/IMAC	Haileybury Groundwater Package	Dissolved Arsenic	mg/L	0.01	0.018
1511275	TW-9	ON 169/03 MAC/IMAC	Haileybury Groundwater Package	Dissolved Sodium	mg/L	20	124
1511276	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Alkalinity (as CaCO3)	mg/L	30-500	878
1511276	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	38.6
1511276	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	304
1511276	TW-13	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	888
1511276	TW-13	ON 169/03 MAC/IMAC	Haileybury Groundwater Package	Dissolved Sodium	mg/L	20	90.2
1511277	TW-15	ON 169/03 AO&OG	Haileybury Groundwater Package	Dissolved Organic Carbon	mg/L	5	5.1
1511277	TW-15	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	343
1511277	TW-15	ON 169/03 AO&OG	Haileybury Groundwater Package	Total Dissolved Solids	mg/L	500	504
1511277	TW-15	ON 169/03 MAC/IMAC	Haileybury Groundwater Package	Dissolved Sodium	mg/L	20	23.2
1511278	TW-16	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	27.1
1511279	HB GW DUP1	ON 169/03 AO&OG	Haileybury Groundwater Package	Hardness (as CaCO3) (Calculated)	mg/L	80-100	113

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

PROJECT: Haileybury GW

AGAT WORK ORDER: 20T658827 ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

			V	/ate	er Ar	nalys	is										
RPT Date: Oct 14, 2020			DUPL	ICATE	<u> </u>		REFEREN	NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SF		KE		
PARAMETER		nple Du	s #1 Du	p #2	RPD	Method Blank		Measured Limits		Measured Lim		Recovery	Lir	eptable mits	Recovery		ptable nits
		d Du					Value	Lower	Upper		Lower	Upper		Lower	Upper		
Haileybury Groundwater Packa	ge																
pH	1510487	6.6	0 6	6.64	0.6%	NA	100%	90%	110%								
Alkalinity (as CaCO3)	1510487	80)	80	0.0%	< 5	99%	80%	120%								
Electrical Conductivity	1510487	47	4 4	179	1.0%	< 2	94%	80%	120%								
Total Dissolved Solids	1509709	59	4 5	582	2.0%	< 20	102%	80%	120%								
Fluoride	1509858	<0.0)5 <	0.05	NA	< 0.05	105%	90%	110%	108%	90%	110%	113%	85%	115%		
Chloride	1509858	61.	5 6	31.1	0.7%	< 0.10	96%	70%	130%	105%	80%	120%	112%	70%	130%		
Nitrate as N	1509858	1.4	0 1	.40	0.0%	< 0.05	99%	70%	130%	103%	80%	120%	107%	70%	130%		
Nitrite as N	1509858	<0.2	25 <	0.25	NA	< 0.05	94%	70%	130%	99%	80%	120%	106%	70%	130%		
Sulphate	1509858	17.	0 1	6.9	0.6%	< 0.10	96%	70%	130%	101%	80%	120%	106%	70%	130%		
Phosphate as P	1509858	<0.	50 <	0.50	NA	< 0.10	105%	70%	130%	99%	80%	120%	106%	70%	130%		
Ammonia as N	1510251	<0.0)2 <	0.02	NA	< 0.02	102%	70%	130%	101%	80%	120%	96%	70%	130%		
Total Kjeldahl Nitrogen	1512211	0.4	8 0).51	NA	< 0.10	103%	70%	130%	101%	80%	120%	100%	70%	130%		
Dissolved Organic Carbon	1512131	5.3	3	5.1	3.8%	< 0.5	97%	90%	110%	100%	90%	110%	107%	80%	120%		
Chemical Oxygen Demand	1509825	<5	5	<5	NA	< 5	106%	90%	110%	102%	90%	110%	99%	70%	130%		
Phenols	1511272 1511	272 0.00	01 0.	.003	NA	< 0.001	93%	90%	110%	100%	90%	110%	93%	80%	120%		
Dissolved Calcium	1507935	7.9	3 7	'.92	0.1%	< 0.05	94%	70%	130%	93%	80%	120%	96%	70%	130%		
Dissolved Magnesium	1507935	2.0	1 1	.98	1.5%	< 0.05	93%	70%	130%	92%	80%	120%	95%	70%	130%		
Dissolved Potassium	1507935	1.3		.36	0.0%	< 0.05	94%	70%	130%	93%	80%	120%	94%	70%	130%		
Dissolved Sodium	1507935	2.2	5 2	2.24	0.4%	< 0.05	101%	70%	130%	99%	80%	120%	99%	70%	130%		
Dissolved Aluminum	1511958	0.0	31 0.	.030	3.3%	< 0.004	99%	70%	130%	101%	80%	120%	97%	70%	130%		
Dissolved Arsenic	1511958	<0.0	03 <0	0.003	NA	< 0.003	100%	70%	130%	101%	80%	120%	106%	70%	130%		
Dissolved Barium	1511958	0.02	21 0.	.021	0.0%	< 0.002	99%	70%	130%	96%	80%	120%	95%	70%	130%		
Dissolved Beryllium	1511958	<0.0	01 <0	0.001	NA	< 0.001	99%	70%	130%	97%	80%	120%	100%	70%	130%		
Dissolved Bismuth	1511958	<0.0	02 <0	0.002	NA	< 0.002	99%	70%	130%	108%	80%	120%	107%	70%	130%		
Dissolved Boron	1511958	0.2		.204	3.4%	< 0.010	100%	70%	130%	96%	80%	120%	95%	70%	130%		
Dissolved Cadmium	1511958	<0.0	02 <0	0.002	NA	< 0.002	99%	70%	130%	100%	80%	120%	99%	70%	130%		
Dissolved Chromium	1511958	<0.0	03 <0	0.003	NA	< 0.003	93%	70%	130%	94%	80%	120%	97%	70%	130%		
Dissolved Cobalt	1511958	<0.0	01 <0	0.001	NA	< 0.001	94%	70%	130%	96%	80%	120%	98%	70%	130%		
Dissolved Copper	1511958	<0.0	03 <0	0.003	NA	< 0.003	96%	70%	130%	97%	80%	120%	98%	70%	130%		
Dissolved Iron	1511958	0.0	17 0	.013	NA	< 0.010	96%	70%	130%	92%	80%	120%	97%	70%	130%		
Dissolved Lead	1511958	<0.0	01 <0	0.001	NA	< 0.001	101%	70%	130%	93%	80%	120%	94%	70%	130%		
Dissolved Manganese	1511958	<0.0		0.002	NA	< 0.002		70%	130%	97%	80%	120%	98%		130%		
Dissolved Mercury	1511272 1511			.0001	NA	< 0.0001			130%	98%		120%	94%		130%		
Dissolved Molybdenum	1511958	0.04		.042	2.4%	< 0.002		70%		96%		120%	100%	70%			
Dissolved Nickel	1511958	0.00		0.003	NA	< 0.003		70%		95%		120%	95%		130%		
Dissolved Phosphorus	1511958	<0.0	50 <0	0.050	NA	< 0.050	92%	70%	130%	94%	80%	120%	108%	70%	130%		
Dissolved Selenium	1511958	<0.0		0.004	NA	< 0.004		70%	130%	101%	80%	120%	104%		130%		
Dissolved Silicon	1511958	3.0		3.02	0.7%	< 0.050		70%	130%	92%	80%	120%	82%		130%		
Dissolved Silver	1511958	<0.0		0.002	NA	< 0.002			130%	96%		120%	96%		130%		

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

AGAT WORK ORDER: 20T658827 PROJECT: Haileybury GW ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

Water Analysis (Continued)															
RPT Date: Oct 14, 2020		DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE		KE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		Acceptable Limits			ptable nits	Recovery	Lin	ptable nits
		Iu	·	·			Lower	Upper	,	Lower	Upper		Lower	Upper	
Dissolved Strontium	1511958		0.482	0.477	1.0%	< 0.005	93%	70%	130%	93%	80%	120%	100%	70%	130%
Dissolved Sulphur	1507935		1.38	1.43	3.6%	< 0.05	94%	70%	130%	93%	80%	120%	103%	70%	130%
Dissolved Thallium	1511958		<0.006	<0.006	NA	< 0.006	102%	70%	130%	95%	80%	120%	97%	70%	130%
Dissolved Tin	1511958		<0.002	< 0.002	NA	< 0.002	90%	70%	130%	97%	80%	120%	98%	70%	130%
Dissolved Titanium	1511958		0.002	<0.002	NA	< 0.002	95%	70%	130%	102%	80%	120%	102%	70%	130%
Dissolved Uranium	1511958		0.003	0.003	NA	< 0.002	98%	70%	130%	95%	80%	120%	99%	70%	130%
Dissolved Vanadium	1511958		<0.002	<0.002	NA	< 0.002	94%	70%	130%	94%	80%	120%	98%	70%	130%
Dissolved Zinc	1511958		<0.005	<0.005	NA	< 0.005	96%	70%	130%	99%	80%	120%	106%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

BOD-Toronto

Biochemical Oxygen Demand, Total 1512054 200 187 6.7% < 2 91% 70% 130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Inis Verastegui

Method Summary

CLIENT NAME: WOOD CANADA LTD.

AGAT WORK ORDER: 20T658827 PROJECT: Haileybury GW ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Biochemical Oxygen Demand, Total	INOR-121-6023	SM 5210 B	INCUBATOR
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Phosphate as P	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA
Total Kjeldahl Nitrogen	INOR-93-6048	modified from EPA 351.2 and SM 4500-NORG D	LACHAT FIA
Organic Nitrogen		SM 4500-Norg A	CALCULATION
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Chemical Oxygen Demand	INOR-93-6042	SM 5220 D	SPECTROPHOTOMETER
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA
Dissolved Calcium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Magnesium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Potassium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES
Dissolved Aluminum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Bismuth	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Iron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Manganese	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS

Method Summary

CLIENT NAME: WOOD CANADA LTD.

SAMPLING SITE:

PROJECT: Haileybury GW

AGAT WORK ORDER: 20T658827 ATTENTION TO: Emily Lemieux

SAMPLED BY:

AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6105	modified from EPA 200.8 and EPA 3005A	ICP/OES
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
	SM 1030 E	CALCULATION
	MET-93-6103 MET-93-6103 MET-93-6103 MET-93-6103 MET-93-6103 MET-93-6105 MET-93-6103 MET-93-6103 MET-93-6103 MET-93-6103 MET-93-6103 MET-93-6103	MET-93-6103 modified from EPA 200.8 and EPA 3005A MET-93-6103 modified from EPA 200.8 and EPA 3005A MET-93-6103 modified from EPA 200.8 and EPA 3005A MET-93-6103 modified from EPA 200.8 and EPA 3005A MET-93-6103 modified from EPA 200.8 and EPA 3005A MET-93-6103 modified from EPA 200.8 and EPA 3005A MET-93-6105 modified from EPA 200.8 and EPA 3005A MET-93-6103 modified from EPA 200.8 and EPA 3005A

CLIENT NAME: WOOD CANADA LTD. 131 FIELDING ROAD LIVELY, ON P3Y1L7 (705) 682-2632

ATTENTION TO: Emily Lemieux PROJECT: Haileybury SW

AGAT WORK ORDER: 20T658722

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Oct 09, 2020

PAGES (INCLUDING COVER): 8 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 8

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T658722

PROJECT: Haileybury SW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Surface Water Package

		Halleyb	ury Surrace	vvaler i aci	Rage	
						DATE REPORTED: 2020-10-09
S	AMPLE DESCRIPTION	: SW-3	SW-4	SW-5	HB SW DUP	
	SAMPLE TYPE	: Water	Water	Water	Water	
	DATE SAMPLED	: 2020-10-01	2020-10-01	2020-10-01	2020-10-01	
		12:00	12:00	12:00	12:00	
Unit		1510251		1510262		
pH Units	NA	6.67	6.70	6.30	6.71	
mg/L	5	79	81	27	87	
uS/cm	2	217	225	40	225	
mg/L	0.5	71.8	73.9	17.9	75.5	
mg/L	20	152	152	30	144	
mg/L	10	<10	<10	<10	<10	
mg/L	0.10	38.9	40.1	2.64	40.0	
mg/L	0.10	3.10	3.17	0.89	3.21	
mg/L	0.02	< 0.02	<0.02	0.02	<0.02	
mg/L	0.5	11.8	12.7	10.2	13.4	
mg/L	5	34	25	23	30	
mg/L	0.001	<0.001	<0.001	<0.001	<0.001	
NTU	0.5	5.7	2.3	13.9	1.2	
mg/L	0.25	20.16	20.77	4.89	21.27	
	0.25	5.21	5.35	1.37	5.44	
	0.25	0.83		<0.25	0.69	
-	0.25	20.87	21.89	1.86	22.40	
	0.004	0.019	0.016	0.040	0.016	
	0.003	< 0.003	< 0.003	< 0.003	<0.003	
-	0.002	0.009	0.009	0.004	0.009	
-	0.010	<0.010	<0.010	<0.010	<0.010	
~	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
ū						
-						
	Unit pH Units mg/L uS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SAMPLE TYPE DATE SAMPLED	SAMPLE DESCRIPTION: SW-3 SAMPLE TYPE: Water DATE SAMPLED: 2020-10-01 12:00	SAMPLE DESCRIPTION: SW-3	SAMPLE DESCRIPTION: SW-3 SW-4 SW-5 SAMPLE TYPE: Water Water Water DATE SAMPLED: 2020-10-01 12:00 12:00 12:00 Unit G / S RDL 1510251 1510261 1510262 PH Units NA 6.67 6.70 6.30 mg/L 5 79 81 27 uS/cm 2 217 225 40 mg/L 0.5 71.8 73.9 17.9 mg/L 20 152 152 30 mg/L 0.10 38.9 40.1 2.64 mg/L 0.10 38.9 40.1 2.64 mg/L 0.10 3.10 3.17 0.89 mg/L 0.02 <0.02 <0.02 0.02 mg/L 0.5 5 11.8 12.7 10.2 mg/L 0.5 11.8 12.7 10.2 mg/L 0.5 5 34 25 23 mg/L 0.001 <0.001 <0.001 <0.001 NTU 0.5 5.7 2.3 13.9 mg/L 0.25 20.16 20.77 4.89 mg/L 0.25 20.16 20.77 4.89 mg/L 0.25 20.83 0.77 <0.25 mg/L 0.25 20.87 21.89 1.86 mg/L 0.004 0.019 0.016 0.040 mg/L 0.002 <0.003 <0.003 <0.003 mg/L 0.002 <0.003 <0.003 <0.003 mg/L 0.002 <0.009 0.009 0.004 mg/L 0.002 <0.009 0.009 0.004 mg/L 0.002 <0.002 <0.002 <0.002 mg/L 0.001 <0.001 <0.001 <0.001 mg/L 0.002 <0.002 <0.002 <0.002 mg/L 0.001 <0.001 <0.001 <0.001 mg/L 0.001 <0.001 <0.001 <0.001 mg/L 0.002 <0.002 <0.002 <0.002 mg/L 0.0001 <0.0001 <0.0001 <0.0001 mg/L 0.0005 <0.0005 <0.0005 <0.0005 mg/L 0.0005 <0.0005 <0.0005 <0.0005 mg/L 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 mg/L 0.0005 <0.0005 <0.0005 <0.0005 <0.0002 mg/L 0.0006 <0.0005 <0.0005 <0.0005 <0.0002 mg/L 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 mg/L 0.0001 <0.0001 <0.0002 <0.0002 <0.0002	SAMPLE TYPE: DATE SAMPLED: 2020-10-01 2

Certified By:

Tris Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T658722

PROJECT: Haileybury SW

ATTENTION TO: Emily Lemieux

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Haileybury Surface Water Package

				· · · · · · · · · · · · · · · · · · ·	ary carrace		3 -	
DATE RECEIVED: 2020-10-02								DATE REPORTED: 2020-10-09
		SAMPLE DES	CRIPTION:	SW-3	SW-4	SW-5	HB SW DUP	
		SAM	PLE TYPE:	Water	Water	Water	Water	
		DATE	SAMPLED:	2020-10-01 12:00	2020-10-01 12:00	2020-10-01 12:00	2020-10-01 12:00	
Parameter	Unit	G/S	RDL	1510251	1510261	1510262	1510263	
Total Manganese	mg/L		0.002	0.011	0.022	0.068	0.021	
Total Molybdenum	mg/L		0.002	<0.002	<0.002	<0.002	<0.002	
otal Nickel	mg/L		0.003	<0.003	<0.003	<0.003	< 0.003	
otal Phosphorus	mg/L		0.10	<0.10	<0.10	<0.10	<0.10	
otal Selenium	mg/L		0.004	<0.004	<0.004	<0.004	<0.004	
otal Silicon	mg/L		0.050	3.05	2.83	2.49	2.88	
otal Silver	mg/L		0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	
otal Strontium	mg/L		0.005	0.049	0.050	0.026	0.045	
otal Sulphur	mg/L		0.250	1.257	1.400	0.371	1.238	
otal Thallium	mg/L		0.0003	< 0.0003	< 0.0003	< 0.0003	<0.0003	
otal Tin	mg/L		0.002	<0.002	<0.002	<0.002	<0.002	
otal Titanium	mg/L		0.002	0.004	<0.002	0.003	<0.002	
otal Uranium	mg/L		0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
otal Vanadium	mg/L		0.002	<0.002	<0.002	<0.002	<0.002	
Total Zinc	mg/L		0.005	<0.005	<0.005	0.005	<0.005	
Lab Filtration Performed				Υ	Υ	Υ	Υ	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1510251-1510263 DOC & Dissolved Al analysis completed on a lab filtered sample. Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Inis Verastegui

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

AGAT WORK ORDER: 20T658722

PROJECT: Haileybury SW

ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

				Wate	er Ar	nalys	IS									
RPT Date: Oct 09, 2020				UPLICATE			REFEREN	NCE MA	TERIAL	METHOD BLANK SPIKE			MAT	RIX SPI	SPIKE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	eptable mits	Recovery		ptable nits	Recovery		ptable	
								Lower	Upper		Lower	Upper		Lower	Uppe	
Haileybury Surface Water Pac	· ·		6.60	6.64	0.6%	NΙΔ	100%	90%	110%							
pH Alkalinity (as CaCO3)	1510487 1510487		80	80	0.0%	NA < 5	99%	80%	120%							
Electrical Conductivity	1510487		474	479	1.0%	< 2	94%	80%	120%							
Total Dissolved Solids	1510467		392	390	0.5%	< 20	94%	80%	120%							
Total Suspended Solids	1512211		<10	<10	NA	< 10	98%	80%	120%							
Chloride	1512213		139	146	4.9%	< 0.10	95%	70%	130%	109%	80%	120%	NA	70%	130%	
Sulphate	1512213		27.1	28.5	5.0%	< 0.10	97%	70%	130%	107%	80%	120%	105%	70%	130%	
Ammonia as N	1510251 1	510251	<0.02	<0.02	NA	< 0.02	102%	70%	130%	101%	80%	120%	96%	70%	130%	
Dissolved Organic Carbon	1511279		3.2	3.2	0.0%	< 0.5	103%	90%	110%	99%	90%	110%	113%	80%	120%	
Chemical Oxygen Demand	1509825		<5	<5	NA	< 5	106%	90%	110%	102%	90%	110%	99%	70%	130%	
Phenols	1523283		<0.001	<0.001	NA	< 0.001	100%	90%	110%	96%	90%	110%	111%	80%	120%	
Turbidity	1509765		2.2	2.4	NA	< 0.5	102%	80%	120%							
Total Calcium	1507935		9.89	10.01	1.2%	< 0.05	95%	70%	130%	95%	80%	120%	96%	70%	130%	
Total Magnesium	1507935		2.68	2.72	1.5%	< 0.05	93%	70%	130%	91%	80%	120%	94%	70%	130%	
Total Potassium	1507935		1.78	1.86	4.4%	< 0.05	91%	70%	130%	89%	80%	120%	91%	70%	130%	
Total Sodium	1507935		2.39	2.43	1.7%	< 0.05	96%	70%	130%	94%	80%	120%	94%	70%	130%	
Aluminum (dissolved)	1510487		< 0.004	< 0.004	NA	< 0.004	95%	70%	130%	98%	80%	120%	95%	70%	130%	
Total Arsenic	1507935		< 0.003	< 0.003	NA	< 0.003	103%	70%	130%	119%	80%	120%	110%	70%	130%	
Total Barium	1507935		0.023	0.023	0.0%	< 0.002	97%	70%	130%	95%	80%	120%	104%	70%	130%	
Total Beryllium	1507935		<0.0005	<0.0005	NA	< 0.0005	93%	70%	130%	90%	80%	120%	98%	70%	130%	
Total Bismuth	1507935		<0.002	<0.002	NA	< 0.002	101%	70%	130%	99%	80%	120%	108%	70%	130%	
Total Boron	1507935		0.012	0.010	NA	< 0.010	97%	70%	130%	95%	80%	120%	101%	70%	130%	
Total Cadmium	1507935		<0.0001	<0.0001	NA	< 0.0001	100%	70%	130%	97%	80%	120%	106%	70%	130%	
Total Chromium	1507935		0.006	0.006	NA	< 0.003	105%	70%	130%	101%	80%	120%	109%	70%	130%	
Total Cobalt	1507935		0.0011	0.0011	NA	< 0.0005	108%	70%	130%	105%	80%	120%	113%	70%	130%	
Total Copper	1507935		0.004	0.005	NA	< 0.002	108%	70%	130%	101%	80%	120%	112%	70%	130%	
Total Iron	1507935		2.75	2.82	2.5%	< 0.010	105%	70%	130%	105%	80%	120%	104%	70%	130%	
Total Lead	1507935		0.001	0.001	NA	< 0.001	98%	70%	130%	107%	80%	120%	106%	70%	130%	
Total Manganese	1507935		0.160	0.160	0.0%	< 0.002	100%	70%	130%	100%	80%	120%	109%	70%	130%	
Total Molybdenum	1507935		<0.002	<0.002	NA	< 0.002	106%	70%	130%	101%	80%	120%	108%	70%	130%	
Total Nickel	1507935		0.004	0.004	NA	< 0.003	111%	70%	130%	104%		120%	111%		130%	
Total Phosphorus	1507935		<0.10	0.12	NA	< 0.10	93%	70%	130%	106%	80%	120%	104%	70%		
Total Selenium	1507935		<0.004	<0.004	NA	< 0.004	100%	70%		118%	80%	120%	106%		130%	
Total Silicon	1507935		7.06	7.40	4.7%	< 0.050	100%	70%		95%		120%	91%		130%	
Total Silver	1507935		<0.0001	<0.0001	NA	< 0.0001	108%	70%	130%	102%	80%	120%	110%	70%	130%	
Total Strontium	1507935		0.035	0.035	0.0%	< 0.005			130%	99%		120%	108%		130%	
Total Sulphur	1507935		1.795	1.783	0.7%	< 0.050		70%		92%		120%	105%		130%	
Total Thallium	1507935		<0.0003	<0.0003	NA	< 0.0003		70%		101%	80%	120%	110%	70%	130%	
Total Tin	1507935		<0.002	<0.002	NA	< 0.002	105%	70%	130%	98%	80%	120%	103%	70%	130%	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 4 of 8

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WOOD CANADA LTD.

