

PATHWAY TO DECARBONIZATION FEASIBILITY STUDY

CITY OF TEMISKAMING SHORES

HAILEYBURY MEDICAL CENTRE 95 Meridian Avenue, Haileybury, ON

WalterFedy Project No: 2023-0734-11

DISCLAIMER AND LIMITATION OF LIABILITY

This document was prepared by WalterFedy for the above stated client ("Client") for the specific purpose and use by the client, as described in the report and subsequent scope of work agreement. This report was completed based on the information that was available at the time of the report preparation and completion, and is subject to all limitations, assumptions and qualifications contained herein. Any events or circumstances that have occurred since the date on which the report was prepared, are the responsibility of the client, and WalterFedy accepts no responsibility to update the report to reflect these changes.

WalterFedy agrees that this report represents its professional judgement and any estimates or opinions regarding probable costs, schedules, or technical estimates provided represent the professional judgement in light of WalterFedy's experience as well as the information available at the time of report preparation. In addition, WalterFedy accepts no responsibilities for changes in market or economic conditions, price fluctuations for labour and material costs, and therefore makes no representations, guarantees or warranties for the estimates in this report. Persons relying on such estimates or opinions do so at their own risk.

Reported utility company incentive amounts are estimated based on information that was available at the time of report preparation. Actual incentive amounts are to be determined and provided by the utility company. The utility company must be contacted prior to beginning any work for which an incentive will be applied for.

This report may not be disclosed or referred to in any public document without the prior formal written consent of WalterFedy. Any use which a third party makes of the report is at the sole responsibility and risk of the third party.

WalterFedy agrees with the Client that it will provide under this Agreement the standards of care, skill and diligence normally provided in the performance of services in respect of work similar to that contemplated by this Agreement. WalterFedy at its own expense carries professional liability insurance to the extent that it deems prudent and WalterFedy's liability under this Agreement to the Client for any claim in contract or in tort related to the services provided under this Agreement howsoever arising shall be limited to the extent that such liability is covered by such professional liability insurance from time to time in effect including the deductible therein, and which is available to indemnify WalterFedy and in any event WalterFedy's liability under this Agreement shall be limited to loss or damage directly attributable to the negligent acts of WalterFedy, its officers, servants or agents, or its failure to provide the standards of care, skill and diligence aforesaid. In no event shall WalterFedy be liable for loss or damage caused by delays beyond WalterFedy's control, or for loss of earnings or for other consequential damage howsoever caused.

The errors and omissions policies are available for inspection by the Client at all times upon request. If the Client, because of its particular circumstances or otherwise, desires to obtain further insurance to protect it against any risk beyond the coverage provided by such policies, WalterFedy will co-operate with the Client to obtain such insurance at the Client's expense.

The Client, in consideration of the provision by WalterFedy of the services set forth in this Agreement, agrees to the limitations of the liability of WalterFedy aforesaid. The Client shall have no right of set-off against any billings of WalterFedy under this Agreement.

COPYRIGHT

© 2025, City of Temiskaming Shores. All Rights Reserved.

This project was carried out with assistance from the Green Municipal Fund, a Fund financed by the Government of Canada and administered by the Federation of Canadian Municipalities. Notwithstanding this support, the views expressed are the personal views of the authors, and the Federation of Canadian Municipalities and the Government of Canada accept no responsibility for them.

Project Number: 2023-0734-11

July 21, 2025

Mathew Bahm Director of Recreation City of Temiskaming Shores 325 Farr Drive Haileybury, ON POJ 1KO

Dear Mathew.

RE: Pathway to Decarbonization Feasibility Study

WalterFedy is pleased to submit the attached Pathway to Decarbonization Feasibility Study report to the City of Temiskaming Shores. This study covers the agreed-upon scope and provides a Pathway to Decarbonization Feasibility Study for the Haileybury Medical Centre, which is located at 95 Meridian Avenue in Haileybury, ON. Certain parts of this report are designed to be viewed in digital/PDF format. This approach will enable the reader to zoom in on images and navigate the document using the provided hyperlinks.

The report was completed based on the information provided by the City of Temiskaming Shores, using the supplied and collected data, engineering judgment, and various analysis tools to arrive at the final recommendations.