AGAT WORK ORDER: 20T658722 ATTENTION TO: Emily Lemieux

PROJECT: Haileybury SW SAMPLING SITE:

SAMPLED BY:

Water Analysis (Continued)															
RPT Date: Oct 09, 2020 DUPLICATE							REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lie	ptable nits
TATOWILLER		ld	,				Value	Lower	Upper	,	Lower	Upper		Lower	Upper
Total Titanium	1507935		0.106	0.090	16.3%	< 0.002	103%	70%	130%	102%	80%	120%	112%	70%	130%
Total Uranium	1507935		<0.0005	<0.0005	NA	< 0.0005	105%	70%	130%	102%	80%	120%	110%	70%	130%
Total Vanadium	1507935		0.006	0.005	NA	< 0.002	106%	70%	130%	103%	80%	120%	111%	70%	130%
Total Zinc	1507935		0.015	0.015	NA	< 0.005	103%	70%	130%	104%	80%	120%	112%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:

Method Summary

CLIENT NAME: WOOD CANADA LTD.
PROJECT: Haileybury SW

AGAT WORK ORDER: 20T658722
ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Chemical Oxygen Demand	INOR-93-6042	SM 5220 D	SPECTROPHOTOMETER
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA
Turbidity	INOR-93-6044	modified from SM 2130 B	NEPHELOMETER
Total Calcium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Magnesium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Potassium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES
Aluminum (dissolved)	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Barium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Bismuth	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Phosphorus	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS

Method Summary

CLIENT NAME: WOOD CANADA LTD.
PROJECT: Haileybury SW

AGAT WORK ORDER: 20T658722 ATTENTION TO: Emily Lemieux

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silicon	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Strontium	INOR-93-6003	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Sulphur	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Thallium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Lab Filtration Performed			FILTRATION

5835 Coopers Avenue Mississauga, Ontario L47 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Work Order #: 20		587	22
Cooler Quantity: Arrival Temperatures:	1811	(Cice), 2', 5
Custody Seal Intact:	Yes	□No	N/.

Chain of C	Custody Reco	rd If this is	a Drinking Wa	ter sample, p	lease use	e Drinking Water Chain of	Custody Form	(potable	water c	onsume	d by huma	15)		_	Arri	ival Te	emper	atur	es:	2.	δ.	2	.12	->
Report Inford	mation: Wood					Regulatory Requ	ilrements:		No R	egula	tory Re	quire	ment			stody ites:	Seal I	ntac	t	□Yes	5		No	□N/A
Contact:	Emily Lemleux					Regulation 153/04	Sewe	er Use	1	Пв	egulation	558		L										
Address:	131 Fielding Road						_								Tur	nar	oune	d Ti	me ((TAT)	Re	quire	d:	
	Lively, ON P3Y 1L7					Table Indicate One	☐ Sat	nitary			CME				Reg	gular	TAT	•	Г	刁 5t	(o 7 B	usiness	Days	
Dhoos	705-682-2632	Fax:	05-682-2260			☐ Res/Park	□Sto	ımı			rov. Wate				Rus	sh TA	T[Aus	h Surc	charges A	 Applyl				
Phone; Reports to be sent to: 1. Email;	emily.lemieux@woodp					☐ Agriculture Soil Texture (check One) ☐ Coarse	Region	áte One	-	_	bjectives ther	(PWQ	0)		(Busir ays	ness	[⊒ 2 E	Busine iys	355	□ Next	t Business
2. Emall:						Fine	MISA	4	1	77	Indicati	One	-	Ш		0	R Da	te Re	equirec	1 (Rust	h Surc	harges	May Apply	y);
Project Information Project: Site Location:	mation: Haileybury SW					Is this submission Record of Site Co			Cer		Guldell te of Ai		is		F		AT is e	exclu	usive o	fweek	ends	and sta	or rush TA tutory hol your AGAT	lidays
Sampled By: AGAT Quote #:	17252 Please note: If quotation numb	PO:PO:	nill be bliled full pric	e for analysis.		Sample Matrix Leg	gend	CIVI		O. Reg	153							Ī)P OF08s		paramete		
Invoice Information Company: Contact: Address: Email:	mation:		Bill To Same;	Yes □ No		GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water		Field Filtered - Metals, Hg	and Inorganics	☐ All Meta's ☐ 153 Meta's (excl. Hydrides) ☐ Hydride Meta's ☐ 153 Meta's (incl. Hydrid	ORPs: OBHWS OCTOON	Full Metals Scan	Regulation/Custom Metals	CINO, CINO, +NO,	SS: D VOC D BTEX DTHM	PHCs F1 - F4			PCBs: 🗆 Total 🗀 Aroclors Organochlorine Postcodes	TCLP: DM& CVOCs JABNS DB(4)P	Use	Surfacewater para		
Samp	le Identification	Date Sampled	Time Sampled	# of Containers	Sampl Matri			Y/N	Metals and	O All Me	ORPs:	Full Me	Regula	ON C	Volatiles:	PHCs	ABNS	PAHS	PCBs: I	TCLP:	Sewer	Sur		
SW-3		1/0,110	12:00	7	Water	г		N												11		I		
SW-4		1 , 2		1	Water	г											K	H						
SW-5		1			Water	r														2				
HB SW DUP			12	1	Water	r		1							EX.						П	Ø	121	
			1												45									ESW
											COR.		10		773		-II	Į.	B	11 2	П		300	
								Han	Tig.		1,417				1									
															à			10		B.,				
									011		SE								3				201	
				1							8 4 6	011	2		h, L									
Samples Relinquished By (Pr			hate I- DC	1-20 Tin	007	Samples Received By (P	1 0	470	010	0 20	1		Date	cl	1	2 7.	20	- 5	بازر	50	m			
Samples Relinquished By (Pr	int Name and Sign)		Date	Teth	nė	Samilin€ Secentred By (P	भारत Name And Sheft	1 1		V		7	Date			Tin	ne.				Page	1	_ of _1	_
Samples Relinquished By (Pr	rint Name and Signic		Date	Tin	ne	Samples Received By (P	nnt Name and Sign)						Date			Tin	na		1	Nº:				

Document ID: DIV-76-1511-015

Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy - AGAT

Date Icoued March 16, 2018

The City of Temiskaming Shores

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX E

SUMMARY OF GROUNDWATER GEOCHEMICAL ANALYSES

Groundwater Geochemical Results TW-4

Parameters	Unito	ODWO (1)		2011			2012			2013			2014			2015			2016			2017			2018			2019			2020	
General Chemistry	Units	ODWS (1)	May	Aug	Nov	May	Aug	Nov	May	July	Sep	June	July	Sep	May	July	Oct	May	July	Sep	June	Aug	Oct									
Alkalinity	mg/L	30-500 OG ⁽²⁾	229	238	209	260	320	340	475	488	450	528	568	535	428	483	516	582	537	482	340	363	434	193	264	275	237	208	210	226	283	379
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	3.6	3	2.9	5.1	9.9	6.9	9.0	10.1	14.2	17.5	14.3	9.8	9.3	13.8	6.9	8.3	10.6	7.7	7.6	7.4	9.5	4.4	6.0	6.9	5.2	5.0	3.8	4.8	6.2	7.9
Chloride	mg/L	250 AO	39	30	32	66	91	45	78.5	69.2	41.4	86.0	81.7	39.5	61.6	102.0	<0.50	40.0	30.9	23.5	40.2	21.9	32	14.3	15.4	14.9	22.7	18.1	15.1	38.7	40.9	36.6
Sulphate	mg/L	500 OG	270	220	220	260	330	260	251	307	270	220	195	151	212	254	195	123	144	173	233	188	169	110	122	121	146	129	106	204	176	171
Fluoride	mg/L	1.5 MAC (4)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.25	<0.5	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.10	<0.10	<0.25	<0.25	<0.25	<0.25	<0.05	<0.05	<0.05
Hardness	mg/L	80-100 OG	489	420	410	610	680	570	702	766	619	738	712	519	629	825	706	577	563	565	509	451	486	285	347	398	395	345	312	432	506	467
Nitrate	mg/L	10 MAC	0.3	1	0.3	8.1	8.3	4.7	10.1	12.0	7.07	15.1	12.9	7.54	11.0	10.0	5.23	3.0	3.0	2.29	10.8	2.09	4.77	1.67	2.76	2.83	13.1	8.01	6.39	22.9	15.6	11.0
Nitrite	mg/L	1 MAC	0.02	0.09	0.02	0.83	1.4	0.41	<0.5	0.95	0.49	<0.5	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.10	<0.10	<0.25	<0.25	0.68	<0.25	0.76	<0.25	<0.25
Organic Nitrogen	mg/L	0.15 OG	0.45	0.64	0.58	0.305	0.805	1.34	1.03	1.17	0.67	2.09	1.36	1.31	1.41	1.59	1.78	1.78	0.82	1.74	0.93	0.83	<0.10	0.52	0.45	0.45	0.84	0.68	0.66	0.42	0.70	1.45
Orthophosphate	mg/L		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.20	<0.20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Phenols	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.012	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
Ammonia	mg/L		0.05	0.06	<0.05	<0.05	<0.05	0.16	<0.02	<0.02	<0.02	0.14	0.15	0.13	0.58	0.99	0.61	4.96	4.90	3.46	7.7	6.8	7.2	2.53	2.87	2.88	1.18	1.4	1.27	0.96	0.64	0.32
BOD	mg/L		<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<5	<5	<5	<5	6	<5	<5	<5	<5	7	16	<5	<5	9	<5	7	<5	<5	<2	<6
Chemical Oxygen Demand (COD)	mg/L		19	20	20	16	33	25	47	27	31	53	47	28	26	35	36	26	19	21	17	27	22	<5	12	14	12	14	<5	30	13	<5
Total Dissolved Solids	mg/L	500 AO	642	600	582	824	1130	850	944	1140	920	1190	1000	868	858	1050	994	734	776	768	732	656	714	426	484	518	486	476	432	696	734	502
Total Kjeldahl Nitrogen (TKN)	mg/L		0.5	0.7	0.6	0.33	0.83	1.5	1.03	1.17	0.67	2.23	1.51	1.44	1.99	2.58	2.39	6.74	5.72	5.2	8.63	7.63	7.21	3.05	3.32	3.33	2.02	2.08	1.93	1.38	1.34	1.77
pH	pH Units	6.5-8.5 OG							7.52	7.27	7.89	7.26	7.74	7.39	7.74	7.85	7.90	7.77	7.70	7.35	7.55	8.06	7.92	6.95	7.52	7.69	7.60	7.40	7.54	7.71	7.15	7.34
Electrical Conductivity	uS/cm								1580	1630	1380	1670	1690	1460	1380	1630	1560	1300	1350	1300	1190	1070	1200	657	777	861	861	847	794	1110	968	951
% Difference/ Ion Balance	%								2.2	1.2	3.5	0.5	1.7	2.3	1.9	1.9		2.92		0.913	5.3	3.64	4.49					0.295			0.0732	6.69
Elements																																
Aluminum	mg/L	0.1 OG	<0.005	0.0053	<0.005	<0.005	<0.005	<0.005	0.01	0.011	<0.004	<0.004	0.004	<0.004	0.010	0.006	<0.004	0.012	0.012	<0.004	<0.004	<0.004	0.005	<0.004	<0.004	0.016	0.008	<0.004	<0.004	0.012	0.024	0.023
Arsenic	mg/L	0.01 MAC	0.01	0.0056	0.008	0.0021	0.0016	0.0037	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.073	0.067	0.059	0.087	0.12	0.1	0.128	0.138	0.109	0.129	0.131	0.122	0.119	0.133	0.138	0.121	0.124	0.104	0.129	0.1	0.127	0.065	0.056	0.082	0.085	0.068	0.066	0.089	0.081	0.080
Beryllium	mg/L								<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	5 IMAC	0.71	0.78	0.64	0.82	1.0	1.0	1.16	1.07	1.10	1.26	1.35	1.23	1.05	1.00	1.22	0.948	0.88	0.658	0.741	0.862	0.922	0.675	0.597	0.572	0.475	0.569	0.476	0.440	0.678	0.754
Cadmium	mg/L	0.005 MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		120	110	100	160	180	150	188	204	165	194	187	137	172	225	194	155	153	157	144	127	131	79.3	96.9	110	117	102	92.4	123	143	136
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	0.015	0.006	<0.003	<0.003	0.019	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L								0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Copper	mg/L	1 AO	0.002	0.0017	0.001	0.0019	0.0037	0.0033	0.006	0.007	0.007	0.008	0.008	0.008	0.006	0.006	0.008	0.005	0.005	0.005	<0.003	0.004	0.017	0.003	<0.003	0.004	<0.003	<0.003	<0.003	0.006	0.004	0.006
Iron	mg/L	0.3 AO	11	5.2	8.1	1.9	1.2	3.4	0.457	0.273	0.319	<0.010	0.123	0.826	0.124	0.016	0.031	0.206	0.099	0.138	<0.010	<0.010	0.191	<0.010	<0.010	0.088	0.071	0.254	0.596	0.060	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L		46	38	37	52	58	49	56.5	62.3	50.3	61.5	59.6	42.9	48.4	64.0	53.7	46.1	43.9	42	36.4	32.6	35.1	21.1	25.6	29.9	24.9	21.9	19.7	30.4	36.1	30.9
Manganese	mg/L	0.05 AO	2	1.4	1.6	2	2.7	2.8	2.93	2.37	2.57	1.63	1.75	1.65	1.44	1.10	1.42	0.905	0.91	0.724	0.88	0.598	0.831	0.365	0.306	0.441	0.472	0.360	0.363	0.39	0.715	0.673
Mercury	mg/L	0.001 MAC	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L								0.004	<0.003	0.008	0.003	0.007	0.007	<0.003	0.007	0.005	0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003
Phorphorus	mg/L								<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	0.076	<0.050
Potassium	mg/L		9.8	9.7	8.5	15	16	14	16.3	16.7	15	17.5	17.0	14.5	15.6	18.6	17.3	19.8	21.0	17.8	20.7	19.6	19	12.8	13.4	14.0	14.1	13.0	12.8	15.4	15.2	14.4
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L								6.8	5.35	5.74	6.37	6.34	8.59	6.42	6.15	8.21	7.41	8.04	6.52	6.36	6.4	5.3	5.29	6.46	6.43	5.05	6.12	5.55	5.4	6.88	5.99
Silver	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	36	28	26	48	61	64	56.4	65.7	56.8	75.1	77.0	93.1	44.1	50.5	56.4	52.2	50.0	41.8	21.3	25.1	34.5	14.6	12.9	13.7	15.9	16.0	15.3	13.9	23.7	37.0
Strontium	mg/L		0.29	0.28	0.27	0.46	0.57	0.51	0.653	0.715	0.573	0.701	0.736	0.512	0.661	0.738	0.691	0.541	0.555	0.47	0.586	0.509	0.578	0.29	0.351	0.409	0.417	0.348	0.328	0.412	0.503	0.466
Sulphur	mg/L								81.2	128	130	63.7	66.7	50.1	82.4	73.9	71.4	31.3	41.6	56.1	75.4	60.2	54.5	38.0	42.6	41.9	47.1	42.5	37.8	54.8	60.1	51.4
Thallium	mg/L								<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L								0.006	0.004	0.005	<0.002	0.003	0.004	0.003	0.004	0.003	0.002	<0.002	0.002	0.004	0.003	0.003	<0.002	<0.002	0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC							<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.010	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.011	0.009	0.008	0.007	0.009	<0.005	0.007	0.008	<0.005	0.006	<0.005	<0.005	<0.005	0.008	0.019	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Notes:		11	-0		•	•	•				•		•			•		•										-				

Notes:

(1) MECP Ontario Drinking Water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by bold entries.

Groundwater Geochemical Results TW-6

Parameters		(4)		2011			2012			2013			2014			2015			2016			2017			2018			2019			2020	
General Chemistry	Units	ODWS (1)	May	Aug	Nov	May	Aug	Nov	May	July	Sep	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct	May	July	Sep	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	42	45	53	53	99	240	59	65	149	70	228	73	71	61	74	72	86	92	79	77	88	86	93	65	96	183	474	80	129	101
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	2.2	1.7	1.9	18	5.1	8.6	2.1	3.0	6.9	4.0	11.2	2.7	3.0	4.0	3.7	2.9	6.0	3.9	3.5	3.7	3.7	3.7	<0.5	3.8	4.4	10.1	11.6	2.9	6.0	3.3
Chloride	mg/L	250 AO	5	3	5	6	45	67	7.04	19.4	77.7	9.49	122	12.3	19.9	25.6	30.2	10.2	31.3	36.8	15	10.9	13.5	24.3	14.1	34.0	15.7	80.3	157	11.5	49.3	11.0
Sulphate	mg/L	500 OG	18	10	21	26	140	230	22.7	58	229	35.4	408	41.4	76.2	57.5	66.6	15.8	90.2	105	46.9	20.8	22.6	82.4	31.6	81.5	56.6	346	625	44.8	233	44.9
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.25	<0.05	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.25	<1.0	<0.05	<0.05	<0.05
Hardness	mg/L	80-100 OG	70.9	52.0	81.0	99	330	500	82	161	449	90	680	95	164	142	161	68.3	209	232	108	79.7	107	193	91.4	205	134	552	1030	104	382	115
Nitrate	mg/L	10 MAC	3.8	2.3	1.8	1.9	15	23	1.78	10.6	32.9	3.95	28.3	5.61	8.56	10.8	13.4	1.64	16	21	5.03	3.59	5.53	12.0	6.18	17.1	7.32	28.0	38.9	5.26	27.6	5.72
Nitrite	mg/L	1 MAC	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.25	<0.05	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.25	<1.0	<0.05	<0.25	<0.05
Organic Nitrogen	mg/L	0.15 OG	0.375	0.375	0.175	0.075	0.745	1.275	0.11	<0.10	0.72	0.60	1.08	<0.10	<0.10	<0.10	0.90	0.46	0.68	<0.10	0.36	0.34	0.49	0.39	0.49	0.81	0.29	<0.10	2.08	0.44	0.52	0.35
Orthophosphate	mg/L		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	<0.50	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0.50	<2.0	<0.10	<0.50	<0.10
Phenols	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	<0.001	<0.001	<0.001
Ammonia	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.02	<0.02	0.04	0.04	<0.02	<0.02	<0.02	0.1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	0.53	<0.02	0.03	0.03
BOD	mg/L		<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	3	<2
Chemical Oxygen Demand (COD)	mg/L		10	10	7	11	16	27	21	10	16	<5	37	<5	<5	8	<5	8	<5	<5	<5	13	<5	<5	6	<5	<5	22	63	18	11	<5
Total Dissolved Solids	mg/L	500 AO	104	126	130	156	538	850	110	304	906	150	1070	204	204	228	336	108	440	408	166	136	168	342	176	486	220	880	1750	178	660	180
Total Kjeldahl Nitrogen (TKN)	mg/L		0.4	0.4	0.2	0.1	0.77	1.3	0.11	<0.10	0.72	0.64	1.12	<0.10	<0.10	<0.10	1	0.46	0.68	<0.10	0.36	0.34	0.49	0.39	0.49	0.81	0.32	<0.10	2.61	0.44	0.55	0.38
pH	pH Units	6.5-8.5 OG							6.92	6.85	7.07	6.94	7.35	7.23	7.03	7.02	7.41	7.12	7.11	6.97	7.19	7.34	7.41	6.49	7.23	7.06	7.14	6.79	7.43	7.32	6.78	6.70
Electrical Conductivity	uS/cm								211	404	1190	264	1700	340	436	385	509	201	591	692	329	251	302	524	315	564	402	1460	2800	361	958	289
% Difference/ Ion Balance	%								0.4	0.5	5.7	1.2	3.1	2.6	<0.1	3.0		5.65		2.67	6.15	6.43	3.12					4.31			2.29	5.84
Elements				<u> </u>	I	I	I .				I		I			I		I	ı	I .		<u> </u>			I	I	<u> </u>			<u> </u>		
Aluminum	mg/L	0.1 OG	0.008	<0.005	<0.005	0.0051	0.0087	<0.005	0.011	0.009	0.006	0.004	0.014	0.005	0.005	0.012	0.010	0.011	0.010	0.015	0.007	0.008	0.006	0.009	<0.004	0.005	<0.004	0.008	0.008	0.010	0.037	0.016
Arsenic	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003
Barium	mg/L	1 MAC	<0.005	0.0035	0.005	0.0057	0.024	0.049	0.006	0.01	0.037	0.009	0.073	0.016	0.02	0.019	0.027	0.009	0.027	0.034	0.014	0.009	0.015	0.024	0.012	0.043	0.025	0.094	0.252	0.031	0.104	0.028
Beryllium	mg/L								<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.010	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	5 IMAC	0.097	0.061	0.085	0.073	0.76	2.2	0.184	0.262	1.08	0.377	1.98	0.405	0.297	0.37	0.581	0.19	0.38	0.512	0.356	0.258	0.234	0.484	0.456	0.517	0.432	1.39	6.01	0.342	1.21	0.343
Cadmium	mg/L	0.005 MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		17	13	20	24	80	120	20	39.1	110	22.2	161	22.8	41.2	35.9	41.5	17.6	54.5	61.2	28.3	20.8	28.4	50.8	24.4	54.2	35.1	147	272	26.7	98.9	30.3
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	<0.003	0.006	0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L								<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.008	<0.001	0.006	<0.001
Copper	mg/L	1 AO	0.002	0.0017	0.001	0.0015	0.0041	0.0082	<0.003	<0.003	0.004	0.004	0.012	0.004	0.003	0.004	0.005	<0.003	0.004	0.005	<0.003	0.004	0.003	0.003	0.004	0.004	0.004	0.009	0.030	0.004	0.006	<0.003
Iron	mg/L	0.3 AO	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.010	<0.010	<0.010	<0.010	0.013	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L		6.9	4.7	7.8	9.3	32	48	7.75	15.3	42.3	8.29	67.6	9.25	14.9	12.6	14	5.91	17.6	19.2	9.08	6.74	8.96	16.1	7.4	16.9	11.3	44.8	85.0	8.97	32.8	9.5
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002	<0.002	0.0041	<0.002	<0.002	0.004	<0.002	0.006	<0.002	<0.002	<0.002	0.081	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.004	<0.002	<0.002	<0.002
Mercury	mg/L	0.001 MAC	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L								<0.003		0.004	<0.003	0.007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	0.014	0.025	0.003	<0.003
Phorphorus	mg/L								<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	0.054	<0.050
Potassium	mg/L		0.97	0.91	1.1	1.3	2	3	1.1	1.46	2.67	1.54	5.41	3.24	4.03	3.48	4.02	2.32	4.09	4.64	2.77	2.84	4.25	4.48	3.61	4.70	4.87	10.9	25.2	12.3	19.8	10.5
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L								4.02	3.49	3.96	3.12	3.67	4.18	3.44	3.38	3.63	2.9	3.84	3.75	3.3	3	2.76	3.52	3.26	3.51	3.24	4.0	2.89	3.33	4.4	3.59
Silver	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002		<0.002	<0.002	<0.002	<0.002	<0.010	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	5.2	4.6	4.5	5.2	18	72	7.58	12.1	44.1	21.1	84.2	21.4	18.4	17.7	26.4	11.9	23.0	33.8	16.6	13	13.1	22.1	22.4	18.2	19.0	59.2	183	15.3	49.8	16.2
Strontium	mg/L		0.062	0.047	0.065	0.079	0.24	0.44	0.071	0.124	0.402	0.092	0.735	0.129	0.162	0.152	0.176	0.067	0.231	0.259			0.13	0.207	0.11	0.309	0.16	0.603	1.17	0.135	0.482	0.141
Sulphur	mg/L								7.84	17.8	103	11.9	108	14.4	27.4	18	25.5	4.05	28.2	37.6	14.6	6.64	7.46	28.9	11.3	28.6	17.9	111	215	14.6	76.9	16.0
Thallium	mg/L								<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		<0.006				<0.006	<0.006		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002			<0.002		<0.002	<0.002			<0.002	<0.002	<0.002		<0.002	<0.002	<0.002
Titanium	mg/L								<0.002	<0.002	0.004	<0.002	0.005	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002			<0.002		<0.002	0.002	<0.002	0.005	0.008	0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC							<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002
Vanadium	mg/L	3.32							<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.010	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	0.016	<0.005	<0.005	0.002	<0.002	0.002	0.002	0.010	0.002	<0.002	0.002	0.012	<0.005	<0.002	0.038	<0.002	0.006	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002
	g/L	0.40	-0.000	-0.000	-0.000	0.010	.0.000	-0.000	0.000	-0.000	0.000	0.010	0.010	0.000	-0.000	0.000	0.012	-0.000	-0.000	0.000	-0.000	0.000	-0.000	-0.000	-0.000	0.001	.0.000	-0.000	0.000	-0.000	-0.000	.0.000

Notes:

(1) MECP Ontario Drinking Water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by bold entries.

Groundwater Geochemical Results TW-8

Parameters	Unito	OD140 (1)		2011			2012			2013			2014			2015			2016			2017			2018			2019			2020	
General Chemistry	Units	ODWS (1)	May	Aug	Nov	May	Aug	Nov	May	July	Sep	June	July	Sep	May	July	Oct	May	July	Sep	June	Aug	Oct									
Alkalinity	mg/L	30-500 OG (2)	85	89	86	90	91	95	89	99	107	79	102	86	90	91	87	90	108	84	85	111	107	84	103	84	88	94	92	90	86	102
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	1.6	1.6	1.6	1.7	1.6	1.6	1.7	1.8	2.5	2.1	2.1	1.8	1.6	2.1	1.8	1.6	2.4	1.8	1.8	2.6	2.5	3.0	3.3	2.7	2.3	2.5	2.3	1.9	2.4	2.3
Chloride	mg/L	250 AO	1	<1	<1	1	<1	<1	0.82	0.82	0.88	0.96	0.95	0.93	0.77	1.32	0.77	1.06	1.37	0.77	0.66	0.65	0.88	0.74	2.27	0.93	0.67	0.88	0.68	0.76	0.71	0.72
Sulphate	mg/L	500 OG	5	5	5	5	5	5	5.21	5.11	7.20	4.83	4.68	4.58	4.49	4.76	4.68	6.11	5.19	4.5	5.3	4.04	4.08	4.33	4.77	3.97	4.06	3.76	3.61	4.49	4.12	3.92
Fluoride	mg/L	1.5 MAC (4)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hardness	mg/L	80-100 OG	85.8	86.0	84.0	95	88	89	89	97	96	94	100	83.2	90.5	100	87.1	89.9	101	77.9	76.8	98.4	96.5	87.9	98.4	87.7	85.6	95.4	90.5	90.8	94.5	82.4
Nitrate	mg/L	10 MAC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05
Nitrite	mg/L	1 MAC	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	0.18	0.275	0.175	0.25	0.457	0.335	<0.10	3.56	<0.10	0.29	<0.10	<0.10	<0.10	0.14	0.19	0.36	0.51	0.21	<0.10	0.46	0.19	0.13	0.11	0.28	<0.10	<0.10	<0.10	0.19	0.12	0.11
Orthophosphate	mg/L		<0.01	0.01	<0.01	0.013	0.012	0.016	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ammonia	mg/L		<0.05	<0.05	<0.05	<0.05	0.053	<0.05	<0.02	0.04	0.03	0.07	0.11	0.06	<0.02	0.04	<0.02	<0.02	0.17	0.08	<0.02	0.05	0.08	<0.02	0.02	0.04	0.02	0.06	0.03	<0.02	0.08	0.04
BOD	mg/L		<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2	<2
Chemical Oxygen Demand (COD)	mg/L		7	7	4	10	6.8	8.6	21	<5	<5	6	8	<5	<5	<5	<5	<5	<5	<5	<5	11	<5	<5	<5	<5	7	<5	<5	12	<5	<5
Total Dissolved Solids	mg/L	500 AO	104	162	106	96	126	118	100	140	144	110	156	124	106	114	144	110	126	112	92	120	118	138	120	108	84	132	114	102	114	92
Total Kjeldahl Nitrogen (TKN)	mg/L		0.2	0.3	0.2	0.27	0.51	0.36	<0.10	3.6	<0.10	0.36	<0.10	<0.10	<0.10	0.18	0.19	0.36	0.68	0.29	<0.10	0.51	0.27	0.13	0.13	0.32	<0.10	0.12	<0.10	0.19	0.2	0.15
рН	pH Units	6.5-8.5 OG							7.44	7.17	6.65	7.42	7.82	7.81	7.71	7.69	7.93	7.57	7.65	7.52	7.67	7.94	7.88	7.23	7.75	7.51	7.41	7.52	7.14	7.65	7.50	6.79
Electrical Conductivity	uS/cm								186	198	193	176	216	190	176	191	185	180	229	179	167	207	203	179	200	192	172	214	210	202	176	155
% Difference/ Ion Balance	%								0.2	1.4	6.7	7.4	1.0	2	<0.1	4.2		1.14		3.74	5.59	5.62	4.54					0.793			4.53	10.2
Elements																			•		•											
Aluminum	mg/L	0.1 OG	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.007	0.006	<0.004	<0.004	0.007	<0.004	<0.004	<0.004	<0.004	0.007	0.015	<0.004	<0.004	<0.004	0.006	<0.004	0.004	<0.004	<0.004	0.004	0.005	0.006	0.023	0.028
Arsenic	mg/L	0.01 MAC	0.001	0.0015	0.001	0.0012	0.0018	0.0014	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003
Barium	mg/L	1 MAC	<0.005	0.004	0.004	0.0037	0.0044	0.0051	0.005	0.005	0.005	0.004	0.006	0.006	0.004	0.005	0.005	0.005	0.006	0.006	0.004	0.004	0.006	0.004	0.005	0.008	0.005	0.004	0.005	0.008	0.005	0.004
Beryllium	mg/L								<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	5 IMAC	0.023	<0.01	<0.01	<0.01	<0.01	<0.01	<0.010	0.022	<0.010	<0.010	0.013	<0.010	<0.010	0.014	0.011	<0.010	0.010	<0.010	0.01	<0.010	0.012	0.038	0.013	<0.010	<0.010	0.016	0.185	0.011	<0.010	0.011
Cadmium	mg/L	0.005 MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		20	20	20	22	21	21	20.9	22.5	22.8	22.0	23.2	19.4	20.4	23.4	20.5	20.4	23.6	18.1	17	22.6	22.5	19.7	23.0	20.2	20.1	22.0	20.8	20.9	21.5	19.2
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L								<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	0.002	<0.001	<0.001	<0.001	<0.001	0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	0.3	0.3	0.2	0.27	0.30	0.18	0.393	0.406	0.333	0.626	0.648	0.48	0.602	0.506	0.649	0.354	0.663	0.769	0.33	0.392	0.52	0.521	0.446	0.528	0.407	0.426	0.551	0.649	0.536	0.349
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L		8.7	8.5	8.5	9.9	8.7	9	9.06	9.92	9.5	9.41	10.3	8.45	9.61	10.1	8.72	9.46	10.1	7.95	8.33	10.2	9.71	9.41	9.96	9.04	8.59	9.82	9.36	9.38	9.91	8.36
Manganese	mg/L	0.05 AO	0.16	0.13	0.12	0.16	0.13	0.11	0.134	0.177	0.156	0.163	0.399	0.142	0.161	0.180	0.157	0.143	0.312	0.135	0.112	0.201	0.19	0.159	0.145	0.151	0.164	0.161	0.185	0.174	0.19	0.091
Mercury	mg/L	0.001 MAC	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L								<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Phorphorus	mg/L		1						<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	0.08	<0.050
Potassium	mg/L		0.33	0.45	0.38	0.39	0.42	0.34	0.62	0.75	0.47	0.45	0.51	0.45	0.66	0.81	0.55	0.98	0.67	0.51	0.78	0.5	0.5	0.98	0.56	0.51	0.52	0.49	0.71	0.56	0.48	0.41
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004		<0.004		<0.004			<0.004			<0.004	<0.004	<0.004	<0.004	0.009	<0.004	<0.004
Silicon	mg/L								6.07	6.23	6.65	5.75	6.43	7.73	5.49	6.70	6.26	5.73	7.70	7.57	5.2	6.43	6.26	5.91	8.16	6.95	5.13	7.28	6.62	5.88	7.53	6.55
Silver	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002			<0.002		<0.002			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	1.9	2.0	1.9	2.2	2.1	2	2.30	2.05	2.13	2.12	2.21	2.12	2.13	2.41	2.08	2.13	2.76	2.16	1.9	2.14	2.23	2.05	2.58	2.38	1.92	2.14	2.18	2.1	2.16	2.02
Strontium	mg/L		0.029	0.032	0.031	0.031	0.032	0.032	0.029	0.036	0.036	0.032	0.047	0.036	0.029	0.037	0.032	0.03	0.041	0.032		0.037	0.042	0.034	0.042	0.038	0.033	0.038	0.033	0.036	0.037	0.035
Sulphur	mg/L		1						1.94	1.81	0.71	1.42	1.61	1.73	1.79	1.46	1.58	0.97	1.46	1.77	1.65	1.5	1.39	1.49	2.07	1.99	1.56	1.26	1.48	1.82	1.85	1.33
Thallium	mg/L		1						<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006			<0.006			<0.006		<0.006			<0.006		<0.006	<0.006	<0.006	<0.006	
Tin	mg/L		1						<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002		<0.002		<0.002	<0.002	
Titanium	mg/L		1						<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	1						<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L	0.02 IVIAU	1						<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	0.0054	0.0055	0.002	<0.002	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.010	0.002	<0.002		0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	
LIIO	my/L	3 AO	~0.003	~0.000	~0.003	~0.003	0.0054	0.0000	0.014	~0.000	0.011	~0.000	0.000	~0.000	~0.003	~0.003	~0.000	~0.003	0.011	~0.003	~0.003	0.000	~0.000	~0.003	0.000	~0.003	0.000	~0.000	~0.003	~0.000	~0.000	~0.000

Notes:

(1) MECP Ontario Drinking Water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by **bold** entries.

Groundwater Geochemical Results TW-9

Parameters		(1)		2011			2012			2013			2014			2015			2016			2017			2018			2019			2020	
General Chemistry	Units	ODWS (1)	May	Aug	Nov	Мау	Aug	Nov	May	July	Sep	June	July	Sep	May	July	Sep	May	July	Sep	Мау	July	Sep	May	July	Oct	May	July	Sep	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	396	402	443	450	380	490	623	616	490	770	736	822	802	634	559	706	587	488	962	593	546	829	542	437	824	545	523	782	671	751
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	8.9	10.3	11.7	9.7	9.9	10	12.0	12.6	14.5	30.5	19.0	38.4	25.4	26.7	16.7	24.1	16.6	13.7	45.1	17.6	19.1	47.8	16.9	16.1	21.1	22.1	8.0	36.0	30.8	40.1
Chloride	mg/L	250 AO	45	67	85	47	46	60	74.1	67.7	64.5	109	109	151	138	115	105	136	123	90.9	165	84.8	107	175	77.7	87.9	145	107	127	152	176	181
Sulphate	mg/L	500 OG	170	280	340	190	160	190	112	146	168	93.1	162	169	202	200	217	282	300	199	172	204	274	71.3	164	226	109	148	364	193	203	257
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.25	<0.5	<0.25	<0.5	<0.5	<0.5	<0.25	<0.5	<0.25	<0.25	<0.05	<0.25	<0.25	<1.0	<0.25	<0.25	<0.5	<0.5	<0.5	<0.13	<0.07	<0.07
Hardness	mg/L	80-100 OG	535	620	670	600	510	600	644	667	509	806	808	753	869	773	658	746	638	539	705	551	559	724	520	524	524	549	728	645	649	692
Nitrate	mg/L	10 MAC	0.5	2.8	3.9	0.6	0.3	<0.1	<0.5	<0.5	<0.25	<0.5	<0.25	<0.5	<0.5	<0.5	<0.25	<0.5	<0.25	<0.25	<0.05	<0.25	<0.25	<1.0	<0.25	0.30	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5
Nitrite	mg/L	1 MAC	0.06	0.1	0.03	0.018	0.021	0.032	<0.5	<0.5	<0.25	<0.5	<0.25	<0.5	<0.5	<0.5	<0.25	<0.5	<0.25	<0.25	<0.05	<0.25	<0.25	<1.0	<0.25	<0.25	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5
Organic Nitrogen	mg/L	0.15 OG	0.6	1.3	1.3	0.9	0.6	1.1	1.07	0.23	0.8	3.2	0.30	2.7	3.0	3.5	2.6	3.2	0.2	1.6	4.4	0.8	<0.10	6.2	<0.10	<0.10	8.5	0.7	1.5	6.4	2.9	4.3
Orthophosphate	mg/L		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<0.50	<1.0	<0.50	<1.0	<1.0	<1.0	<0.50	<1.0	<0.50	<0.50	<0.10	<0.50	<0.50	<2.0	<0.50	<0.50	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0
Phenols	mg/L		<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.001	<0.001	<0.001	0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.007	0.002	0.002	0.009	0.006	0.005	0.011	0.004	0.007
Ammonia	mg/L		4.4	3.3	4.1	3.7	3.5	3.9	6.84	5.5	4.72	10.8	10.5	8.3	10.3	10.6	7.8	18.6	17.3	10.1	47.1	30.1	22	29.0	18.1	18.6	51.0	19.5	13.3	37.2	31.5	21.4
BOD	mg/L		3	<2	<2	<2	<2	<2	<5	<5	<5	7	9	10	20	23	9	7	<5	<5	5	<5	<5	8	<5	27	6	11	<5	8	17	9
Chemical Oxygen Demand (COD)	mg/L		30	36	41	32	26	36	58	38	35	83	68	100	91	68	47	78	42	46	117	72	51	99	46	49	102	70	61	123	98	65
Total Dissolved Solids	mg/L	500 AO	758	998	1070	862	738	892	814	874	812	1210	1130	1350	1200	1090	996	1140	1070	898	1250	888	1000	1270	754	878	970	846	1240	1180	1130	1030
Total Kjeldahl Nitrogen (TKN)	mg/L		5	4.6	5.4	4.6	4.1	5	7.91	5.73	5.52	14	10.8	11	13.3	14.1	10.4	21.8	17.5	11.7	51.5	30.9	22	35.2	18	18.2	59.5	20.2	14.8	43.6	34.4	25.7
рН	pH Units	6.5-8.5 OG							7.49	7.18	7.87	7.46	7.86	7.62	7.68	7.88	7.95	7.82	7.75	7.15	7.56	8.03	7.86	6.84	7.39	7.74	7.55	7.28	7.49	7.87	7.43	7.56
Electrical Conductivity	uS/cm								1530	1520	1360	1890	1890	2180	2080	1770	1730	1970	1880	1550	2300	1650	1680	2240	1500	1560	2080	1770	2140	2380	1920	1850
% Difference/ Ion Balance	%								1.3	2.3	6.6	2.6	0.2	7.9	<0.1	3.5		2.54		1.88	6.11	3.51	6.04					0.124			2.63	7.81
Elements					-		•				•			•	•	•		•	•					•			•	•				
Aluminum	mg/L	0.1 OG	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.014	0.009	0.006	0.018	0.019	0.028	0.026	0.018	0.013	0.023	0.024	<0.004	0.019	0.014	0.015	0.012	0.010	0.014	0.012	0.010	0.011	0.024	0.046	0.014
Arsenic	mg/L	0.01 MAC	0.001	0.0013	0.002	0.0017	0.002	0.004	0.003	0.004	0.004	0.025	0.032	0.031	0.028	0.028	0.028	0.039	0.031	0.03	0.03	0.038	0.033	0.029	0.038	0.032	0.024	0.018	0.021	0.026	0.018	0.018
Barium	mg/L	1 MAC	0.1	0.11	0.14	0.094	0.092	0.13	0.121	0.139	0.102	0.168	0.180	0.222	0.224	0.179	0.14	0.222	0.185	0.136	0.31	0.15	0.165	0.254	0.108	0.153	0.314	0.112	0.170	0.268	0.178	0.167
Beryllium	mg/L								<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	5 IMAC	1.2	2.5	3.3	1.6	1.3	1.8	0.764	1.32	1.21	1.14	1.64	2.42	2.15	1.51	1.49	2.1	1.80	1.44	1.76	1.6	1.9	1.50	1.49	1.53	1.43	1.33	2.47	2.594	2.07	2.37
Cadmium	mg/L	0.005 MAC	0.0004	0.0007	0.0007	0.0004	0.00035	0.00035	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		130	160	170	150	130	160	168	176	132	217	208	195	233	205	169	195	166	138	175	140	138	185	134	136	138	145	184	164	164	179
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	0.006	0.009	0.008	0.008	0.007	0.011	0.021	0.010	0.008	0.006	0.038	0.008	0.008	0.010	0.008	0.013	0.006	0.005	0.006	0.005	0.004
Cobalt	mg/L								0.008	0.008	0.007	0.013	0.014	0.015	0.016	0.015	0.013	0.017	0.015	0.013	0.018	0.014	0.014	0.018	0.012	0.012	0.01	0.008	0.014	0.012	0.014	0.016
Copper	mg/L	1 AO	0.004	0.0061	0.006	0.005	0.0048	0.0038	0.005	0.005	0.003	0.004	0.003	0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	1.2	1.1	2.3	1.4	3.6	5.9	2.55	5.86	5.29	19.3	19.4	18.4	20.5	18.2	14.5	31.6	25.9	19.2	35.9	29.2	20.7	33.7	28.8	18.5	20.1	21.5	31.7	26.54	22.4	20.1
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L		51	52	57	54	45	53	54.4	55.3	43.5	64.2	70.0	64.7	69.7	63.5	57.4	62.9	54.3	47.2	65.2	48.9	47	63.6	45.1	44.9	43.5	45.4	65.1	57.2	58.1	59.4
Manganese	mg/L	0.05 AO	2.4	3.4	3.7	2.6	2.9	3.9	5.47	5.74	4.93	11.1	8.84	9.28	9.23	7.85	6.30	5.9	5.38	4.32	6.26	4.09	3.82	4.83	3.48	3.20	3.50	3.24	4.50	4.40	4.11	3.70
Mercury	mg/L	0.001 MAC	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L								<0.002	<0.002	<0.002	0.003	0.003	0.003	0.003	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L								0.007	<0.003	0.008	0.006	0.011	0.013	0.012	0.012	0.008	0.011	0.007	0.007	0.013	0.01	0.008	0.013	0.008	0.010	0.010	0.008	0.010	0.016	0.014	0.016
Phorphorus	mg/L								<0.05	<0.05	<0.05	<0.05	0.06	0.11	0.11	0.08	0.08	0.15	0.06	0.08	<0.05	0.07	0.06	0.06	0.09	<0.05	0.13	0.05	0.05	0.079	0.187	0.086
Potassium	mg/L		30	29	30	28	25	27	24.5	24.1	19.4	32	29.2	23.8	34.9	31.0	24.9	38.1	32.0	23.4	43.5	36.1	31.5	45.8	29.6	32.3	50.5	29.0	35.4	54	51.8	40.9
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.007	0.021	<0.004	<0.004
Silicon	mg/L								12.1	10.8	10.1	16.2	14.7	18.6	18.2	14.5	14.4	16.8	17.1	14.3	16.6	13.4	11.8	14.2	15.6	13.1	13.0	11.4	11.2	17.0	14.1	10.2
Silver	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	48	70	84	60	47	63	57.1	49.7	51.5	87.2	78.9	102	119	104.0	93.6	125	104.0	86.7	132	72.7	85.6	139	80.2	86.3	119	90.5	113	136	113	124
Strontium	mg/L		0.44	0.52	0.6	0.44	0.41	0.51	0.501	0.604	0.406	0.67	0.751	0.808	0.821	0.688	0.523	0.669	0.593	0.489	0.819	0.538	0.574	0.782	0.536	0.540	0.628	0.459	0.670	0.744	0.721	0.772
Sulphur	mg/L								37.5	58.7	73.7	27.7	51.8	59.1	83.5	67.3	83.1	74.9	84.5	68.6	49.5	65	159	25.6	58.0	74.0	42.3	47.6	128	60.6	66.7	78.1
Thallium	mg/L								<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L								0.002	<0.002	0.003	<0.002	0.003	0.006	0.005	0.004	0.004	0.006	0.003	0.004	0.002	0.003	0.005	0.002	0.003	0.004	0.002	0.002	0.006	0.006	0.002	<0.002
Uranium	mg/L	0.02 MAC							0.002	0.003	<0.002	0.003	0.005	0.006	0.004	0.003	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L								<0.002	<0.002	<0.002	0.009	0.009	0.011	0.01	0.008	0.007	<0.002	<0.002	0.005	0.007	<0.002	0.004	0.006	0.004	0.003	0.007	0.003	0.003	0.006	0.005	0.004
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.008	0.009	<0.005	0.005	0.006	0.005	0.007	<0.005	0.006	0.007	<0.005	<0.005	<0.005	0.006	<0.005	<0.005	0.007	0.005	<0.005	<0.005	<0.005	<0.005	0.007	<0.005
<u> </u>			11										•	·													<u> </u>	<u> </u>	1	i		

Notes:
(1) MECP Ontario Drinking Water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by **bold** entries.

Groundwater Geochemical Results TW-10

Parameters	Units	ODWS (1)	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
General Chemistry	Onno	ODWS	May	May	May	June	May	May	May	May	May	June
Alkalinity	mg/L	30-500 OG ⁽²⁾	38	46	40	30	30	32	37	30	24	30
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	3.1	4.4	3.1	2.9	2.2	2.1	2.8	3.1	2.4	1.9
Chloride	mg/L	250 AO	46	20	11.7	6.62	8.82	8.14	7.1	11.2	6.21	46.3
Sulphate	mg/L	500 OG	6	5	6.21	3.98	3.25	4.2	4.2	3.85	2.99	5.5
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hardness	mg/L	80-100 OG	62.6	41	36	27	34.7	30.5	30.1	38.8	25.2	70.8
Nitrate	mg/L	10 MAC	<0.1	0.6	1.49	1.25	0.93	1.73	0.87	1.22	1.18	0.87
Nitrite	mg/L	1 MAC	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	0.175	0.215	0.12	0.55	<0.10	0.47	0.15	0.20	<0.10	0.22
Orthophosphate	mg/L		<0.01	<0.01	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ammonia	mg/L		<0.05	<0.05	<0.02	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
BOD	mg/L		<2	<2	<5	<5	<5	<5	<5	<5	<5	<5
Chemical Oxygen Demand (COD)	mg/L		9	9.7	28	8	<5	5	<5	<5	<5	11
Total Dissolved Solids	mg/L	500 AO	156	78	82	60	64	62	56	108	38	132
Total Kjeldahl Nitrogen (TKN)	mg/L		0.2	0.24	0.12	0.6	<0.10	0.47	0.15	0.20	<0.10	0.22
<u>'</u>	pH Units	6.5-8.5 OG			6.55	6.70	6.88	6.80	6.75	6.41	6.54	7.00
Electrical Conductivity	uS/cm				148	106	105	99	107	126	87	251
% Difference/ Ion Balance	%				0.4	0.4	1.7	8.03	7.63			
Elements				 								
Aluminum	mg/L	0.1 OG	0.051	0.034	0.028	0.028	0.022	0.032	0.022	0.019	0.017	0.062
Arsenic	mg/L	0.01 MAC	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.01	0.0056	0.005	0.004	0.004	0.005	0.005	0.005	0.005	0.009
Beryllium	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	5 IMAC	<0.01	<0.01	<0.010	0.015	<0.010	0.025	0.031	0.067	0.010	0.012
Cadmium	mg/L	0.005 MAC	0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		16	11	9.18	7.15	9	7.91	7.64	10.1	6.73	18.5
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	0.002	0.0026	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.1	<0.1	0.013	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.013
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		5.5	3.5	3.06	2.18	2.97	2.62	2.68	3.29	2.05	5.98
Manganese	mg/L	0.05 AO	0.11	0.049	0.03	0.003	<0.002	0.004	0.002	<0.002	<0.002	0.003
Mercury	mg/L	0.001 MAC	<0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L				<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.008
Phorphorus	mg/L			0 ==	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050
Potassium	mg/L	0.05.110	1	0.76	0.92	0.55	0.64	0.67	0.57	0.70	0.45	0.73
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L				3.6	3.77	4.03	3.77	4.53	4.64	3.68	3.69
Silver	mg/L	200 4 0	00	00	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	26	20	14.3	9.16	7.07	6.73	7.34	7.77	5.05	10.7
Strontium	mg/L		0.052	0.033	0.027	0.021	0.025	0.021	0.026	0.029	0.022	0.065
Sulphur	mg/L				2.26	1.15	1.34	0.93	1.52	1.37	1.11	2.11
Thallium	mg/L				<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L			_	<0.002	<0.002	<0.002	<0.010	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.007	<0.005	<0.005	0.007	0.007	0.005	<0.005	<0.005	<0.005	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by **bold** entries.