All of which is respectfully submitted,

WALTERFEDY

Jordan Mansfield, P.Eng., M.Eng., CEM, CMVP

Energy Engineer

Energy and Carbon Solutions

jmansfield@walterfedy.com 519 576 2150 x 336

Contents

		Page
EX	CUTIVE SUMMARY	1
1	NTRODUCTION 1 Overview	. 5 . 5 . 5
2	ACILITY DESCRIPTION 1 Facility description methodology 2 Facility overview 3 Building information 4 Space use 5 Building Envelope 6 HVAC 7 Domestic hot water 8 Lighting 9 Process and plug loads 10 Water fixtures 11 Utility services 12 Onsite energy sources 13 Electrical infrastructure	. 7 . 8 . 9 . 10 . 12 . 17 . 18 . 21 . 24 . 26
3	TILITY USE ANALYSIS 1 Utility analysis methodology	. 32 . 33 . 35 . 36 . 37 . 39
4	NERGY MODEL DEVELOPMENT 1 Energy model development methodology	. 42. 45. 46
5	MEASURE ANALYSIS 1.1 Measure analysis methodology 2.2 Measure analysis assumptions 3.3 Measure identification 4.4 AC01-AC04 conversion to ASHP with electric backup 5.5 AC01-AC04 conversion to ASHP with natural gas backup 6.6 Carbon offsets 20 7.7 DHW to ASHP 8. Interior LED lighting upgrade 9. Roof upgrade to high performance	. 53 . 56 . 57 . 60 . 63 . 65

	5.11 5.12 5.13	Solar PV rooftop Wall upgrade to high performance Windows and doors to high performance Measure risk analysis Measure analysis summary	74 76 78
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7	NARIO ANALYSIS Cluster scenario analysis methodology Cluster scenario objectives Cluster scenario composition Cluster scenario performance analysis Plan scenario development Plan performance analysis Plan performance summary Scenario analysis discussion	81 82 83 93 97 101
7	END	1	103
L	ist	of Figures	
	1 2 3 4 5 6 7 8 9 10 11	Recommended plan scenario composition, indicating which measures are implemented when and at what cost in each plan scenario	3 7 11 11 11 11 11 11
	12 13 14 15 16 17 18 19	Northeast elevation	11 11 11 11 14 14
	20 21 22 23 24 25 26	AC2 thermostat	14 14 14 14 14 14
	27 28 29 30 31		

33	CU4 protected by wood enclosure	
34	Dirty filter on HRV4	
35	Electric heater at entrance to dentist office	
36	Electric heater in room 240	
37	Exhaust fan	
38	Exhaust fan in dentist area washroom	
39	HRV1	
40	HRV1 dirty filter	
41	HRV1 control	
42	HRV2	
43	HRV3	
44	HRV3 control	
45	HRV3 dirty filter	
46	HRV3 nameplate	15
47	HRV4 control	
48	HRV4 serving AC4	15
49	Men's washroom exhaust	15
50	Men's washroom baseboard heater with integrated thermostat	15
51	Plug in electric heater in an office	
52	Portable dehumidifier in storage room	15
53	Portable dehumidifier in storage room-2	
54	Portable heater in the dentist area	
55	Supply and exhaust for HRV	
56	Supply and exhaust for HRV - 2	
57	Thermostat for an electric heater in the waiting room	
58	DHW1	
59	100 W incadescent lamp in the AC4 mechanical room	19
60	Exterior light fixture on	
61	Exterior light on in front of dental office	
62	Exterior lights control	
63	Exterior sign light control	
64	Flood lights with integrated motion sensor	
65	Manual switch in room 243	
66	Type A1 in administration	
67	Type A1 - surface mounted fixtures assumed to have T8 lamps	
68		
	Type A2 - T12 lamps	
69		
70 71	Type A4 - T12 lamps with a magnetic ballast	
71	Type A5 - Integrated LED panel	
72	Type B1 - LED lamps	
73	Type B - Washroom lighting with T8 lamps	
74	Type C1 - Vestibule lighting with LED lamp	
75	Type C2 - replaced 1x4 surface mounted fixtures with LED lamps	
76	Type C3 - waiting room LED pot lights	
77	Type C - Soffit LED light	
78	Type F - sconce fixtures with LED lamps	
79	Type H - LED pole	
80	Air compressor	
81	Autoclave in family medicine	
82	Autoclaves in dentist area	
83	Central vacuum	
84	Coffee maker and kettle	
85	Dental air compressor	
86	Dental dry vacuum	22