Groundwater Geochemical Results TW-12

Parameters	Units	ODWS (1)	2013	2014	2015	2016	2017	2018	2019	2020
General Chemistry	Units	ODWS ***	May	June	May	May	May	May	May	June
Alkalinity	mg/L	30-500 OG ⁽²⁾	107	80	71	91		Dry	121	96
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	1.1	1.4	1.0	1.2	Insufficient volume to obtain sample		2.0	1.1
Chloride	mg/L	250 AO	0.98	1.16	0.95	1.32	oup.o		1.16	1.13
Sulphate	mg/L	500 OG	9.79	11.3	6.78	13			16.6	7.94
Fluoride	mg/L	1.5 MAC (4)	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05
Hardness	mg/L	80-100 OG	115	98	73.4	90			120	96.7
Nitrate	mg/L	10 MAC	0.1	0.06	0.06	0.08			0.12	0.06
Nitrite	mg/L	1 MAC	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	<0.10	0.37	<0.10	0.24			<0.10	0.37
Orthophosphate	mg/L		<0.10	<0.10	<0.10	<0.10			<0.10	<0.10
Phenols	mg/L		<0.001	<0.001	<0.001	<0.001			<0.001	0.001
Ammonia	mg/L		<0.02	0.08	<0.02	0.07			0.05	0.03
BOD	mg/L		<5	<5	<5	<5			<5	<5
Chemical Oxygen Demand (COD)	mg/L		21	<5	<5	<5			<5	8
Total Dissolved Solids	mg/L	500 AO	126	116	102	112			120	122
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.45	<0.10	0.31			<0.10	0.4
-	pH Units	6.5-8.5 OG	7.59	7.84	7.79	7.72			7.81	7.91
Electrical Conductivity	uS/cm		237	196	150	197			261	226
% Difference/ Ion Balance	%		1.7	7	0.2	4.81				
Elements										
Aluminum	mg/L	0.1 OG	0.011	0.008	0.012	0.014			0.004	0.078
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003			<0.003	<0.003
Barium	mg/L	1 MAC	0.013	0.011	0.008	0.011			0.015	0.011
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001			<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002			<0.002	<0.002
Boron	mg/L	5 IMAC	<0.010	<0.010	<0.010	0.013			<0.010	<0.010
Cadmium	mg/L	0.005 MAC	<0.002 38.2	<0.002 31.6	<0.002 23.6	<0.002 29.1			<0.002 39.0	<0.002 32.1
Calcium	mg/L	0.05.144.0	<0.003	<0.003	<0.003	<0.003			0.004	<0.003
Chromium Cobalt	mg/L mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003			<0.004	0.001
	mg/L	1 AO	<0.001	<0.003	<0.003	<0.001			<0.003	<0.003
Copper Iron	mg/L	0.3 AO	0.01	<0.010	<0.003	<0.010			<0.010	0.101
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002			<0.001	<0.001
Magnesium	mg/L	0.01 W/AO	4.83	4.54	3.51	4.21			5.54	4.01
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002			<0.002	0.005
Mercury	mg/L	0.001 MAC	10.002	<0.0001	<0.0001	<0.002			<0.0001	<0.0001
Molybdenum	mg/L	0.001	<0.002	<0.002	<0.002	<0.002			0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003			<0.003	<0.003
Phorphorus	mg/L		<0.05	<0.05	<0.05	<0.05			<0.05	<0.050
Potassium	mg/L		1.44	1.72	0.98	0.99			1.21	0.76
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004			<0.004	<0.004
Silicon	mg/L		6.65	5.76	5.16	5.26			5.25	4.51
Silver	mg/L		<0.002	<0.002	<0.002	<0.002			<0.002	<0.002
Sodium	mg/L	200 AO	2.7	3.5	2.42	2.47			2.93	2.33
Strontium	mg/L		0.097	0.11	0.066	0.073			0.086	0.052
Sulphur	mg/L		3.47	3.62	2.61	2.61			3.36	2.89
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006			<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002			<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002			<0.002	0.006
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002			<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.010			<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005
		,I		-	<u> </u>				ı	ı

- Notes:
 (1) MECP Ontario Drinking Water Standards.
 (2) Operational Guideline (OG) within ODWS.
 (3) Aesthetic Objective (AO) within ODWS.
 (4) Maximum Acceptable Concentration (MAC) within ODWS.
 (5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
 (6) ODWS exceedances indicated by **bold** entries.

Groundwater Geochemical Results TW-13

Parameters		40		2011			2012			2013			2014			2015			2016			2017			2018			2019			2020	
General Chemistry	Units	ODWS (1)	May	Aug	Nov	May	Aug	Nov	May	July	Sep	June	July	Sep	May	July	Oct	May	July	Sep	June	Aug	Oct									
Alkalinity	mg/L	30-500 OG ⁽²⁾	214	788	813	350	1100	940	91	803	1290	96	1040	1240	390	1150	780	100	1110	807	95	813	912	783	935	687	55	1110	867	108	1280	878
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	10.9	55.2	48.4	<0.2	69	39	6.9	61.4	73.9	7.1	82.6	72.9	17.5	130.0	35.9	8.8	87.8	41	8.3	47.1	47	43.7	48.0	34.5	6.1	54.8	18.7	5.7	73	38.6
Chloride	mg/L	250 AO	11	160	260	72	320	180	1.78	335	254	2.52	423	214	21.5	297	112	1.83	269	101	1.42	163	135	153	187	120	0.94	154	84.4	10.5	177	99.2
Sulphate	mg/L	500 OG	5	<1	<1	7	<1	<1	6.29	<1.0	<2.0	4.87	1.34	2.2	<0.50	11.70	<0.50	4.57	1.60	<1.0	6.78	0.86	1.8	<1.0	2.2	1.02	4.04	11.6	<2.0	4.52	2.6	0.79
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<1.0	0.05	<0.25	<0.5	<0.25	<1.0	<0.25	<0.05	<0.5	<0.5	<0.05	<0.25	<0.5	<0.5	<0.5	<0.25	<0.05	<1.0	<1.0	<0.05	<0.13	<0.05
Hardness	mg/L	80-100 OG	63.9	520	530	260	840	630	25	611	705	26	717	594	144	718	336	16	497	284	24.2	473	328	394	576	258	13.1	668	198	38.6	709	304
Nitrate	mg/L	10 MAC	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<1.0	<0.05	<0.25	<0.5	<0.25	<1.0	<0.25	<0.05	<0.5	<0.5	<0.05	<0.25	<0.5	<0.5	<0.5	<0.25	<0.05	<1.0	<1.0	0.15	<1.0	<0.25
Nitrite	mg/L	1 MAC	0.18	<0.01	0.01	0.019	<0.01	<0.01	<0.05	<0.5	<1.0	<0.05	<0.25	<0.5	<0.25	<1.0	<0.25	<0.05	<0.5	<0.5	0.07	<0.25	<0.5	<0.5	<0.5	<0.25	<0.05	<1.0	<1.0	0.27	<1.0	<0.25
Organic Nitrogen	mg/L	0.15 OG	n.c.	1	n.c.			2.0	0.5	44.3	2.6	<0.10	4.10	9.5	6.2	7.8	5.2	0.2	11.0	5.7	0.9	2.6	4	9.4	5.8	9.0	0.88	9.1	<0.10	1.2	9.0	2.5
Orthophosphate	mg/L		0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<1.0	<2.0	<0.10	<0.50	<1.0	<0.50	<2.0	<0.50	<0.10	<1.0	<1.0	<0.10	<0.50	<1.0	<1.0	<1.0	<0.50	<0.10	<2.0	<2.0	<0.10	<2.0	<0.50
Phenols	mg/L		<0.001	0.016	<0.001	0.024	0.048	0.0061	<0.001	0.029	0.012	<0.001	0.006	0.005	<0.001	0.009	0.002	<0.001	0.004	<0.001	<0.001	0.004	0.001	0.006	0.008	0.007	<0.001	0.016	0.012	0.001	0.010	0.003
Ammonia	mg/L		29	67	51	42	52	40	13.9	53.9	65.6	15.9	71.0	86	39	83.4	75	15.2	92.0	81.4	10.8	36.1	105	76.6	40.4	90.0	6.6	75.4	123	14.5	107	88
BOD	mg/L		<2	22	19	2	22	15	<5	14	15	<5	12	8	7	16	13	6	22	14	9	8	10	9	9	14	<5	13	21	6	10	28
Chemical Oxygen Demand (COD)	mg/L		41	160	170	50	230	140	35	177	208	14	245	93	45	257	101	21	217	124	18	105	99	97	136	129	18	166	117	27	191	94
Total Dissolved Solids	mg/L	500 AO	286	1340	1040	398	1640	1210	80	1340	1580	90	1650	1480	374	1570	782	68	1300	806	90	1020	814	914	1080	792	54	1250	734	92	1380	888
Total Kjeldahl Nitrogen (TKN)	mg/L		28	68	49	36	51	42	14.4	98.2	68.2	15.7	75.1	95.5	45.2	91.2	80.2	15.4	103.0	87.1	11.7	38.7	109	86.0	46.2	99.0	7.48	84.5	112	15.7	116	90.5
рН	pH Units	6.5-8.5 OG							7.19	7.05	7.92	7.42	7.81	7.61	7.55	7.69	7.89	7.74	7.45	7.14	7.64	7.6	7.79	6.71	6.82	7.64	6.70	7.14	7.70	7.65	7.11	7.62
Electrical Conductivity	uS/cm								231	2360	2990	233	3150	2970	858	2960	1910	212	2970	1940	217	1900	2120	2070	2200	1900	133	2890	2300	313	2650	1610
% Difference/ Ion Balance	%								2.6	0.2	0.9	5.5	2.2	0.3	0.5	3.9		5.21		0.545	1.46	4.91	0.684					2.68			3.35	7.14
Elements						•																										
Aluminum	mg/L	0.1 OG	0.15	0.15	0.21	0.076	0.095	0.11	0.17	0.087	0.104	0.099	0.076	0.094	<0.004	0.103	0.073	0.128	0.058	0.057	0.101	0.059	0.081	0.065	0.058	0.087	0.087	0.043	0.082	0.044	0.069	0.087
Arsenic	mg/L	0.01 MAC	0.003	0.0049	0.006	0.0042	0.0076	0.0058	0.003	0.005	0.009	<0.003	0.007	0.008	<0.003	0.006	0.007	<0.003	0.005	0.007	<0.003	0.006	0.007	0.005	0.007	0.008	<0.003	0.006	0.005	0.008	0.008	0.008
Barium	mg/L	1 MAC	0.055	0.33	0.32	0.12	0.34	0.23	0.016	0.388	0.311	0.016	0.436	0.454	0.081	0.437	0.199	0.012	0.284	0.164	0.01	0.152	0.235	0.20	0.129	0.186	0.012	0.316	0.183	0.025	0.399	0.193
Beryllium	mg/L								<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002
Bismuth	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004
Boron	mg/L	5 IMAC	0.26	0.67	1.2	0.12	1.5	1.0	0.07	0.926	1.63	0.082	1.13	1.89	0.45	1.55	1.09	0.063	1.32	1.17	0.145	0.773	1.25	0.947	0.792	1.03	0.033	1.90	1.58	0.097	2.32	1.04
Cadmium	mg/L	0.005 MAC	<0.0001	<0.0001	0.0003	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004
Calcium	mg/L		17	130	140	68	210	150	6.75	149	139	6.22	158	126	29.5	175	77	3.97	135	67.2	5.5	108	68.3	92.8	125	63.2	3.25	186	53.2	8.19	153	69.1
Chromium	mg/L	0.05 MAC	0.007	0.012	0.011	<0.005	0.0088	0.013	0.007	0.006	0.019	0.005	0.019	<0.003	<0.003	0.015	0.017	0.008	0.005	0.015	0.004	0.005	0.013	0.010	0.023	0.019	0.003	0.011	0.012	<0.003	0.009	0.008
Cobalt	mg/L								0.001	0.022	0.009	<0.001	0.026	0.009	0.004	0.017	0.006	<0.001	0.012	0.006	<0.001	0.01	0.006	0.005	0.009	0.005	0.001	0.010	0.006	<0.001	0.010	0.005
Copper	mg/L	1 AO	<0.001	<0.001	0.003	<0.001	0.0011	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.009	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.006
Iron	mg/L	0.3 AO	10	50	66	31	78	43	4.32	148	22.8	2.31	95.8	17.6	<0.010	59.7	17.8	1.1	65.3	23	1.01	49	15.2	27.9	48.3	14.1	0.551	14.1	3.41	0.804	21.5	12.0
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	0.0012	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002
Magnesium	mg/L		5.2	49	45	23	78	60	1.97	58	87	2.61	78.2	67.9	17.2	68.3	35	1.48	38.9	28.3	2.53	49.3	29.2	39.4	64.0	24.4	1.21	49.4	15.9	4.4	79.5	32
Manganese	mg/L	0.05 AO	0.78	6.2	6.2	1.6	7.3	5.7	0.323	5.71	3.37	0.111	5.16	3.23	1.05	4.30	1.65	0.121	4.46	1.77	0.13	4.36	2.25	2.39	3.27	1.71	0.087	2.63	0.704	0.159	3.2	1.75
Mercury	mg/L	0.001 MAC	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004
Nickel	mg/L								<0.003	0.014	0.018	<0.003	0.031	0.023	0.005	0.028	0.009	<0.003	0.017	0.01	<0.003	0.018	0.009	0.007	0.018	0.009	<0.003	0.024	0.014	<0.003	0.016	0.010
Phorphorus	mg/L								<0.05	<0.05	0.09	<0.05	0.10	0.13	<0.05	0.10	0.08	0.06	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	0.06	0.07	<0.05	0.05	<0.05	<0.050	0.06	<0.100
Potassium	mg/L		21	58	51	36	54	48	11.5	42.7	69.2	15.1	65.0	76.2	39	77.7	60.7	11.3	69.0	58.1	9.62	35.3	60.5	59.3	33.7	51.6	6.59	57.9	82.8	13.9	85.3	53.7
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	0.006	0.006	<0.004	<0.004	0.005	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.005	0.004	0.029	<0.004	<0.008
Silicon	mg/L								6.4	6.05	7.06	5.5	7.08	10.5	3.92	8.53	9.41	5.33	7.54	7.64	5.94	10.2	6.61	8.6	12.4	9.91	3.77	5.95	5.05	5.09	7.76	7.05
Silver	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004
Sodium	mg/L	200 AO	25	110	190	15	250	210	7.38	190	272	6.73	304	247	42	273	126	5.51	272	143	12.1	138	124	136	178	110	5.07	185	128	8.27	202	90.2
Strontium	mg/L		0.058	0.43	0.5	0.18	0.72	0.54	0.025	0.574	0.521	0.023	0.855	0.707	0.162	0.850	0.355	0.016	0.507	0.282	0.026	0.444	0.358	0.417	0.483	0.324	0.015	0.72	0.201	0.036	0.729	0.352
Sulphur	mg/L								2.4	2.61	<0.05	1.75	4.51	3.47	0.72	5.01	1.67	1.22	3.33	2.62	2.38	2.21	1.83	1.84	5.67	3.38	8.32	5.40	2.41	1.62	6.94	1.18
Thallium	mg/L								<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.012
Tin	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004
Titanium	mg/L								0.01	0.007	0.011	0.006	0.008	0.009	<0.002	0.011	0.006	0.008	0.006	0.007	0.009	0.004	0.005	0.005	0.005	0.006	0.004	0.005	0.007	0.002	0.008	0.004
Uranium	mg/L	0.02 MAC							<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.004
Vanadium	mg/L								0.012	0.015	0.026	0.007	0.016	0.016	<0.002	0.021	0.014	0.004	0.010	0.013	0.007	0.007	0.015	0.011	0.011	0.013	0.002	0.010	0.014	0.004	0.013	0.01
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	0.0057	<0.005	0.006	0.006	<0.005	0.006	0.007	<0.005	0.007	0.006	<0.005	<0.005	<0.005	<0.005	0.008	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	<0.010
Notes:		The state of the s				•					•	•	•					•		•									•			

Notes:

(1) MECP Ontario Drinking Water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by bold entries.

Groundwater Geochemical Results TW-14

Parameters	Units	ODWS (1)	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
General Chemistry	Units	ODWS	May	May	May	June	May	May	May	May	May	June
Alkalinity	mg/L	30-500 OG ⁽²⁾	33	45	44	29	34	39	36	35	28	38
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	0.7	0.76	0.9	0.9	1.1	0.8	0.9	1.6	1.0	0.7
Chloride	mg/L	250 AO	4	12	7.09	4.26	2.22	4.1	4.21	3.63	4.18	8.18
Sulphate	mg/L	500 OG	5	6	4.0	3.83	3.15	4.5	3.81	3.77	3.52	3.59
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hardness	mg/L	80-100 OG	37.3	50	43	32.0	30.6	35.6	31.8	33.3	30.0	38.7
Nitrate	mg/L	10 MAC	1.1	0.86	1.14	1.22	1.04	1.62	1.4	1.58	1.15	1.37
Nitrite	mg/L	1 MAC	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	0.18	0.21	<0.10	0.28	<0.10	0.22	0.13	0.45	<0.10	0.17
Orthophosphate	mg/L		<0.01	0.021	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ammonia	mg/L		<0.05	<0.05	<0.02	0.09	<0.02	<0.02	<0.02	0.02	<0.02	<0.02
BOD	mg/L		<2	<2	<5	<5	<5	<5	<5	<5	<5	<5
Chemical Oxygen Demand (COD)	mg/L		8	8.2	21	<5	<5	<5	<5	<5	7	<5
Total Dissolved Solids	mg/L	500 AO	60	100	70	52	54	70	54	86	30	60
Total Kjeldahl Nitrogen (TKN)	mg/L		0.2	0.23	<0.10	0.37	<0.10	0.22	0.13	0.47	<0.10	0.17
рН	pH Units	6.5-8.5 OG			6.71	7.07	7.29	7.18	7.31	6.94	6.96	7.30
Electrical Conductivity	uS/cm				127	98	88	102	98	99	88	132
% Difference/ Ion Balance	%				2.8	4.6	1.0	6.9	8.02			
Elements							l .					
Aluminum	mg/L	0.1 OG	<0.005	0.0053	0.005	<0.004	<0.004	0.005	0.011	<0.004	0.010	0.012
Arsenic	mg/L	0.01 MAC	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	mg/L	1 MAC	<0.005	0.003	0.004	0.003	0.003	0.003	0.005	0.003	0.003	0.002
Beryllium	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	5 IMAC	<0.01	<0.01	0.01	<0.010	0.011	0.011	0.016	0.031	<0.010	0.019
Cadmium	mg/L	0.005 MAC	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		10	14	11.7	8.64	8.22	9.5	8.28	8.76	8.12	10.3
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.1	<0.1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		3	3.8	3.27	2.56	2.45	2.88	2.71	2.78	2.36	3.16
Manganese	mg/L	0.05 AO	<0.002	0.0093	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	mg/L	0.001 MAC	<0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L		* *		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L				<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Phorphorus	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.097
Potassium	mg/L		0.51	0.57	0.55	0.42	0.44	0.55	0.44	0.48	0.40	0.46
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.007
Silicon	mg/L				6.22	5.19	5.63	5.41	6.09	5.93	4.54	5.12
Silver	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	5.8	7.2	7.15	6.71	5.58	5.45	5.05	5.0	4.49	6.52
Strontium	mg/L		0.022	0.028	0.026	0.018	0.019	0.021	0.023	0.021	0.019	0.029
Sulphur	mg/L		5.5LL	5.320	1.47	1.15	1.3	0.97	1.32	1.3	1.3	1.34
Thallium	mg/L				<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L				<0.002	<0.000	<0.002	<0.000	0.002	<0.002	<0.002	<0.000
Titanium	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L	U.UZ IVIAC			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	1	5 AO	<0.005	<0.005	0.002	<0.002	<0.002	<0.005	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AU	\0.005	<0.005	0.000	CUU.U2	<0.005	<0.005	CUU.U>	\U.UU0	~U.UU5	CUU.U/

Notes:
(1) MECP Ontario Drinking Water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by **bold** entries.

Groundwater Geochemical Results TW-15

Parameters		(1)		2011			2012			2013			2014			2015			2016			2017			2018			2019			2020	
General Chemistry	Units	ODWS (1)	May	Aug	Nov	May	Aug	Nov	May	July	Sep	June	July	Sep	May	July	Oct	May	July	Sep	June	Aug	Oct									
Alkalinity	mg/L	30-500 OG ⁽²⁾	230	229	270	320	290	280	286	368	404	360	367	355	525	562	335	303	426	580	361	273	287	319	364	254	244	296	400	340	314	412
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	4.4	5.7	2.9	4.8	5.9	4.5	3.2	7.3	6.2	5.2	6.2	8.1	12.7	12.0	5.8	5.7	15.6	12.2	6	5.6	9.2	5.1	6.6	4.5	4.2	4.1	6.1	2.7	2.4	5.1
Chloride	mg/L	250 AO	33	36	38	32	32	33	40.1	54.1	70.9	40.6	52.7	54.1	91	106	41.6	59	80	106	48.7	11.3	28.2	41.2	35.4	23.4	26.9	32.5	37.0	34.2	23.7	51.7
Sulphate	mg/L	500 OG	120	150	140	87	110	130	125	187	224	80.3	171	163	115	92	42.4	148	159	78.1	79.2	20.1	59.1	70.8	100	76.5	61.4	93.5	82.0	35.3	59.7	107
Fluoride	mg/L	1.5 MAC (4)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.10	<0.10	<0.25	<0.25	<0.25	<0.10	<0.25	<0.25	<0.05	<0.05	<0.05
Hardness	mg/L	80-100 OG	321	400	420	500	350	380	375	442	588	405	430	454	549	520	356	417	543	670	395	236	241	490	415	262	257	352	418	382	263	343
Nitrate	mg/L	10 MAC	2.1	3.4	20	27	10.0	6.6	6.2	3.72	26.2	6.42	2.67	17.3	4.91	6.20	7.5	29.7	19.40	20.6	19.2	4.34	5.91	41.5	11.0	7.23	8.88	5.96	4.42	15.1	10.8	6.88
Nitrite	mg/L	1 MAC	0.27	0.09	0.65	0.58	0.1	2.8	0.34	<0.25	<0.25	1.06	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.10	<0.10	<0.25	<0.25	<0.25	0.22	<0.25	<0.25	0.47	<0.10	<0.25
Organic Nitrogen	mg/L	0.15 OG	0.7	0.4	0.1	0.7	0.4	1.0	0.22	5.38	0.80	0.89	0.33	0.47	0.78	1.50	1.13	1.69	1.98	1.56	1	0.62	0.3	0.7	0.27	0.28	0.87	0.97	1.3	0.71	0.27	0.91
Orthophosphate	mg/L		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.50	<0.50	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.20	<0.20	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.20	<0.50
Phenols	mg/L		<0.001	<0.001	<0.001	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	0.004
Ammonia	mg/L		2.5	5.8	3	3.2	3.9	4.4	3.45	8.92	7.5	2.94	3.99	7.1	3.98	5.60	4.57	4.01	4.15	5.64	0.73	2.72	16	1.7	3.56	4.89	3.79	1.67	1.27	0.54	8.0	2.84
BOD	mg/L		<2	<2	3	<2	<2	7	8	9	<5	9	7	<5	22	<5	10	14	<5	6	<5	<5	<5	<5	6	11	7	<5	<5	<5	13	4
Chemical Oxygen Demand (COD)	mg/L		19	21	14	17	16	8.4	27	20	16	9	21	18	26	31	<5	28	36	35	9	17	16	<5	15	<5	7	9	8	13	<5	10
Total Dissolved Solids	mg/L	500 AO	494	722	596	688	606	584	510	748	814	636	672	962	804	916	514	654	800	884	648	430	422	830	566	392	412	568	612	506	490	504
Total Kjeldahl Nitrogen (TKN)	mg/L		3.2	6.2	3.1	3.9	4.3	5.4	3.67	14.3	8.3	3.83	4.32	7.57	4.76	7.10	5.7	5.7	6.13	7.2	1.73	3.34	16.3	2.4	3.83	5.17	4.66	2.64	2.57	1.25	1.07	3.75
рН	pH Units	6.5-8.5 OG							7.59	7.33	7.24	7.49	7.91	7.61	7.64	7.63	7.83	7.95	7.56	7.43	7.86	7.76	7.68	7.23	7.56	7.62	7.73	7.56	7.52	8.05	7.41	7.48
Electrical Conductivity	uS/cm								963	1150	1440	1050	1200	1300	1460	1560	931	1130	1450	1710	1040	593	783	1130	1060	805	720	969	1160	980	793	933
% Difference/ Ion Balance	%								2.1	6.3	4.5	1.3	4.2	3.3	4.6	1.5		4.3		0.295	4.74	1.44	0.0746					0.14			18.1	18.3
Elements																																
Aluminum	mg/L	0.1 OG	<0.005	0.011	<0.005	<0.005	<0.005	<0.005	0.005	0.006	<0.004	<0.004	<0.004	<0.004	0.007	<0.004	<0.004	0.007	0.007	<0.004	<0.004	<0.004	0.006	<0.004	<0.004	0.005	<0.004	<0.004	<0.004	0.009	0.018	0.014
Arsenic	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.078	0.11	0.12	0.12	0.092	0.12	0.095	0.20	0.245	0.099	0.126	0.217	0.195	0.188	0.175	0.091	0.096	0.161	0.084	0.091	0.091	0.09	0.096	0.064	0.126	0.094	0.108	0.099	0.051	0.115
Beryllium	mg/L								<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	5 IMAC	1.10	0.76	0.77	1.00	0.63	0.65	0.635	1.28	1.39	0.53	1.02	1.16	1.04	1.19	0.939	0.962	0.92	1.21	0.939	0.972	0.519	0.828	1.2	0.607	0.929	1.04	1.02	0.436	0.315	0.485
Cadmium	mg/L	0.005 MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		94	110	120	150	100	110	107	131	171	114	115	125	150	138	102	111	159	199	116	68.1	67.7	144	112	73.3	76.4	105	122	109	76.6	99.3
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.005	0.007	0.004	0.01	<0.003	0.019	<0.003	<0.003	0.006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L								0.003	0.005	0.014	0.003	0.005	0.005	0.01	0.010	0.006	0.003	0.002	0.007	0.003	0.004	0.002	0.001	0.007	<0.001	0.003	0.001	0.002	0.001	<0.001	0.002
Copper	mg/L	1 AO	0.008	0.0083	0.007	0.012	0.0082	0.0078	0.007	0.012	0.014	0.01	0.014	0.014	0.022	0.026	0.017	0.01	0.012	0.023	0.012	0.014	0.009	0.009	0.013	0.006	0.011	0.008	0.012	0.007	0.004	0.009
Iron	mg/L	0.3 AO	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.187	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L		21	31	27	32	22	25	26.3	28.0	39.1	29.2	34.7	34.5	42.3	42.6	24.6	34	35.4	42	25.5	16	15.7	31.7	32.8	19.1	16.2	21.8	27.5	26.7	17.5	23.0
Manganese	mg/L	0.05 AO	1.3	2.9	1.8	1.5	0.89	2.3	2.17	4.47	4.84	1.76	2.41	2.75	2.54	2.29	2.1	1.3	0.95	1.89	0.851	1.03	0.471	0.269	1.37	0.248	0.818	0.601	0.76	0.583	0.271	0.93
Mercury	mg/L	0.001 MAC	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L								0.005	0.007	0.016	0.006	0.011	0.012	0.013	0.014	0.009	0.006	0.005	0.011	0.005	0.008	0.004	<0.003	0.009	0.003	0.005	0.006	0.006	0.005	<0.003	0.005
Phorphorus	mg/L								<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050
Potassium	mg/L		12	16	15	16	12	15	14.8	16.9	23.4	14.1	16.0	18.2	24.4	28.9	16.1	18.3	18.7	21.1	8.46	5.57	14.3	9.23	14.6	11.5	12.3	14.1	17.1	13.9	8.23	19.8
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L								8.38	8.18	7.77	7.86	7.69	10.4	9.23	8.67	9.41	7.53	8.75	9.03	8.51	7.85	6.04	8.07	10.1	7.52	5.85	7.36	7.17	6.7	8.1	7.05
Silver	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	36	31	26	54	37	31	31.6	36.6	52.6	37.0	52.4	54.1	58.4	105	33.1	63.7	76	74.7	55.3	29.2	39.1	30	49.4	39.9	33.7	39.5	48.7	27.1	15.6	23.2
Strontium	mg/L		0.19	0.24	0.26	0.27	0.23	0.24	0.2	0.402	0.473	0.229	0.283	0.366	0.4	0.351	0.295	0.202	0.252	0.367	0.258	0.212	0.168	0.289	0.285	0.165	0.205	0.208	0.256	0.267	0.177	0.284
Sulphur	mg/L								41.8	96.4	108	19.7	54.4	56.2	31.4	21.8	19.1	24	46.5	27.5	25.3	19.5	16.7	24.6	37	26	29.8	30.2	28.6	12	8.9	20.7
Thallium	mg/L								<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L								0.002	0.002	0.004	<0.002	0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.004	<0.002	0.002
Uranium	mg/L	0.02 MAC							<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.010	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
<u>-</u>																																

Notes:

(1) MECP Ontario Drinking Water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by bold entries.

Groundwater Geochemical Results TW-16

Parameters	11-14-	(1)		2011			2012			2013			2014			2015			2016			2017			2018			2019			2020	
General Chemistry	Units	ODWS (1)	May	Aug	Nov	May	Aug	Nov	May	July	Sep	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct	May	July	Sep	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	104	104	137	100	130	150	96	45	63	90	55	59	42	34	46	112	73	38	100	70	115	133	108	136	106	65	33	87	81	53
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	0.9	0.7	0.7	23	0.57	0.53	0.8	1.1	1.3	1.9	0.8	0.8	1.6	1.4	0.6	1	1.4	0.9	1.2	1.4	1.4	1.1	1.6	1.3	1.4	1.6	1.2	1.3	1.1	1.0
Chloride	mg/L	250 AO	10	2	<1	<1	<1	<1	0.45	0.31	0.37	8.68	0.42	0.45	0.76	0.76	0.55	9.22	1.14	0.36	5.53	0.74	0.89	1.7	0.63	0.81	9.35	4.28	0.41	10.2	1.06	0.26
Sulphate	mg/L	500 OG	11	10	10	7	6	8	4.24	3.59	4.78	5.94	3.59	4.13	2.14	2.22	3.55	6.96	6.85	3.59	5.4	2.94	4.18	5.53	3.55	4.8	5.35	5.28	3.01	4.23	2.71	2.38
Fluoride	mg/L	1.5 MAC (4)	<0.1	<0.1	<0.1	<0.1	0.12	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hardness	mg/L	80-100 OG	120	110	140	110	130	150	92	34	43	114	53	46	39.8	23.9	43.5	115	65.2	29.8	93.7	51.6	105	114	99.8	144	118	69.6	28.6	93.1	56.1	27.1
Nitrate	mg/L	10 MAC	0.3	0.3	0.2	0.17	0.18	0.22	0.1	<0.05	0.06	0.15	<0.05	<0.05	0.14	0.08	<0.05	0.41	0.2	<0.05	0.38	0.07	0.08	0.16	<0.05	0.09	0.07	0.21	<0.05	<0.05	<0.05	<0.05
Nitrite	mg/L	1 MAC	<0.01	<0.01	<0.01	<0.01	<0.01	0.016	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	0.675	0.275	0.075		0.235	0.325	0.18	<0.10	<0.10	0.24	<0.10	<0.10	<0.10	0.19	0.14	0.24	0.13	<0.10	0.11	<0.10	0.17	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.17	0.11	0.14
Orthophosphate	mg/L		<0.01	0.02	0.02	0.016	0.027	0.016	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.17	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ammonia	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.02	<0.02	0.08	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05	0.04	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	0.06	<0.02
BOD	mg/L		<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2	<2
Chemical Oxygen Demand (COD)	mg/L		8	5	<4	7.7	5	<4	16	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	9	<5	<5
Total Dissolved Solids	mg/L	500 AO	152	182	162	146	166	180	94	90	86	126	76	90	72	54	58	134	100	58	104	78	122	154	112	136	124	86	50	108	80	40
Total Kjeldahl Nitrogen (TKN)	mg/L	-	0.7	0.3	0.1	<0.1	0.26	0.35	0.18	<0.10	<0.10	0.32	<0.10	<0.10	<0.10	0.19	0.14	0.24	0.13	<0.10	0.11	<0.10	0.21	<0.10	<0.10	<0.10	<0.10	0.11	<0.10	0.17	0.17	0.14
, , ,	pH Units	6.5-8.5 OG	-						7.51	6.96	6.70	7.85	7.45	7.92	7.54	6.88	7.35	7.71	7.22	7.32	7.67	7.38	7.69	7.83	7.98	7.66	7.51	7.56	6.73	7.42	7.64	6.65
Electrical Conductivity	uS/cm								197	81	107	232	128	143	86	74	100	248	162	86	216	140	222	234	205	296	240	174	82	230	156	74
% Difference/ Ion Balance	%								0.6	8.5	11.8	5	1.6	8.3	1.5	6.1		3.24		5.52	5.96	10.5	4.39			1		0.306		1	14.7	21.6
Elements				<u> </u>	<u>l</u>		<u>l</u>	l											<u> </u>		0.00			<u> </u>	<u> </u>				l			
Aluminum	mg/L	0.1 OG	0.005	<0.005	<0.005	<0.005	0.0064	<0.005	0.007	0.015	0.009	0.005	0.011	0.009	0.006	0.010	<0.004	0.008	0.014	<0.004	0.004	<0.004	0.005	<0.004	<0.004	0.004	<0.004	0.004	0.018	0.031	0.016	0.023
Arsenic	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.007	0.0055	0.007	0.0052	0.0059	0.0085	0.006	0.002	0.003	0.008	0.003	0.004	<0.002	0.002	0.003	0.006	0.004	0.003	0.005	0.002	0.004	0.005	0.005	0.010	0.009	0.003	0.002	0.006	0.003	0.003
Beryllium	mg/L		0.001	0.0000	0.001	0.0002	0.0000	0.0000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	5 IMAC	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.012	0.053	<0.010	0.017	<0.010	0.016	0.011	0.012	0.012	0.018	0.023	0.023	0.031	0.024	0.021	0.030	0.023	0.016	0.011	0.015	0.013	0.012	<0.010	0.020
Cadmium	mg/L	0.005 MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L	0.000 11 10	38	32	45	33	41	49	26.1	8.42	10.8	34.8	14.1	11.5	10.1	6.0	11.2	37	19.3	7.64	30.2	14.7	31.4	36.7	30.5	46.6	36.8	21.0	7.12	28.7	15.4	6.99
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L	0.00	0.000	0.000	0.000	0.000	0.000	0.000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.035	<0.010	0.010
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L	0.01	6.1	6.5	7.2	7.3	7.3	7.6	6.56	3.18	3.9	6.64	4.40	4.19	3.55	2.18	3.76	5.42	4.14	2.61	4.43	3.61	5.27	5.42	5.75	6.63	6.36	4.16	2.63	5.21	4.29	2.34
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.011
Mercury	mg/L	0.001 MAC	<0.0001	<0.0001	<0.0001	-0.002	<0.0001	<0.0001	10.002	10.002	-0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L	0.001 11// 10	10.0001	-0.0001	-0.0001		-0.0001	10.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L								<0.003	<0.003	<0.003		<0.003		<0.003	<0.002	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Phorphorus	mg/L								<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.005	0.081	<0.050	<0.050
Potassium	mg/L		0.51	0.45	0.53	0.46	0.43	0.47	0.56	0.56	0.37	0.49	0.37	0.49	0.32	0.39	0.38	0.61	0.46	0.31	0.43	0.38	0.43	0.48	0.50	0.55	0.59	0.46	0.54	0.43	0.030	0.31
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004		<0.004	<0.004		<0.004	<0.004	0.025	<0.004	<0.004
Silicon		0.00 IVI/10	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	6.19	5.14	4.91	5.03	4.84	6.97	4.22	5.47	4.66	4.94	6.39	5.21	5.37	5.47	4.24	5.96	6.33	5.96	5.22	6.99	5.09	5.38	6.39	5.37
Silver	mg/L mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002					<0.002	<0.002		<0.002	<0.002
Sodium		200 AO	3.5	4.9	2.3	3.6	2.4	2.5	3.34	3.07	4.93	2.41	3.42	3.45	1.95	4.11	2.25	4.52	3.05	3.51			2.55	2.06	2.73	2.31	4.91	3.02	3.65	3.34	3.07	3.93
Strontium	mg/L	200 AU	0.046	0.049	0.051	0.042	0.055	0.054	0.04	0.019	0.026	0.044	0.033	0.036	0.023	0.017	0.028				3.52 0.037	3.68		0.038		0.054	0.044	0.024	0.016	0.034	0.036	0.022
Sulphur	mg/L mg/L		0.040	0.048	0.001	0.04∠	0.000	0.004	1.57	1.09	1.82	1.74	1.37	1.52	0.023	0.017	1.16	0.04	0.030 1.86	0.024 1.41	1.98	0.03 1.13	1.35		0.05 1.97	2.74	2.39	1.76	1.20	1.93	1.16	0.022
Thallium											<0.006		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006									1	<0.006	<0.006
Tin	mg/L								<0.006	<0.006		<0.006							<0.006			<0.006	<0.006		<0.006	<0.006			<0.006		+	
Titonium	mg/L								<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002				<0.002			<0.002	1		<0.002
Titanium	mg/L	0.0244.0							<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.002	<0.002
Uranium	mg/L	0.02 MAC							<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002
Vanadium	mg/L		-0.005	-0.005	10.005	-0.005	-0.005	0.0054	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	0.003	<0.002	0.002	0.003	<0.002	<0.002		<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	0.0051	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.007	0.006	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Notes:

(1) MECP Ontario Drinking Water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by **bold** entries.

Groundwater Geochemical Results TW-17

Parameters	Haita	opus (1)	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
General Chemistry	Units	ODWS (1)	May	May	May	June	May	May	May	May	May	June
Alkalinity	mg/L	30-500 OG (2)	101	95	102	105	102	92	109	84	97	90
Dissolved Organic Carbon	mg/L	5 AO ⁽³⁾	2.1	2.3	2.0	2.2	1.9	2.1	6.3	2.9	2.6	2.0
Chloride	mg/L	250 AO	5	4.0	7.7	6.76	7.12	7.63	6.77	9.76	8.91	8.33
Sulphate	mg/L	500 OG	5	5.0	5.82	11.5	8.09	7.84	13.8	6.04	6.92	6.64
Fluoride	mg/L	1.5 MAC (4)	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hardness	mg/L	80-100 OG	64.3	72	118	127	116	95.4	114	111	107	52.1
Nitrate	mg/L	10 MAC	0.2	0.17	0.3	0.55	0.52	0.35	0.63	0.48	0.31	0.44
Nitrite	mg/L	1 MAC	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	2.86	2.72	0.17	0.28	0.23	0.41	0.26	0.27	<0.10	0.31
Orthophosphate	mg/L		<0.01	0.022	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ammonia	mg/L		0.14	0.076	<0.02	0.08	<0.02	<0.02	<0.02	<0.02	0.04	<0.02
BOD	mg/L		<2	<2	<5	<5	<5	<5	<5	<5	<5	<5
Chemical Oxygen Demand (COD)	mg/L		28	55	24	6	<5	9	5	<5	<5	16
Total Dissolved Solids	mg/L	500 AO	132	122	122	142	142	124	134	162	112	120
Total Kjeldahl Nitrogen (TKN)	mg/L		3	2.8	0.17	0.36	0.23	0.41	0.26	0.27	<0.10	0.31
рН	pH Units	6.5-8.5 OG			7.57	7.87	7.71	7.69	7.82	7.07	7.55	7.85
Electrical Conductivity	uS/cm				238	267	237	211	253	229	225	240
% Difference/ Ion Balance	%				3.8	3.3	2.1	2.7	3.89			
Elements												
Aluminum	mg/L	0.1 OG	0.018	0.022	0.040	0.045	0.037	0.037	0.014	0.025	0.006	0.019
Arsenic	mg/L	0.01 MAC	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004
Barium	mg/L	1 MAC	<0.005	0.0034	0.004	0.005	0.005	0.005	0.005	0.004	0.006	0.004
Beryllium	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	5 IMAC	<0.01	<0.01	<0.010	0.011	0.01	0.012	0.02	0.027	0.012	0.013
Cadmium	mg/L	0.005 MAC	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		18	21	36.4	38.4	35	27.4	32.8	32.0	32.4	14.1
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	0.002	0.0017	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.1	<0.1	0.029	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.016
Lead	mg/L	0.01 MAC	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		4.7	5	6.7	7.53	6.91	6.55	7.83	7.43	6.31	4.1
Manganese	mg/L	0.05 AO	0.015	0.0057	0.015	0.003	0.006	<0.002	0.002	0.007	0.005	<0.002
Mercury	mg/L	0.001 MAC	<0.0001		0.000	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L				<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Phorphorus	mg/L		0.22	0.41	<0.05	<0.05	<0.05	<0.05	<0.05 0.75	<0.05	<0.05	<0.050
Potassium	mg/L	0.05 MAC	0.32 <0.002	<0.002	0.56	0.44	0.61	0.91		0.81	0.62	0.42
Selenium	mg/L	0.05 MAC	<0.002	<0.002	<0.004 4.23	<0.004 3.9	<0.004 4.15	<0.004 3.74	<0.004 4.28	<0.004 4.44	<0.004 3.64	0.014 3.64
Silicon Silver	mg/L mg/L				4.23 <0.002	<0.002	<0.002	<0.002	4.28 <0.002	<0.002	<0.002	<0.002
		200.40	4.5	2.0								
Sodium	mg/L	200 AO	4.5 0.038	3.6 0.045	4.72	4.34 0.039	5.09	4.49	4.6 0.053	4.81 0.038	4.75 0.046	4.24 0.043
Strontium	mg/L		0.038	0.045	0.035		0.041	0.034	0.053 4.57	1.98		2.34
Sulphur	mg/L				2.15 <0.006	3.21 <0.006	3.16 <0.006	1.76 <0.006	4.57 <0.006		2.36 <0.006	
Thallium	mg/L									<0.006		<0.006
Tin	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L	0.02 MAC			0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	U.UZ MAC			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L	E A O	<0.00F	ZO 005	<0.002	<0.002	<0.002	<0.010	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Notes:

(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

2020 Groundwater Duplicate Data

						unawater Bupi					1	2 / 22	
				1	1-20	1	T		Aug-20	1		Oct-20	
Parameters	Units	TW-17	HB GW DUP1	Relative Percent Difference (%)	TW-9	HB GW DUP2	Relative Percent Difference (%)	TW-15	HB GW DUP1	Relative Percent Difference (%)	TW-6	HB GW DUP1	Relative Percent Difference (%)
General Chemistry													
Alkalinity	mg/L	90	93	(3.279)	782	781	0.128	314	292	7.261	101	95	6.122
Dissolved Organic Carbon	mg/L	2.0	2.1	(4.878)	36.0	32.4	10.526	2.4	2.2	8.696	3.3	3.2	3.077
Chloride	mg/L	8.33	8.44	(1.312)	152	150	1.325	23.7	23.9	(0.840)	11	10.9	0.913
Sulphate	mg/L	6.64	6.83	(2.821)	193	198	(2.558)	59.7	54.3	9.474	44.9	43.7	2.709
Fluoride	mg/L	< 0.05	<0.05	NC	<0.13	<0.13	NC	< 0.05	<0.05	NC	<0.05	<0.05	NC
Hardness	mg/L	52.1	53.2	(2.089)	645	654	(1.386)	263	280	(6.262)	115	113	1.754
Nitrate	mg/L	0.44	0.46	(4.444)	<1.0	<1.0	NC	10.80	11.0	(1.835)	5.72	5.72	0.000
Nitrite	mg/L	< 0.05	<0.05	NC	<1.0	<1.0	NC	<0.10	<0.10	NC	<0.05	<0.05	NC
Organic Nitrogen	mg/L	0.31	0.31	0.000	6.40	6.40	0.000	0.27	0.55	(68.293)	0.35	0.39	(10.811)
Orthophosphate	mg/L	<0.10	<0.10	NC	<2.0	<2.0	NC	<0.20	<0.20	NC	<0.10	<0.10	NC
Phenols	mg/L	<0.001	<0.001	NC	0.011	0.011	0.000	<0.001	<0.001	NC	<0.001	0.001	NC
Ammonia	mg/L	<0.02	<0.02	NC	37.2	37.2	0.000	0.8	1.01	(23.204)	0.03	<0.02	NC
BOD	mg/L	<5	<5	NC	8	14	(54.545)	13	5	88.889	<2	2	NC
Chemical Oxygen Demand (COD)	mg/L	16	15	6.452	123	124	(0.810)	<5	<5	NC	<5	<5	NC
Total Dissolved Solids	mg/L	120	126	(4.878)	1180	1190	(0.844)	490	520	(5.941)	180	154	15.569
Total Kjeldahl Nitrogen (TKN)	mg/L	0.31	0.31	0.000	43.6	43.6	0.000	1.07	1.56	(37.262)	0.38	0.39	(2.597)
рН	pH Units	7.85	7.67	2.320	7.87	7.98	(1.388)	7.41	7.49	(1.074)	6.7	6.66	0.599
Electrical Conductivity	uS/cm	240	244	(1.653)	2380	2380	0.000	793	787	0.759	289	281	2.807
Elements													
Aluminum	mg/L	0.019	0.022	(14.634)	0.024	0.022	8.696	0.018	0.025	(32.558)	0.016	0.028	(54.545)
Arsenic	mg/L	0.004	< 0.003	NC	0.026	0.024	8.000	<0.003	<0.003	NC	<0.003	< 0.003	NC
Barium	mg/L	0.004	0.008	(66.667)	0.268	0.279	(4.022)	0.051	0.053	(3.846)	0.028	0.029	(3.509)
Beryllium	mg/L	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC
Bismuth	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC
Boron	mg/L	0.013	0.018	(32.258)	2.594	2.514	3.132	0.315	0.325	(3.125)	0.343	0.346	(0.871)
Cadmium	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC
Calcium	mg/L	14.1	14.3	(1.408)	164	166	(1.212)	76.6	80.9	(5.460)	30.3	29.9	1.329
Chromium	mg/L	< 0.003	< 0.003	NC	0.006	0.008	(28.571)	< 0.003	< 0.003	NC	<0.003	< 0.003	NC
Cobalt	mg/L	<0.001	<0.001	NC	0.012	0.012	0.000	<0.001	<0.001	NC	<0.001	<0.001	NC
Copper	mg/L	< 0.003	0.005	NC	< 0.003	< 0.003	NC	0.004	0.006	(40.000)	< 0.003	0.004	NC
Iron	mg/L	0.016	0.023	(35.897)	26.540	25.742	3.053	<0.010	<0.010	NC	<0.010	<0.010	NC
Lead	mg/L	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC
Magnesium	mg/L	4.1	4.24	(3.357)	57.2	58.2	(1.733)	17.5	18.9	(7.692)	9.49	9.3	1.915
Manganese	mg/L	<0.002	0.002	NC	4.404	4.307	2.227	0.271	0.298	(9.490)	<0.002	<0.002	NC
Mercury	mg/L	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Molybdenum	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC
Nickel	mg/L	< 0.003	< 0.003	NC	0.016	0.021	(27.027)	<0.003	< 0.003	NC	< 0.003	<0.003	NC
Phorphorus	mg/L	<0.050	<0.050	NC	0.079	0.187	(81.203)	<0.050	0.052	NC	<0.050	<0.050	NC
Potassium	mg/L	0.42	0.43	(2.353)	54.00	54.70	(1.288)	8.23	8.76	(6.239)	10.5	10.3	1.923
Selenium	mg/L	0.014	0.014	0.000	0.021	<0.004	NC	<0.004	<0.004	NC	<0.004	<0.004	NC
Silicon	mg/L	3.64	3.58	1.662	16.99	16.21	4.736	8.1	7.58	6.633	3.59	3.54	1.403
Silver	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC
Sodium	mg/L	4.24	4.3	(1.869)	136.00	136.00	0.000	15.6	16.1	(3.155)	16.2	16.1	0.619
Strontium	mg/L	0.043	0.038	12.346	0.744	0.757	(1.732)	0.177	0.179	(1.124)	0.141	0.133	5.839
Sulphur	mg/L	2.34	2.3	0.428	60.60	63.00	(3.883)	8.9	9.55	(7.046)	16	15.9	0.627
Thallium	mg/L	<0.006	<0.006	NC	<0.006	<0.006	NC	<0.006	<0.006	NC	<0.006	<0.006	NC
Tin	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC
Titanium	mg/L	<0.002	0.002	NC	0.006	0.004	40.000	<0.002	<0.002	NC	<0.002	<0.002	NC
Uranium	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC
Vanadium	mg/L	<0.002	<0.002	NC	0.006	0.007	(15.385)	<0.002	<0.002	NC	<0.002	<0.002	NC
Zinc	mg/L	< 0.005	< 0.005	NC	<0.005	<0.005	NC	< 0.005	<0.005	NC	<0.005	<0.005	NC

Notes:
(1) NC - not calculable as one or both concentrations are below the laboratory method detection limit.
(2) Relative percent differences execeeding 50% are presented as bold and shaded entries.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX F

SUMMARY OF SURFACE WATER GEOCHEMICAL ANALYSES

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Surface Water Geochemical Results SW-3

Parameters		4	9	2	20	11	20	12	20	13	20)14	20)15	20	16	20	17	20)18	20	19	20	020
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	May	Aug	May	Aug	May	Sept	June	Sept	May	Sept	May	Sept	May	Sept	May	Oct	May	Sept	June	Oct
Alkalinity	mg/L				48	86	59	83	42	87	47	72	66	65	41	82	47	90	40	83	49	85	83	79
Chemical Oxygen Demand (COD)	mg/L				25	20	20	20	20	20	91	12	13	434	22	1110	105	107	7	<5	12	8	15	34
Total Dissolved Solids	mg/L				104	294	142	212	142	180	140	204	172	198	110	258	120	224	140	292	128	294	246	152
Total Suspended Solids	mg/L				<10	<10	<10	<10	<10	<10	126	<10	<10	788	44	322	141	482	<10	20	<10	<10	<10	<10
Ammonia	mg/L				<0.05	<0.05	<0.05	<0.05	<0.02	<0.02	0.07	0.05	<0.02	0.16	<0.02	0.08	<0.02	0.14	<0.02	<0.02	0.03	<0.02	<0.02	<0.02
Turbidity	NTU				0.70	0.8	1.3	0.8	1	1.8	7.2	1.5	2.0	29.9	8.0	917	27.2	193	1.4	5.2	3.6	0.8	2.4	5.7
Un-ionized Ammonia	mg/L	0.02			<0.00105	<0.00030	<0.00129	<0.00105	<0.0004	<0.0008	0.00013	0.00085	<0.00024	0.00006	<0.000028	0.00054	<0.000054	<0.000336	<0.0001	<0.0001	0.00024	<0.00005	<0.00002	<0.00001
Chloride	mg/L		180	128	21	52	33	68	29.5	46.8	41.5	64.7	54.1	70.9	37.4	96.9	32.8	66.5	31.1	102	38.1	97.3	91.2	38.9
Dissolved Organic Carbon	mg/L				6.7	6.7	6.8	7.1	6.6	11.2	7.2	8.3	5.8	8.5	7.3	4.6	6.5	10.5	7.7	5.2	8.1	5.8	6.5	11.8
Sulphate	mg/L				3.0	<1	5.0	2.0	4.0	4.52	2.9	8.25	5.5	5.84	4.6	4.54	4.5	0.84	5.47	6.24	4.64	4.6	5.58	3.1
Hardness	mg/L				55.2	88.0	67.0	100	54.4	150	63	89.6	75.1	90.5	49.2	111	44.6	98.3	50.4	107	51.9	102	91.5	71.8
Phenols	mg/L	0.001	0.961	0.004	<0.001	<0.001	0.0027	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.001	0.001	0.002	<0.001
Phosphorus	mg/L				0.015	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	0.27	<0.05	0.21	<0.05	0.23	<0.05	<0.05	<0.05	<0.05	<0.10	<0.10
pH	pH units	6.5 - 8.5							6.71	7.03	7.43	7.87	7.65	7.51	8.66	7.04	7.50	7.61	7.27	7.50	7.10	7.60	7.75	6.67
Conductivity	uS/cm								196	305	231	382	299	385	207	516	204	380	204	536	212	571	628	217
Elements																								
Aluminum	mg/L				0.038	0.018	0.056	0.013	0.027	0.016	0.056	0.01	0.014	0.019	0.029	0.005	0.017	0.019	0.020	0.007	0.026	<0.004	0.008	0.019
Arsenic	mg/L	0.1	0.15		<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	0.007	<0.003	0.012	<0.003	0.008	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L		2.3		0.01	0.013	0.009	0.015	0.007	0.01	0.011	0.012	0.008	0.063	0.02	0.155	0.018	0.088	0.008	0.019	0.012	0.016	0.016	0.009
Beryllium	mg/L	0.011	0.0053						<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005	<0.0005
Bismuth	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	0.2	3.55	1.5	0.0100	0.02	<0.01	<0.01	<0.010	<0.010	0.01	<0.010	<0.010	<0.010	0.059	0.033	<0.010	0.014	<0.010	0.014	<0.010	<0.010	<0.010	<0.010
Cadmium	mg/L	0.0002	0.00021	0.000017	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0002	<0.0001	<u>0.0009</u>	0.0001	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Calcium	mg/L				15.0	26.0	19.0	27.0	15.1	50.3	17.2	24.8	20.6	25.1	13.1	31.1	12	27.4	13.9	29.7	14.7	28.4	25.72	20.16
Chromium	mg/L	0.0089	0.064		<0.005	<0.005	<0.005	0.011	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	<0.003	0.004	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L	0.0009	0.0052		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0036	<0.0005	0.0278	0.0008	0.0064	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Copper	mg/L	0.005	0.0069		0.0010	<0.001	0.0016	0.0021	<0.002	<0.002	<0.002	<0.002	<0.002	0.007	<0.002	0.03	0.003	0.009	<0.002	<0.002	0.002	<0.002	<0.002	<0.002
Iron	mg/L	0.3			0.2	0.2	0.2	0.31	0.11	0.16	0.38	0.11	0.16	17.1	0.65	73.4	2.88	31.8	0.06	0.03	0.11	0.10	0.233	0.39
Lead	mg/L		0.002		<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	0.004	<0.001	0.004	0.001	0.006	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L				4.30	7.4	5.2	7.8	4.06	6.01	4.88	6.71	5.74	6.75	4.01	8.02	3.55	7.25	3.82	8.08	3.70	7.62	6.63	5.21
Manganese	mg/L				0.0	0.0	0.1	0.0	0.023	0.005	0.053	0.014	0.02	0.631	0.021	2.22	0.104	0.93	0.011	0.016	0.016	0.012	0.033	0.011
Molybdenum	mg/L		0.73						<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L	0.025	0.039						<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.01	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium															0.48	1.22	0.43	1.11	0.59	0.54	0.58	0.64	0.8	0.83
Selenium	mg/L	0.1	0.005		<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L								0.91	1.44	2.5	1.78	0.49	4.45	2.55	4.16	2.73	4.18	1.37	2.35	1.10	2.10	0.67	3.05
Silver	mg/L	0.0001	0.00012						<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Sodium	mg/L		180		15.000	39	24	44	15.8	26.8	19.6	37.5	29.2	34.2	21	50.3	19.2	31.1	18.5	53.6	19.2	57.6	40.06	20.87
Strontium	mg/L				0.033	0.063	0.042	0.065	0.032	0.051	0.039	0.057	0.04	0.069	0.029	0.136	0.038	0.094	0.032	0.075	0.034	0.069	0.074	0.049
Sulphur	mg/L								1.58	0.85	1.03	3.1	1.9	1.97	1220	1.83	1.59	0.64	1.98	3.06	1.65	1.71	2.001	1.257
Thallium	mg/L	0.0003	0.04						<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Tin	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	0.028	0.002	0.032	0.01	0.031	<0.002	<0.002	0.002	<0.002	0.002	0.004
Uranium	mg/L	0.005	0.033						<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0005	<0.0005
Vanadium	mg/L	0.006	0.02		<0.001	<0.0005	<0.0005	0.00	<0.002	<0.002	<0.002	<0.002	<0.002	0.007	<0.002	0.094	<0.002	0.010	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	0.03	0.089	0.03	<0.005	<0.005	<0.005	<0.005	0.016	<0.005	<0.005	<0.005	0.005	0.026	<0.005	<u>0.103</u>	0.008	0.028	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

- Notes:
 (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Site in Ontario, Table 3.1.
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by *italicized* entries.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Surface Water Geochemical Results SW-4

Parameters					20	11	20	12	20)13	20)14	20	15	20	16	20	17	20	18	20	19	20	20
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	May	Aug	May	Aug	May	Sept	June	Sept	May	Sept	May	Sept	May	Sept	May	Oct	May	Sept	June	Oct
Alkalinity	mg/L				50	85	61	84	26	45	36	73	66	97	55	92	53	84	55	82	52	89	90	81
Chemical Oxygen Demand (COD)	mg/L				25	23	20	19	33	44	47	16	16	9	17	7	13	30	5	<5	22	<5	15	25
Total Dissolved Solids	mg/L				110	260	194	220	56	90	64	208	172	262	156	276	138	228	142	288	130	286	282	152
Total Suspended Solids	mg/L				<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ammonia	mg/L				<0.05	<0.05	<0.05	<0.05	<0.02	<0.02	0.05	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	0.03	<0.02	<0.02	<0.02
Turbidity	NTU				1.00	0.5	0.9	1.1	0.6	1.8	1.5	<0.5	1.1	0.5	4.3	2.9	0.9	0.8	1.2	1.4	0.6	1.0	2.4	2.3
Un-ionized Ammonia	mg/L	0.02			<0.00128	<0.00037	<0.00087	<0.00107	<0.00004	<0.00002	0.000055	0.00063	<0.00019	<0.000032	<0.000126	<0.0001	<0.00016	<0.00033	<0.000172	<0.000118	0.00018	<0.0001	<0.00013	<0.00001
Chloride	mg/L		180	128	22	61	35	68	1.61	2.71	0.94	67.6	57.2	95.5	59.6	98.2	44.1	77.7	34.9	103	44.4	124	106	40.1
Dissolved Organic Carbon	mg/L				6.7	7.2	<0.2	7.6	9.8	21.8	11.9	8.7	6.8	3.1	7.1	5.2	7.7	8.6	6.8	5.4	8.4	5.2	7.2	12.7
Sulphate	mg/L				4.0	1.0	5.0	2.0	1.6	1.76	0.6	8.56	5.7	5.30	7.3	4.83	6.4	6.41	5.9	6.21	4.86	5.62	6.59	3.17
Hardness	mg/L				59	89	70	100	30.7	73.3	38.4	91.9	77.4	114	69.5	115	56.7	93.5	52.4	107	55.2	105	107	73.9
Phenols	mg/L	0.001	0.961	0.004	<0.001	<0.001	0.0018	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.001	0.002	<0.001
Phosphorus	mg/L				0.018	0.003	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.10
рН	pH units	6.5 - 8.5							6.40	6.88	7.24	7.81	7.68	8.01	7.15	7.92	7.86	7.89	7.38	7.64	7.19	7.58	7.80	6.70
Conductivity	uS/cm								64	92	77	398	314	520	290	544	250	419	223	540	235	589	591	225
Elements																								
Aluminum	mg/L				0.028	0.013	0.041	0.019	0.052	0.063	0.046	0.009	0.010	0.007	0.019	<0.004	0.023	0.007	0.030	0.010	0.023	0.004	0.006	0.016
Arsenic	mg/L	0.1	0.15		0.0010	<0.001	<0.001	<0.001	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L		2.3		0.01	0.013	0.010	0.015	0.003	0.006	0.006	0.012	0.007	0.014	0.011	0.014	0.01	0.014	0.008	0.022	0.010	0.016	0.018	0.009
Beryllium	mg/L	0.011	0.0053						<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005	<0.0005
Bismuth	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/L	0.2	3.55	1.5	<0.01	0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.01	0.016	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Cadmium	mg/L	0.0002	0.00021	0.000017	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Calcium	mg/L				16	25	20	29	7.86	23.4	9.97	25.5	21.3	31.5	19.1	31.9	15.5	26.3	14.5	29.6	15.6	29.4	30.08	20.77
Chromium	mg/L	0.0089	0.064		<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L	0.0009	0.0052		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Copper	mg/L	0.005	0.0069		<0.001	<0.001	0.0021	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Iron	mg/L	0.3			0.2	0.2	0.7	0.2	0.08	0.40	0.61	0.15	0.11	0.030	0.17	0.030	<0.01	0.040	0.06	<0.01	0.07	0.01	0.275	0.439
Lead	mg/L		0.002		<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	mg/L				4.60	7.4	5.5	8.4	2.68	3.61	3.27	6.86	5.87	8.51	5.3	8.52	4.38	6.76	3.94	8.0	3.94	7.73	7.7	5.35
Manganese	mg/L				0.0	0.0	0.1	0.0	0.004	0.009	0.039	0.025	0.017	0.006	0.017	0.012	0.01	0.012	0.008	0.003	0.013	0.007	0.03	0.022
Molybdenum	mg/L		0.73						<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L	0.025	0.039						<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium															0.65	0.62	0.45	0.63	0.61	0.59	0.57	0.49	1.03	0.77
Selenium	mg/L	0.1	0.005		<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L								0.56	2.05	0.34	1.53	0.28	2.21	1.04	2.12	0.5	1.8	1.09	2.44	0.89	1.65	0.296	2.83
Silver	mg/L	0.0001	0.00012						<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Sodium	mg/L		180		17	39	26	46	2.68	2.87	1.88	39.7	31.1	51	29.2	54.7	22.9	39.2	21.0	52.9	22.1	59.8	50.05	21.89
Strontium	mg/L				0.039	0.062	0.044	0.069	0.016	0.025	0.025	0.058	0.037	0.072	0.042	0.068	0.043	0.063	0.032	0.077	0.035	0.064	0.079	0.05
Sulphur	mg/L	0.0000	0.01						0.76	0.51	0.4	3.18	1.95	1.88	1570	2.28	2.15	2.3	2.10	2.98	1.78	2.02	2.492	1.4
Thallium	mg/L	0.0003	0.04						<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Tin	mg/L								<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L	0.000	0.000						<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002
Uranium	mg/L	0.005	0.033		0.557	0.000	0.5555	0.0007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0005	<0.0005
Vanadium 	mg/L	0.006	0.02	0.55	<0.001	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	0.03	0.089	0.03	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Notes:

- (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Site in Ontario, Table 3.1.
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by *italicized* entries.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Surface Water Geochemical Results SW-5

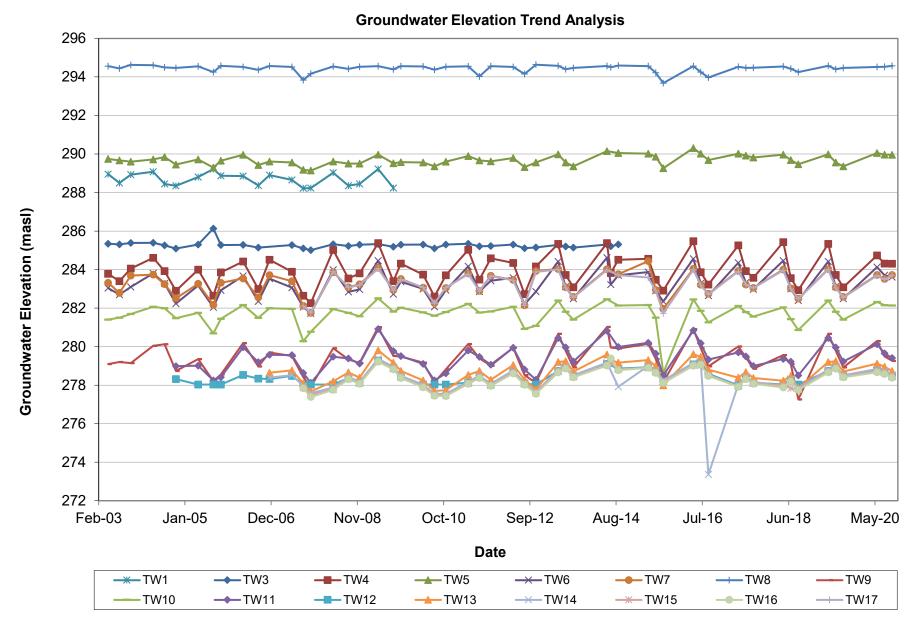
Doromotoro					2044	2042	20	13	20	14	20	15	201	16	20	17	20	10	20	19	20	020
Parameters	Units	PWQO ¹	APV ²	CWQG ³	2011	2012													_			
General Chemistry					May	May	May	Sept	June	Sept	May	Sept	May	Sept	May	Sept	May	Oct	May	Sept	June	Oct
Alkalinity	mg/L				11	12	8	12	11	10	15	Insufficient	9	Dry	9	26	7	Dry	8	39	13	27
Chemical Oxygen Demand (COD)	mg/L				30	25	20	29	38	23	32	Water	19		13	41	<5		15	39	29	23
Total Dissolved Solids	mg/L				28.000	28	42	74	46	44	50	to Sample	36		34	58	66		30	94	44	30
Total Suspended Solids	mg/L				<10	<10	<10	<10	15	<10	<10		<10		<10	15	<10		<10	61	19	<10
Ammonia	mg/L				<0.05	<0.05	<0.02	0.05	0.12	0.06	0.05		<0.02		0.02	0.95	<0.02		0.04	0.42	0.02	0.02
Turbidity	NTU				2	1.1	0.8	3.2	3.7	3	6.5		2.3		2.3	10.8	3.1		1.6	110	5.7	13.9
Un-ionized Ammonia	mg/L	0.02			<0.00071	<0.00063	<0.00003	0.000011	0.000087	0.000114	0.000155		0.000004		<0.0000138	<0.00304	<0.000054		0.00011	0.0011	0.00001	<0.000004
Chloride	mg/L		180	128	3	3	5.24	10.6	3.1	3.42	6.22		2.14		2.55	4.15	0.94		2.42	9.62	3.9	2.64
Dissolved Organic Carbon	mg/L				8.9	8.4	6.2	13	11.7	12.2	9.2		7.7		6.2	13.5	8		6.4	14	10	10.2
Sulphate	mg/L				<1	1	3.3	4.04	2.0	1.65	1.0		2.9		3.0	0.35	0.67		2.94	2.48	1.05	0.89
Hardness	mg/L				18.3	16.0	16.1	43.2	16.7	16.1	18.3		11		9.9	21.7	10.1		10.6	37.8	13	17.9
Phenols	mg/L	0.001	0.961	0.004	<0.001	0.0024	<0.001	<0.001	<0.001	<0.001	0.003		<0.001		<0.001	0.002	<0.001		0.002	0.012	0.004	<0.001
Phosphorus	mg/L				0.023	<0.1	<0.05	<0.05	<0.05	<0.05	0.1		<0.05		<0.05	<0.05	<0.05		<0.05	0.06	<0.10	<0.10
pH	pH units	6.5 - 8.5					5.98	5.92	6.66	6.59	6.81		6.25		7.08	7.15	6.40		6.39	7.02	7.06	6.30
Conductivity	uS/cm						49	78	44	45	56		34		34	64	35		32	131	53	40
Elements	<u> </u>	ı	ı	1 1				T	ı	,			1		1		1 1		1		1	
Aluminum	mg/L				0.15	0.064	0.063	0.062	0.149	0.086	0.085		0.052		0.037	0.033	0.042		0.047	0.021	0.028	0.040
Arsenic	mg/L	0.1	0.15		0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003		<0.003	<0.003	<0.003		0.004	0.239	<0.003	<0.003
Barium	mg/L		2.3		0.005	0.0035	0.004	0.007	0.006	0.005	0.008		0.005		0.005	0.01	0.004		0.004	0.029	0.004	0.004
Beryllium	mg/L	0.011	0.0053				<0.001	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001	<0.001		<0.001	<0.001	<0.0005	<0.0005
Bismuth	mg/L						<0.002	<0.002	<0.002	<0.002	<0.002		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002
Boron	mg/L	0.2	3.55	1.5	<0.01	<0.01	<0.010	<0.010	0.016	<0.010	<0.010		0.035		<0.010	<0.010	<0.010		<0.010	0.012	<0.010	<0.010
Cadmium	mg/L	0.0002	0.00021	0.000017	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<u>0.0003</u>		<0.0001		<0.0001	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001
Calcium	mg/L				4.7	4.1	4.36	14.0	4.53	4.22	4.79		2.89		2.59	5.92	2.61		2.83	11.0	3.51	4.9
Chromium	mg/L	0.0089	0.064		<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	0.005		<0.003		<0.003	<0.003	<0.003		<0.003	0.004	<0.003	<0.003
Cobalt	mg/L	0.0009	0.0052		<0.0005	<0.0005	<0.0005	0.0007	0.0012	0.0008	0.0016		<0.0005		<0.0005	0.0023	<0.0005		0.0006	0.0233	<0.0005	0.0007
Copper	mg/L	0.005	0.0069		0.004	0.0025	0.002	0.002	0.004	0.002	0.002		<0.002		0.002	<0.002	0.002		0.002	<u>0.021</u>	0.006	<0.002
Iron	mg/L	0.3			0.7	0.4	0.14	1.11	1.17	1.09	5.65		0.46		0.34	3.45	0.45		0.35	3.17	0.887	1.08
Lead	mg/L		0.002		<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001	<0.001		<0.001	<u>0.016</u>	<0.001	<0.001
Magnesium	mg/L				1.6	1.3	1.27	2.0	1.32	1.35	1.53		0.93		0.83	1.68	0.87		0.86	2.51	1.04	1.37
Manganese	mg/L				0.0	0.019	0.012	0.08	0.102	0.076	0.158		0.023		0.018	0.279	0.027		0.022	0.175	0.027	0.068
Molybdenum	mg/L		0.73				<0.002	<0.002	<0.002	<0.002	<0.002		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002
Nickel	mg/L	0.025	0.039				<0.003	<0.003	<0.003	<0.003	<0.003		<0.003		<0.003	<0.003	<0.003		<0.003	<u>0.041</u>	<0.003	<0.003
Potassium													0.28		0.14	0.82	0.29		0.28	3.34	<0.25	<0.25
Selenium	mg/L	0.1	0.005		<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004		<0.004		<0.004	<0.004	<0.004		<0.004	<0.004	<0.004	<0.004
Silicon	mg/L						1.55	1.13	1.28	3.43	0.89		0.87		0.96	1.11	0.96		0.91	3.1	0.378	2.49
Silver	mg/L	0.0001	0.00012				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001		<0.0001	<0.0001	<0.0001		<0.0001	0.0002	<0.0001	<0.0001
Sodium	mg/L		180		2.6	2.6	2.77	3.91	2.01	1.99	3.13		1.61		1.74	2.45	1.87		1.58	4.72	1.54	1.86
Strontium	mg/L				0.02	0.018	0.016	0.03	0.019	0.019	0.02		0.013		0.016	0.028	0.013		0.014	0.042	0.021	0.026
Sulphur	mg/L						1.38	1.61	0.89	0.75	0.53		774		1.03	0.49	0.88		1.02	1.21	0.584	0.371
Thallium	mg/L	0.0003	0.04				<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003		<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003
Tin	mg/L						<0.002	<0.002	<0.002	<0.002	<0.002		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002
Titanium	mg/L						<0.002	<0.002	0.004	0.003	0.009		<0.002		<0.002	0.003	0.003		<0.002	0.04	0.007	0.003
Uranium	mg/L	0.005	0.033				<0.002	<0.002	<0.002	<0.002	<0.002		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002	<0.0005	<0.0005
Vanadium	mg/L	0.006	0.02		<0.001	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002		<0.002	<0.002	<0.002		<0.002	0.003	<0.002	<0.002
Zinc	mg/L	0.03	0.089	0.03	0.015	0.0079	0.007	0.077	0.013	0.011	0.024		0.008		0.016	<0.005	0.005		<0.005	0.036	0.006	0.005
				· ·									1				<u> </u>					