87	Dental lubrication	
88	Dentist chair	
89	Dishwasher	
90	Examination room equipment	
91	IT equipment	
92	Lab specimen refrigerator	
93	Microwaves in the lunch room	
94	Pharmaceutical refrigerator	
95	Photo copier	
96	Portable air compressor	
97	Refrigerator	
98	Refrigerator in the basement	
99	Sound equipment in doctor's office	
100	Stove and rangehood in the basmeent	
	Television in dentist area	
	Television in the lunchroom	
	Toaster and single serve coffee	
	Washer and dryer	
	X-ray machine	
106	1.6 gpf toilet	24
	Central vacuum	
	Examination room sink	
109	Hand faucet in the basement	24
110	Handwashing faucet	24
111	Handwashing faucet in rm 105	24
112	Handwashing faucet in dentist area	25
113	Janitorial sink	25
114	Kitchen faucet in the basement	25
115	Kitchen sink	25
116	Lab sink	25
117	Men's washroom faucets	25
118	Shower in the basement	25
119	Sob sink in the basement	25
120	Toilet in the basmeent	25
121	Urinal	25
	Water fountain	
123	Electricity meter	26
124	Natural gas meter	26
	-	26
126	Dentist panel-1	28
	·	28
	·	28
	·	28
		28
	· · · ·	28
		29
		29
		29
		29
		29
		33
	, ,	33
	Monthly electricity use	
	Monthly natural gas use	