- Notes:
 (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Site in Ontario, Table 3.1.
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by *italicized* entries.

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

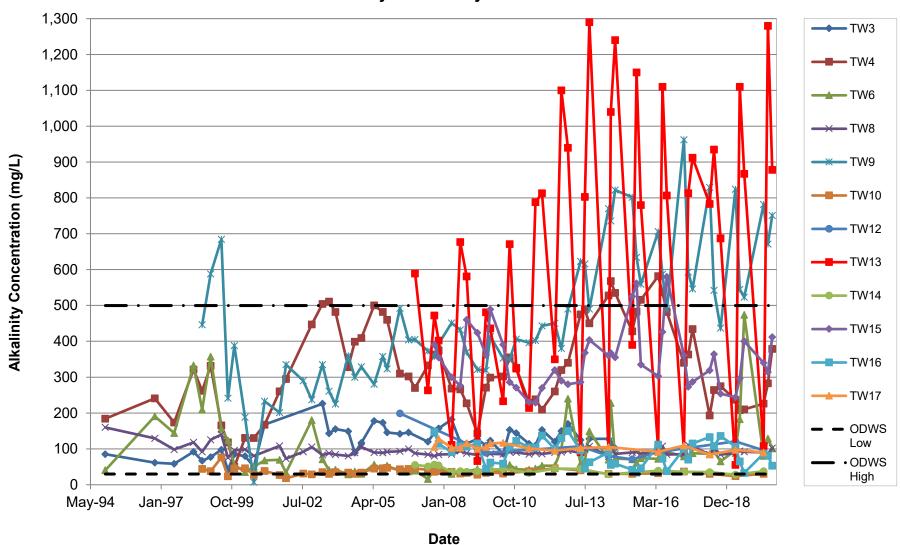
2020 Surface Water Duplicate Data

			Jun-20			Oct-20	
Parameters	Units	SW-4	HB SW DUP	Relative Percent Difference (%)	SW-4	HB SW DUP	Relative Percent Difference (%)
General Chemistry	Î						
Alkalinity	mg/L	90	88	2.247	81	87	(7.143)
Chemical Oxygen Demand (COD)	mg/L	15	17	(12.500)	25	30	(18.182)
Total Dissolved Solids	mg/L	282	278	1.429	152	144	5.405
Total Suspended Solids	mg/L	<10	<10	NC	<10	<10	NC
Ammonia	mg/L	<0.02	<0.02	NC	<0.02	<0.02	NC
Turbidity	NTU	2.4	2.3	4.255	2.3	1.2	62.857
Chloride	mg/L	106	105	0.948	40.1	40	0.250
Dissolved Organic Carbon	mg/L	7.2	7.1	1.399	12.7	13.4	(5.364)
Sulphate	mg/L	6.59	6.56	0.456	3.17	3.21	(1.254)
Hardness	mg/L	107	99.9	6.863	73.9	76	(2.142)
Phenols	mg/L	0.002	0.002	0.000	<0.001	<0.001	NC
Phosphorus	mg/L	<0.10	<0.10	NC	<0.10	<0.10	NC
bH	pH units	7.8	7.98	(2.281)	6.70	6.71	(0.149)
Conductivity	uS/cm	591	588	0.509	225	225	0.000
Elements			•	•		•	·
Aluminum	mg/L	0.006	0.007	(15.385)	0.016	0.016	0.000
Arsenic	mg/L	<0.003	<0.003	NC	<0.003	<0.003	NC
Barium	mg/L	0.018	0.019	(5.405)	0.009	0.009	0.000
Beryllium	mg/L	<0.0005	<0.0005	NC NC	<0.0005	<0.0005	NC
Bismuth	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC
Boron	mg/L	<0.010	<0.010	NC	<0.010	<0.010	NC
Cadmium	mg/L	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Calcium	mg/L	30.08	28.12	6.735	20.77	21.27	(2.379)
Chromium	mg/L	<0.003	<0.003	NC	<0.003	<0.003	NC
Cobalt	mg/L	<0.0005	<0.0005	NC	<0.0005	<0.0005	NC
Copper	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC
ron	mg/L	0.275	0.31	(12.606)	0.44	0.45	(1.357)
ead	mg/L	<0.001	<0.001	NC	<0.001	<0.001	NC
Magnesium	mg/L	7.7	7.20	6.711	5.35	5.44	(1.668)
Vanganese	mg/L	0.03	0.029	3.390	0.022	0.021	4.651
Molybdenum	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC
Nickel	mg/L	<0.003	<0.003	NC	<0.003	<0.003	NC
Potassium	mg/L	1.03	0.95	8.081	0.77	0.69	10.959
Selenium	mg/L	<0.004	<0.004	NC	<0.004	<0.004	NC
Silicon	mg/L	0.296	0.46	(44.005)	2.83	2.88	(1.751)
Silver	mg/L	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Sodium	mg/L	50.05	47.1	5.988	21.89	22.4	(2.303)
Strontium	mg/L	0.079	0.073	7.895	0.05	0.045	10.526
Sulphur	mg/L	2.492	2.17	13.768	1.4	1.24	12.282
Fhallium	mg/L	<0.0003	<0.0003	NC	<0.0003	<0.0003	NC
lin	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC
Fitanium	mg/L	0.002	0.002	(66.667)	<0.002	<0.002	NC
Jranium	mg/L	<0.002	<0.0005	NC	<0.0005	<0.002	NC
/anadium	mg/L	<0.002	<0.002	NC	<0.002	<0.002	NC
Zinc	mg/L	<0.005	<0.005	NC	<0.005	<0.005	NC

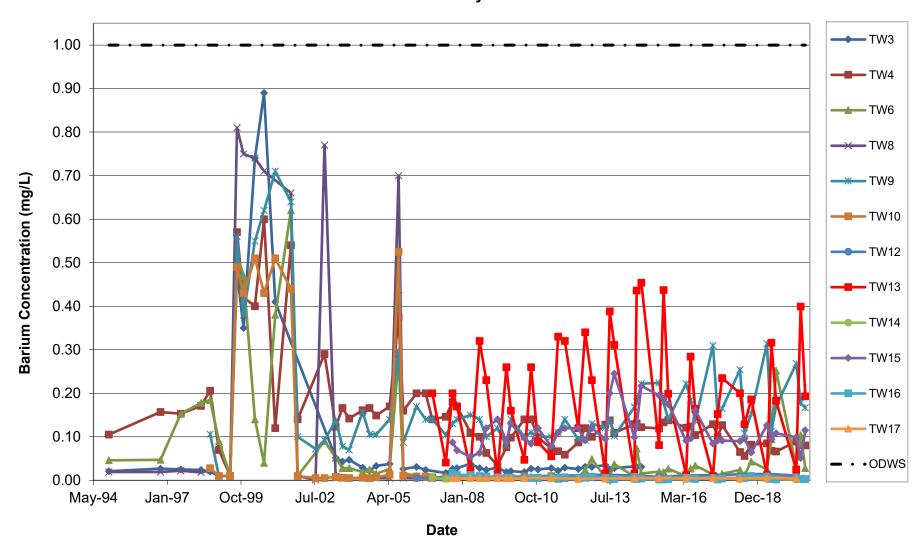

⁽¹⁾ NC - not calculable as one or both concentrations are below the laboratory method detection limit. (2) Relative percent differences execeeding 50% are presented as bold and shaded entries.

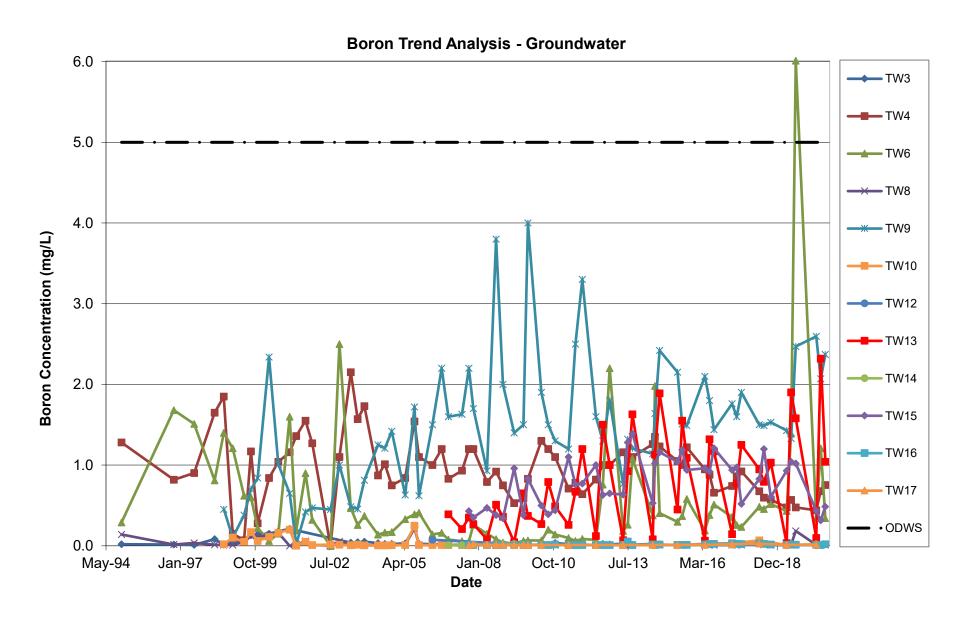
2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX G TREND ANALYSIS

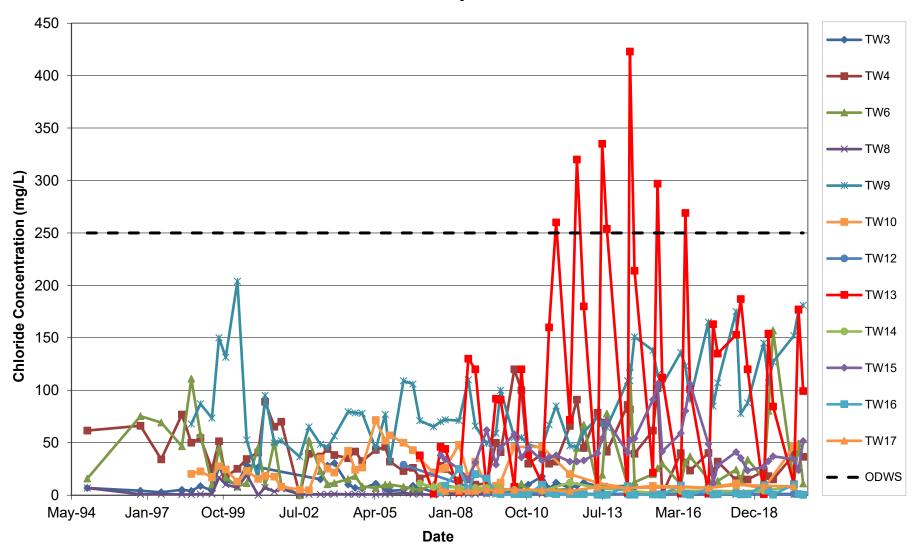


2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

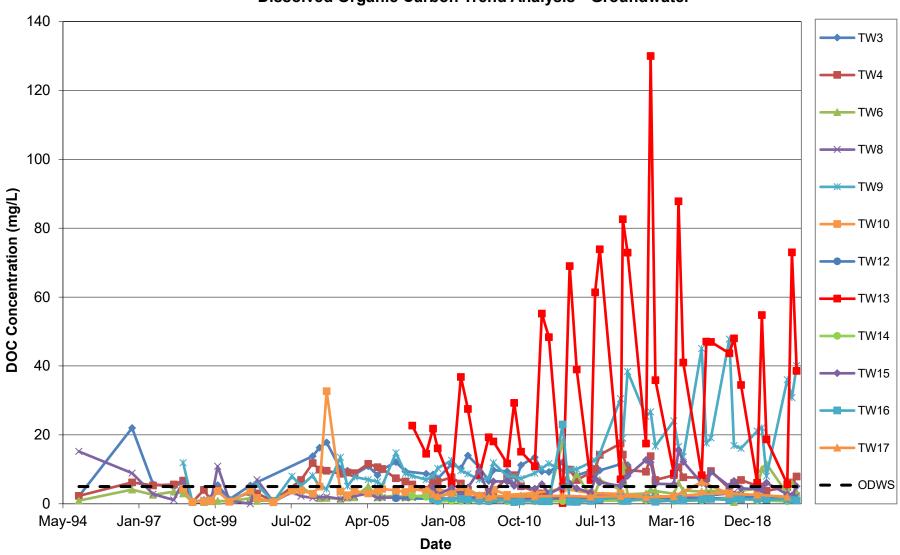

Alkalinity Trend Analysis - Groundwater


2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Barium Trend Analysis - Groundwater



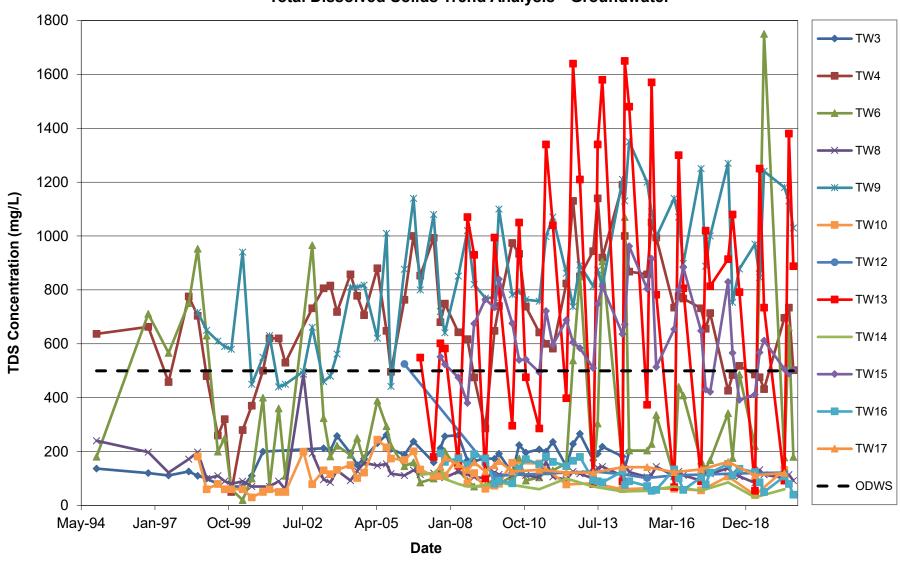
2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021


Chloride Trend Analysis - Groundwater

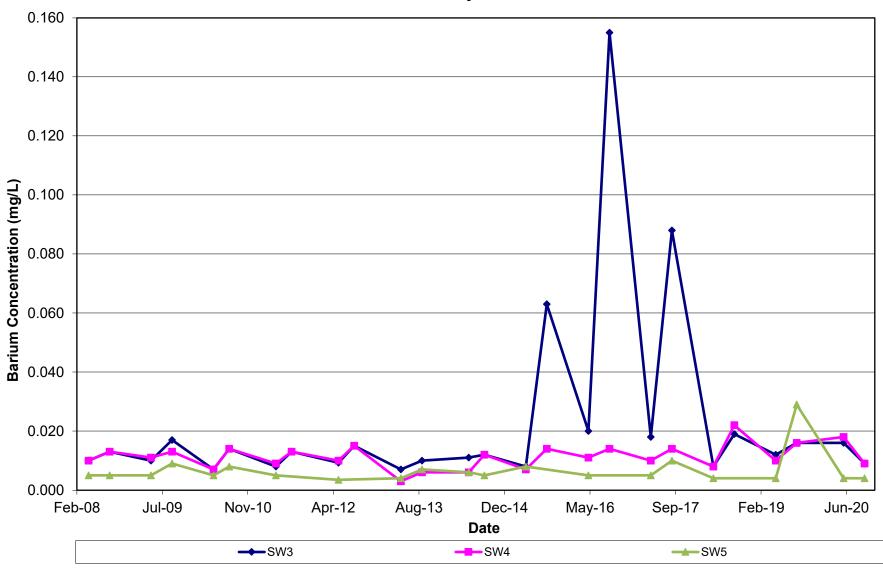
2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Dissolved Organic Carbon Trend Analysis - Groundwater

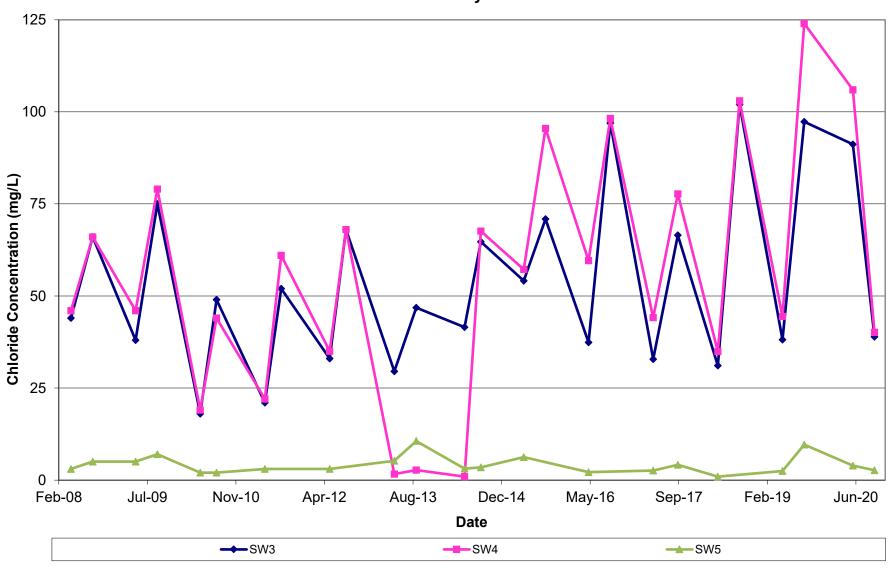
2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021


Hardness Trend Analysis - Groundwater

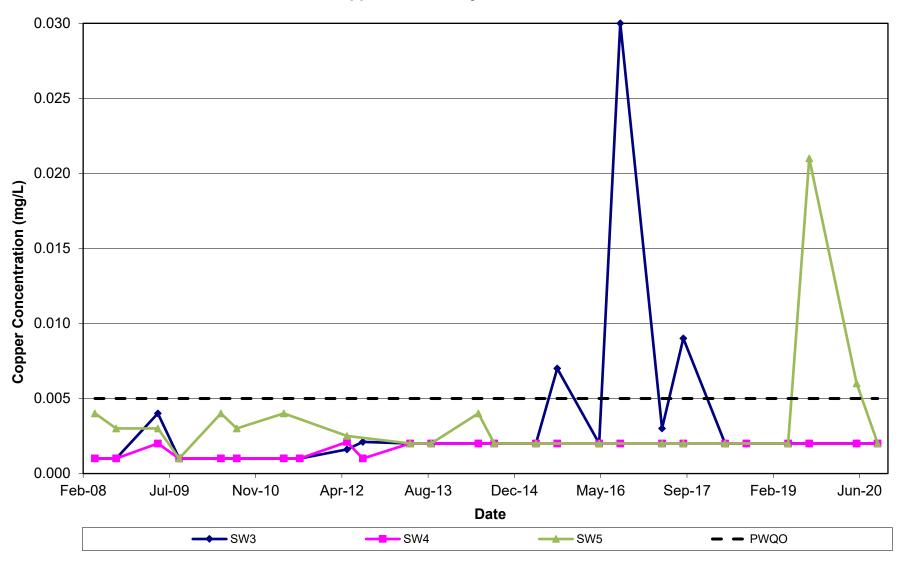
2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021


Total Dissolved Solids Trend Analysis - Groundwater

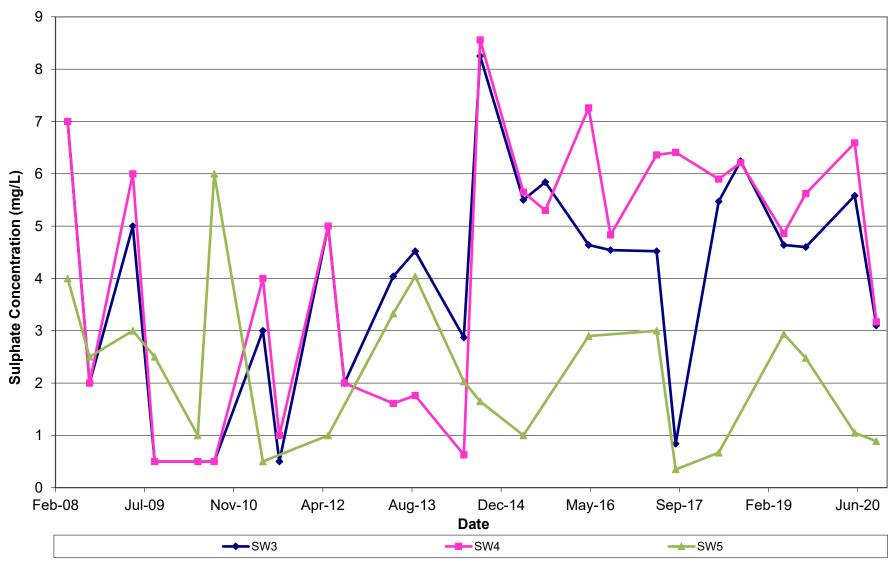
2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021


Barium Trend Analysis - Surface Water

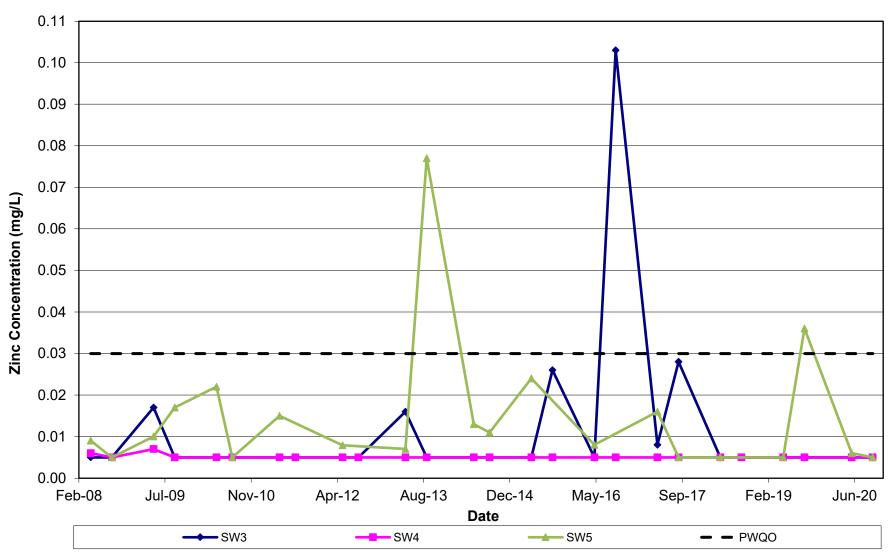
2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021


Chloride Trend Analysis - Surface Water

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021


Copper Trend Analysis - Surface Water

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021


Sulphate Trend Analysis - Surface Water

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Zinc Trend Analysis - Surface Water

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX H

PHOTOGRAPHIC INVENTORY OF GROUNDWATER AND SURFACE WATER MONITORING LOCATIONS

The City of Temiskaming Shores 2020 Annual Groundwater and Surface Water Monitoring Report

Haileybury Waste Disposal Site Haileybury, Ontario March 2021

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX I GUIDELINE B-7 CALCULATIONS

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Guideline B-7 Calculations Spring 2020 Monitoring Event

Guideline B-7 Calculations			Downgradient Monitoring Wells										
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m=C_b+x(C_r-C_b)$ (mg/L)	TW-4 (mg/L)	TW-6 (mg/L)	TW-9 (mg/L)	TW-10 (mg/L)	TW-12 (mg/L)	TW-13 (mg/L)	TW-14 (mg/L)	TW-15 (mg/L)	TW-16 ⁽⁵⁾ (mg/L)	TW-17 (mg/L)
Health Related			x=0.25 (2)										
Arsenic	0.01	0.001	0.004	<0.003	0.003	0.026	<0.003	<0.003	0.008	<0.003	<0.003	<0.003	0.004
Barium	1	0.007	0.255	0.089	0.031	0.268	0.009	0.011	0.025	0.002	0.099	0.006	0.004
Boron	5	0.010	1.257	0.44	0.342	2.594	0.012	<0.010	0.097	0.019	0.436	0.012	0.013
Cadmium	0.005	0.0002	0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Chromium	0.05	0.0023	0.014	<0.003	<0.003	0.006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Lead	0.01	0.0006	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nitrate-N	10	0.055	2.54	22.9	5.26	<1.0	0.87	0.06	0.15	1.37	15.1	<0.05	0.44
Nitrite-N	1	0.020	0.26	0.76	<0.05	<1.0	<0.05	<0.05	0.27	<0.05	0.47	<0.05	<0.05
Non-Health Rela	ated		x=0.50 ⁽²⁾										
Chloride	250	1.06	125.5	38.7	11.5	152	46.3	1.13	10.5	8.18	34.2	10.2	8.33
Copper	1	0.002	0.50	0.006	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	0.007	<0.003	<0.003
DOC	5	2.01	3.5	4.8	2.9	36	1.9	1.1	5.7	0.7	2.7	1.3	2.0
Sodium	200	2.60	101.3	13.9	15.3	136	10.7	2.33	8.27	6.52	27.1	3.34	4.24
Sulphate	500	6.39	253.2	204	44.8	193	5.5	7.94	4.52	3.59	35.3	4.23	6.64
TDS	500	119	310	696	178	1180	132	122	92	60	506	108	120
Zinc	5	0.005	2.50	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

- (1) Average of valid sampling rounds at TW-8.
- (2) Defined according to Guideline B-7 (MECP, 1994).
- (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
 (4) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (5) Downgradient property boundary well (i.e., compliance point).

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Guideline B-7 Calculations Summer 2020 Monitoring Event

Guideline B-7 Calculations				Downgradient Monitoring Wells					
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m = C_b + x(C_r - C_b)$ (mg/L)	TW-4 (mg/L)	TW-6 (mg/L)	TW-9 (mg/L)	TW-13 (mg/L)	TW-15 (mg/L)	TW-16 ⁽⁵⁾ (mg/L)
Health Related			x=0.25 ⁽²⁾						
Arsenic	0.01	0.001	0.004	<0.003	<0.003	0.018	0.008	<0.003	<0.003
Barium	1	0.007	0.255	0.081	0.104	0.178	0.399	0.051	0.003
Boron	5	0.010	1.257	0.678	1.21	2.07	2.32	0.315	<0.010
Cadmium	0.005	0.0002	0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Chromium	0.05	0.0023	0.014	<0.003	<0.003	0.005	0.009	<0.003	<0.003
Lead	0.01	0.0006	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nitrate-N	10	0.054	2.54	15.6	27.6	<0.5	<1.0	10.8	<0.05
Nitrite-N	1	0.020	0.26	<0.25	<0.25	<0.5	<1.0	<0.10	<0.05
Non-Health Related			x=0.50 ⁽²⁾						
Chloride	250	1.05	125.5	40.9	49.3	176	177	23.7	1.06
Copper	1	0.002	0.50	0.004	0.006	<0.003	<0.003	0.004	<0.003
DOC	5	2.01	3.5	6.2	6.0	30.8	73.0	2.4	1.1
Sodium	200	2.60	101.3	23.7	49.8	113	202	15.6	3.07
Sulphate	500	6.35	253.2	176	233	203	2.6	59.7	2.71
TDS	500	119	309	734	660	1130	1380	490	80
Zinc	5	0.005	2.50	<0.005	<0.005	0.007	0.005	<0.005	<0.005

- (1) Average of valid sampling rounds at TW-8.

- (2) Defined according to Guideline B-7 (MECP, 1994).
 (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
 (4) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (5) Downgradient property boundary well (i.e., compliance point).

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

Guideline B-7 Calculations Fall 2020 Monitoring Event

Guideline B-7 Calculations				Downgradient Monitoring Wells					
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m = C_b + x(C_r - C_b)$ (mg/L)	TW-4 (mg/L)	TW-6 (mg/L)	TW-9 (mg/L)	TW-13 (mg/L)	TW-15 (mg/L)	TW-16 ⁽⁵⁾ (mg/L)
Health Related			x=0.25 ⁽²⁾						
Arsenic	0.01	0.001	0.004	<0.003	<0.003	0.018	0.008	<0.003	<0.003
Barium	1	0.007	0.255	0.080	0.028	0.167	0.193	0.115	0.003
Boron	5	0.010	1.257	0.754	0.343	2.37	1.04	0.485	0.020
Cadmium	0.005	0.0002	0.001	<0.002	<0.002	<0.002	<0.004	<0.002	<0.002
Chromium	0.05	0.0023	0.014	<0.003	<0.003	0.004	0.008	<0.003	<0.003
Lead	0.01	0.0006	0.003	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001
Nitrate-N	10	0.054	2.54	11.0	5.72	<0.5	<0.25	6.88	<0.05
Nitrite-N	1	0.020	0.26	<0.25	<0.05	<0.5	<0.25	<0.25	<0.05
Non-Health Related			x=0.50 ⁽²⁾						
Chloride	250	1.05	125.5	36.6	11.0	181	99.2	51.7	0.26
Copper	1	0.002	0.50	0.006	<0.003	<0.003	<0.006	0.009	<0.003
DOC	5	2.02	3.5	7.9	3.3	40.1	38.6	5.1	1.0
Sodium	200	2.59	101.3	37.0	16.2	124	90.2	23.2	3.93
Sulphate	500	6.30	253.2	171	44.9	257	0.79	107	2.38
TDS	500	118	309	502	180	1030	888	504	40
Zinc	5	0.005	2.50	<0.005	<0.005	<0.005	<0.010	<0.005	<0.005

- (1) Average of valid sampling rounds at TW-8.

- (2) Defined according to Guideline B-7 (MECP, 1994).
 (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
 (4) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (5) Downgradient property boundary well (i.e., compliance point).

2020 Annual Groundwater and Surface Water Monitoring Report Haileybury Waste Disposal Site Haileybury, Ontario March 2021

APPENDIX J

MONITORING AND SCREENING CHECKLIST

Appendix D-Monitoring and Screening Checklist General Information and Instructions

General Information: The checklist is to be completed, and submitted with the Monitoring Report.

Instructions: A complete checklist consists of:

- (a) a completed and signed checklist, including any additional pages of information which can be attached as needed to provide further details where indicated.
- (b) completed contact information for the Competent Environmental Practitioner (CEP)
- (c) self-declaration that CEP(s) meet(s) the qualifications as set out below and in Section 1.2 of the Technical Guidance Document.

Definition of Groundwater CEP:

For groundwater, the CEP must have expertise in hydrogeology and meet one of the following:

- (a) the person holds a licence, limited licence or temporary licence under the *Professional Engineers Act*; or
- (b) the person holds a certificate of registration under the *Professional Geoscientists Act, 2000* and is a practicing member, temporary, member or limited member of the Association of Professional Geoscientists of Ontario. O. Reg. 66/08, s. 2..

Definition of Surface water CEP:

A CEP for surface water assessments is a scientist, professional engineer or professional geoscientist as described in (a) and (b) above with demonstrated experience and post-secondary education, either a diploma or degree, in hydrology, aquatic ecology, limnology, aquatic biology, physical geography with specialization in surface water, and/or water resource management.

The type of scientific work that a CEP performs must be consistent with that person's education and experience. If an individual has appropriate training and credentials in both groundwater and surface water and is responsible for both areas of expertise, the CEP may then complete and validate both sections of the checklist.

Monitoring Report and Site Information						
Waste Disposal Site Name	Haileybury Waste Disposal Site					
Location (e.g. street address, lot, concession)	~9 km southwest of Haileybury, Ontario, Lot 1, Concession 2, within the City of Temiskaming Shores, in the District of Temiskaming					
GPS Location (taken within the property boundary at front gate/ front entry)	593843 Easting and 5252782 Northing, NAD83 Zone 17					
Municipality	The City of Temiskaming Shores					
Client and/or Site Owner	The City of Temiskaming Shores					
Monitoring Period (Year)	2020					
This N	fonitoring Report is being submitted under the following:					
Certificate of Approval No.:	A570402					
Director's Order No.:						
Provincial Officer's Order No.:						
Other:						

Report Submission Frequency	AnnualOther	Specify (Type Here):
The site is:	C	Active Inactive Closed
If closed, specify C of A, control or autl	norizing document closure date:	
Has the nature of the operations at the site changed during this monitoring period?		Yes No
If yes, provide details:		
Have any measurements been taken since the last reporting period that indicate landfill gas volumes have exceeded the MOE limits for subsurface or adjacent buildings? (i. e. exceeded the LEL for methane)		Yes No

Groundwater WDS Verification:						
Based on all available information about the site and site knowledge, it is my opinion that: Sampling and Monitoring Program Status:						
1) The monitoring program continues to effectively characterize site conditions and any groundwater discharges from the site. All monitoring wells are confirmed to be in good condition and are secure:	YesIf no, list exceptions (Type Here):					
2) All groundwater, leachate and WDS gas sampling and monitoring for the monitoring period being reported on was successfully completed as required by Certificate(s) of Approval or other relevant authorizing/control document(s):	YesNoNot Applicable	ch information.				
Groundwater Sampling Location	Description/Explanation for cha (change in name or location, add	Date				
Type Here	Type Here	Select Date				
Type Here Type Here			Select Date			
Type Here	Type Here		Select Date			

 a) Some or all groundwater, leachate and WDS gas sampling and monitoring requirements have been established or defined outside of a ministry C of A, authorizing, or control document. b) If yes, the sampling and monitoring identified under 3(a) for the monitoring period being reported on was successfully completed in accordance with established protocols, frequencies, locations, and parameters developed as per the Technical Guidance Document: 		 Yes No Not Applicable Yes No Not Applicable 	If no, list exceptions below or attach additional information.
	Description/Explanation for cha (change in name or location, add		Date
Type Here	Type Here	Select Date	
Type Here	Type Here	Select Date	
Type Here	Type Here	Select Date	
Type Here	Type Here		Select Date
4) All field work for groundwater investigations was done in accordance with standard operating procedures as established/outlined per the Technical Guidance Document (including internal/external QA/QC requirements) (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):	YesNo	If no, specify (Type Here):	

	Sampling and Monitoring Program Results/WDS Conditions and Assessment:					
5)	The site has an adequate buffer, Contaminant Attenuation Zone (CAZ) and/or contingency plan in place. Design and operational measures, including the size and configuration of any CAZ, are adequate to prevent potential human health impacts and impairment of the environment.	YesNo	If no, the potential design and operational concerns/ exceptions are as follows (Type Here):			
6)	The site meets compliance and assessment criteria.	YesNo	If no, list and explain exceptions (Type Here):			
	The site continues to perform as anticipated. There have been no unusual trends/ changes in measured leachate and groundwater levels or concentrations.	● Yes○ No	If no, list exceptions and explain reason for increase/change (Type Here):			
1)	Is one or more of the following risk reduction practices in place at the site: (a) There is minimal reliance on natural attenuation of leachate due to the presence of an effective waste liner and active leachate collection/treatment; or (b) There is a predictive monitoring program in-place (modeled indicator concentrations projected over time for key locations); or (c) The site meets the following two conditions (typically achieved after 15 years or longer of site operation): i.The site has developed stable leachate mound(s) and stable leachate plume geometry/concentrations; and ii.Seasonal and annual water levels and water quality fluctuations are well understood.		Note which practice(s):	☐ (a) ☐ (b) ☑ (c)		
9)	Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	YesNoNot Applicable	If yes, list value(s) that are/have been exceeded and follow-u action taken (Type Here):			

Groundwater CEP Declaration:						
I am a licensed professional Engineer or a registered professional geoscientist in Ontario with expertise in hydrogeology, as defined in Appendix D under Instructions. Where additional expertise was needed to evaluate the site monitoring data, I have relied on individuals who I believe to be experts in the relevant discipline, who have co-signed the compliance monitoring report or monitoring program status report, and who have provided evidence to me of their credentials.						
I have examined the applicable Certificate of Approval and any other environmental authorizing or control documents that apply to the site. I have read and followed the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water Technical Guidance Document (MOE, 2010, or as amended), and associated monitoring and sampling guidance documents, as amended from time to time. I have reviewed all of the data collected for the above-referenced site for the monitoring period(s) identified in this checklist. Except as otherwise agreed with the ministry for certain parameters, all of the analytical work has been undertaken by a laboratory which is accredited for the parameters analysed to ISO/IEC 17025:2005 (E)- General requirements for the competence of testing and calibration laboratories, or as amended from time to time by the ministry.						
If any exceptions or potential concerns have been noted in the questions in the checklist attached to this declaration, it is my opinion that these exceptions and concerns are minor in nature and will be rectified for the next monitoring/reporting period. Where this is not the case, the circumstances concerning the exception or potential concern and my client's proposed action have been documented in writing to the Ministry of the Environment District Manager in a letter from me dated:						
Recommendations:						
Based on my technical review of the m	nonitoring results for the waste disposal site:					
No changes to the monitoring program are recommended	The MECP has recommended various changes to the 2021 monitoring program, including sampling all wells in the monitoring network during all three sampling events; the installation of an additional downgradient monitoring well, to be situated to the northwest of TW-15; and the					
The following change(s) to the monitoring program is/are recommended:	addition of nitrate, iron and manganese to both trend analyses and Guideline B-7 calculations.					
No Changes to site design and operation are recommended	Type Here					
The following change(s) to the site design and operation is/ are recommended:						

Name:	Brian Grant				
Seal:	Add Image				
Signature:	brian.g Digitally signed by brian.grant Date: 2021.02.09 14:52:04 -05'00'	Date:	9-Feb-2021		
CEP Contact Information:	Brian Grant, P.Eng.				
Company:	Wood Environment & Infrastructure Solutions				
Address:	131 Fielding Road, Lively, Ontario, P3Y 1L7				
Telephone No.:	705-682-2632 x 235	Fax No. :	705-682-2260		
E-mail Address:	brian.grant@woodplc.com				
Co-signers for additional expertise provided:					
Signature:		Date:	Select Date		
Signature:		Date:	Select Date		

Surface Water WDS Verifica	ation:				
Provide the name of surface water I waterbody (including the nearest surf			proximate distance to the		
Name (s)	Intermittent stream and unnamed tributary to South Wabi Creek.				
Distance(s)	Intermittent stream is situated immediately adjacent to site, flowing along the southern property boundary. Unnamed tributary to South Wabi Creek is situated 100 m from the southwest corner of the site property at its nearest point.				
Based on all available information and	d site knowledge, it is my opinio	n that:			
Sa	ampling and Monitoring	g Program Status:			
1) The current surface water monitoring program continues to effectively characterize the surface water conditions, and includes data that relates upstream/background and downstream receiving water conditions:	YesNo	If no, identify issues (Type Here):			
2) All surface water sampling for the monitoring period being reported was successfully completed in accordance with the Certificate(s) of Approval or relevant authorizing/control document(s) (if applicable):	 Yes No Not applicable (No C of A, authorizing / control document applies) 	If no, specify below or provide det	ails in an attachment.		
Surface Water Sampling Location	Description/Explanation for change (change in name or location, additions, deletions)		Date		
Type Here	Type Here	Select Date			
Type Here	Type Here	Select Date			
Type Here	Type Here	Select Date			

a) Some or all surface water samp requirements for the monitoring outside of a ministry C of A or aut	period have been established	YesNoNot Applicable		
b) If yes, all surface water samplin under 3 (a) was successfully comp established program from the site frequencies, locations and param Technical Guidance Document:	e, including sampling protocols,	○ Yes○ No⑥ Not Applicable	If no, specify below or provide details in an attachment.	
Surface Water Sampling Location		anation for change ion, additions, deletions)	Date	
Type Here	Type Here	Select Date		
Type Here	Type Here	Select Date		
Type Here	Type Here	Select Date		
Type Here	Type Here		Select Date	
4) All field work for surface water investigations was done in accordance with standard operating procedures, including internal/external QA/QC requirements, as established/outlined as per the Technical Guidance Document, MOE 2010, or as amended. (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):	YesNo	If no, specify (Type Here):		

Sampling and Monitoring Program Results/WDS Conditions and Assessment:						
5) The receiving water body meets so i.e., there are no exceedances of c Management Policies, Guidelines criteria (e.g., CWQGs, APVs), as no (Section 4.6):	riteria, based on MOE legislation and Provincial Water Quality Ob	, regulations, Water jectives and other assessment	Yes No			
If no, list parameters that exceed criteria outlined above and the amount/percentage of the exceedance as per the table below of provide details in an attachment:						
Parameter	Compliance or Assessment Criteria or Background	Amount by which Compliance Background E				
e.g. Nickel	e.g. C of A limit, PWQO, background	e.g. X% above PWQO				
Phenols and iron	PWQO					
Type Here	Type Here	Type Here				
Type Here	Type Here	Type Here				
6) In my opinion, any exceedances listed in Question 5 are the result of non-WDS related influences (such as background, road salting, sampling site conditions)?	YesNo	Background conditions.				

7)	All monitoring program surface water parameter concentrations fall within a stable or decreasing trend. The site is not characterized by historical ranges of concentrations above assessment and compliance criteria.	YesNo	
8)	For the monitoring program parameters, does the water quality in the groundwater zones adjacent to surface water receivers exceed assessment or compliance criteria (e.g., PWQOs, CWQGs, or toxicity values for aquatic biota (APVs)):	YesNoNot KnownNot Applicable	No remedial measures are necessary.
9)	Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	YesNoNot Applicable	If yes, list value(s) that are/have been exceeded and follow-up action taken (Type Here)

Surface Water CEP Declaration:						
I, the undersigned hereby declare that I am a Competent Environmental Practitioner as defined in Appendix D unde Instructions, holding the necessary level of experience and education to design surface water monitoring and sampling programs, conduct appropriate surface water investigations and interpret the related data as it pertains to the site for thi monitoring period.						
I have examined the applicable Certificate of Approval and any other environmental authorizing or control documents that apply to the site. I have read and followed the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water Technical Guidance Document (MOE, 2010, or as amended) and associated monitoring and sampling guidance documents, as amended from time to time. I have reviewed all of the data collected for the above-referenced site for the monitoring period(s) identified in this checklist. Except as otherwise agreed with the ministry for certain parameters, all of the analytical work has been undertaken by a laboratory which is accredited for the parameters analysed to ISO/IEC 17025:2005 (E)- General requirements for the competence of testing and calibration laboratories, or as amended from time to time by the ministry.						
If any exceptions or potential concerns have been noted in the questions in the checklist attached to this declaration, it is my opinion that these exceptions and concerns are minor in nature or will be rectified for future monitoring events. Where this is not the case, the circumstances concerning the exception or potential concern and my client's proposed action have been documented in writing to the Ministry of the Environment District Manager in a letter from me dated:						
Recommendations:	Recommendations:					
Based on my technical review of the monitoring results for the waste disposal site:						
No Changes to the monitoring program are recommended The following change(s) to the monitoring program is/are recommended:	Type Here					
No changes to the site design and operation are recommended	Type Here					
The following change(s) to the site design and operation is/are recommended:						

CEP Signature	brian.grant Digitally signed by brian.grant Date: 2021.02.09 14:52:54 -05'00'	
Relevant Discipline	Hydrogeologist	
Date:	9-Feb-2021	
CEP Contact Information:	Brian Grant	
Company:	Wood Environment & Infrastructure Solutions	
Address:	131 Fielding Road, Lively, Ontario, P3Y 1L7	
Telephone No.:	705-682-2632 x 235	
Fax No.:	705-682-2260	
E-mail Address:	brian.grant@woodplc.com	
Save As		Print Form