141	Electricity use intensity benchmarking analysis comparison	. 37
	Natural gas use intensity benchmarking analysis comparison	
	Total energy use intensity benchmarking analysis comparison	
	GHG emissions intensity benchmarking analysis comparison	
	Energy Star energy performance scorecard	
	Hourly electricity utility use by end use (made by calibrated energy model)	
	Hourly natural gas utility use by end use (made by calibrated energy model)	
	Monthly utility use profiles for each modelled utility	
	Electricity calibration analysis (metered vs modelled utility use)	
	Natural gas calibration analysis (metered vs modelled utility use)	
	Electricity end use breakdown (calculated by calibrated energy model)	
	Natural gas end use breakdown (calculated by calibrated energy model)	
	Utility cumulative use sensitivity analysis	
	GHG cumulative emissions and life cycle cost sensitivity analysis	
	Scenario composition	
	Electricity utility use expected yearly for each scenario by end use	
	Natural gas utility use expected yearly for each scenario by end use	
	Equivalent energy use expected yearly for each scenario by end use	
	GHG emissions expected yearly for each scenario by end use	
	Utility costs expected yearly for each scenario by end use	
	Project cost expected for each scenario by measure	
	Life cycle cost expected for each scenario by cost item	
	GHG cumulative reduction per life cycle cost (LCC) dollar expected for each scenario by utility	92
164	Plan scenario composition, indicating which measures are implemented when and at what cost in	
	each plan scenario	
	Electricity yearly utility use projection for each scenario	
	Natural gas yearly utility use projection for each scenario	
167	GHG yearly emissions projection for each scenario	99
167		99
167	GHG yearly emissions projection for each scenario	99
167 168	GHG yearly emissions projection for each scenario	99
167 168	GHG yearly emissions projection for each scenario	99
167 168 ist	GHG yearly emissions projection for each scenario	99 100
167 168 ist	GHG yearly emissions projection for each scenario	99 100
167 168 ist 1	GHG yearly emissions projection for each scenario	99 100
167 168 ist 1 2 3	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information	99 100 4 6
167 168 ist 1 2 3 4	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview	99 100 4 6 6 7
167 168 ist 1 2 3 4 5	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary	99 100 4 6 6 7
167 168 ist 1 2 3 4 5 6	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary	99 100 4 6 6 7 9
167 168 ist 1 2 3 4 5 6 7	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary	99 100 4 6 6 7 9 10 12
167 168 ist 1 2 3 4 5 6 7 8	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario Of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary	99 100 4 6 6 7 9 10 12 12
167 168 ist 1 2 3 4 5 6 7 8 9	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Cooling systems summary	99 100 4 6 6 7 9 10 12 12 12
167 168 1 1 2 3 4 5 6 7 8 9 10	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary	99 100 4 6 6 7 9 10 12 12 12 12
167 168 1 2 3 4 5 6 7 8 9 10 11	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary Water fixture summary Water fixture summary	99 100 4 6 6 7 9 10 12 12 12 12 18 24
167 168 1 2 3 4 5 6 7 8 9 10 11 12	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary Water fixture summary Baseline performance data source for each utility	99 100 4 6 6 7 9 10 12 12 12 18 24 30
167 168 ist 1 2 3 4 5 6 7 8 9 10 11 12 13	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary Water fixture summary Baseline performance data source for each utility GHG emissions factor assumptions	99 100 4 6 6 6 7 9 10 12 12 12 12 18 24 30 32
167 168 ist 1 2 3 4 5 6 7 8 9 10 11 12 13 14	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary Water fixture summary Baseline performance data source for each utility GHG emissions factor assumptions Utility cost rate assumptions for the baseline year (2022)	99 100 4 6 6 7 9 10 12 12 12 12 13 30 32 32
167 168 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario Of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary Water fixture summary Baseline performance data source for each utility GHG emissions factor assumptions Utility cost rate assumptions for the baseline year (2022) Baseline utility use performace	99 100 4 6 6 7 9 10 12 12 12 12 18 24 30 32 32 36
167 168 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario Of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary Water fixture summary Baseline performance data source for each utility GHG emissions factor assumptions Utility cost rate assumptions for the baseline year (2022) Baseline utility use performace Utility and end use summary and definitions	99 100 4 6 6 7 9 10 12 12 12 12 18 24 30 32 32 36 41
167 168 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario Of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary Water fixture summary Baseline performance data source for each utility GHG emissions factor assumptions Utility cost rate assumptions for the baseline year (2022) Baseline utility use performace Utility and end use summary and definitions Statistical calibration analysis summary	99 100 4 6 6 7 9 10 12 12 12 12 18 24 30 32 36 41 48
167 168 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario Of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary Water fixture summary Baseline performance data source for each utility GHG emissions factor assumptions Utility cost rate assumptions for the baseline year (2022) Baseline utility use performace Utility and end use summary and definitions Statistical calibration analysis summary Utility cost rate future assumptions	99 100 4 6 6 7 9 10 12 12 12 18 24 30 32 36 41 48 53
167 168 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario Of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Lighting systems summary Lighting systems summary Water fixture summary Baseline performance data source for each utility GHG emissions factor assumptions Utility cost rate assumptions for the baseline year (2022) Baseline utility use performace Utility and end use summary and definitions Statistical calibration analysis summary Utility cost rate future assumptions Financial incentive assumptions	99 100 4 6 6 7 9 10 12 12 12 18 24 30 32 32 36 41 48 53 54
167 168 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	GHG yearly emissions projection for each scenario Life cycle yearly cost (after discounting to present value) projection for each scenario Of Tables Recommended plan scenario performance summary Asset management summary for this facility Contact information Facility overview Space use summary Building envelope summary Air distribution systems summary Heating systems summary Cooling systems summary Lighting systems summary Water fixture summary Baseline performance data source for each utility GHG emissions factor assumptions Utility cost rate assumptions for the baseline year (2022) Baseline utility use performace Utility and end use summary and definitions Statistical calibration analysis summary Utility cost rate future assumptions	99 100 4 6 6 7 9 10 12 12 12 12 13 30 32 32 36 41 48 53 54 54

22	Measure identification and triaging summary	56
23	Project cost estimate (AC01-AC04 conversion to ASHP with electric backup)	58
24	AC01-AC04 conversion to ASHP with electric backup analysis results summary	59
25	Project cost estimate (ACO1-ACO4 conversion to ASHP with natural gas backup)	61
26	AC01-AC04 conversion to ASHP with natural gas backup analysis results summary	62
27	Carbon offsets 20 analysis results summary	64
28	Project cost estimate (DHW to ASHP)	66
29	DHW to ASHP analysis results summary	
30	Project cost estimate (Interior LED lighting upgrade)	68
31	Interior LED lighting upgrade analysis results summary	
32	Project cost estimate (Roof upgrade to high performance)	
33	Roof upgrade to high performance analysis results summary	
34	Project cost estimate (Solar PV rooftop)	72
35	Solar PV rooftop analysis results summary	73
36	Project cost estimate (Wall upgrade to high performance)	75
37	Wall upgrade to high performance analysis results summary	75
38	Project cost estimate (Windows and doors to high performance)	
39	Windows and doors to high performance analysis results summary	77
40	Measure analysis summary	80
41	Scenario objectives	81
42	Cluster composition	83
43	Scenario analysis summary	84
44	Plan scenario identification and objectives	93
45	Scenario composition summary	95
46	Minimum performance scenario measure implementation timeline	95
47	Aggressive deep retrofit measure implementation timeline	95
48	Comprehensive measure implementation timeline	95
49	Organizational goal alignment measure implementation timeline	96
50	Business as usual measure implementation timeline	96
51	Plan performance summary	101

EXECUTIVE SUMMARY

WalterFedy was engaged by the City of Temiskaming Shores to complete a Pathway to Decarbonization Feasibility Study for the Haileybury Medical Centre. The objective of this engagement is to identify and analyze measures that reduce utility use, GHG emissions, and utility costs at the Haileybury Medical Centre, and to analyze various GHG Reduction Pathways consisting of combinations of measures. Based on these analyses, the objective is also to recommend the preferred GHG Reduction Pathway for implementation. To achieve this objective, the following steps were taken.

- 1. **Facility description**. The existing conditions of the facility were reviewed through available documentation and a site survey completed on 2024-04-17 to gain an understanding of the facility and its operations. A facility description, summarizing findings, is provided in Section 2.
- 2. **Utility use baseline**. Metered utility data provided by the City of Temiskaming Shores was reviewed to understand historical utility use trends, and to establish the utility use baseline for the Haileybury Medical Centre. Findings are documented in Section 3.
- 3. **Energy model development**. A calibrated energy model was developed from a bottom-up hourly analysis considering historical weather patterns, and the insight gained from reviewing the facility's existing conditions and historical utility use data. Findings are documented in Section 4.
- 4. **Measure analysis**. Measures intended to achieve the City of Temiskaming Shores's goals were identified and analyzed. Analysis includes conceptual design development and utility analysis quantifying utility use impacts, GHG emissions and utility costs for each measure. Findings are documented in Section 5.
- 5. **Scenario analysis**. Scenario analysis was completed to estimate the costs and benefits expected from implementing various combinations (i.e. scenarios) of the measures that were individually analyzed in Section 5, accounting for the interactive effects between measures within each scenario. Findings are documented in Section 6.

All analysis was completed using the calibrated energy model, which matches metered yearly electricity and natural gas utilities used by the Haileybury Medical Centre by precisely capturing existing conditions of the building within the model. The model tracks each utility end use for every hour of a complete year.

Based on the analysis completed and discussions with the client, the GHG reduction pathway that is recommended for implementation is as follows.

Organizational goal alignment

The recommended plan scenario composition is presented in Figure 1, which is a measure implementation timeline plot indicating which measures were assumed to be implemented in which plan scenarios and when, and the estimated project cost of each measure. The measures are also colour-coded according to measure group.

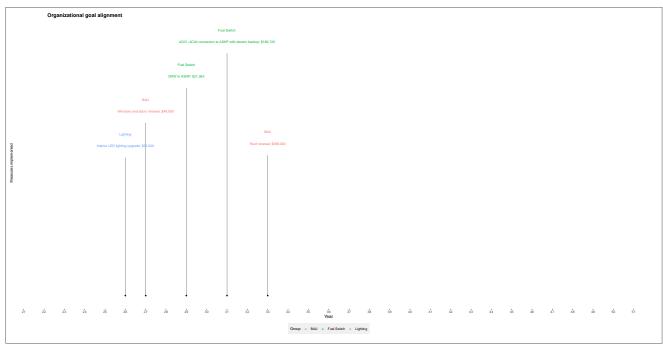


Figure 1: Recommended plan scenario composition, indicating which measures are implemented when and at what cost in each plan scenario

The following plots in Figure 2 show the results for the recommended GHG reduction pathway.



Figure 2: Recommended scenario performance

Table 1 summarizes the performance of all the plan scenarios with respect to utility use, GHG emissions, utility cost, and financial metrics. The recommended plan scenario is in **bold**. The first half of Table 1 represents the estimated performance in the final year (2050) of the evaluation period. The second half of Table 1 represents the estimated cumulative performance across the entire evaluation period (present to 2050). All final year dollar values are in the value of today's currency. All cumulative dollar values presented in Table 1 are calculated as the simple sum of expenditures over the evaluation period, except for the life cycle cost, which is discounted to present value (as illustrated in Figure 2).

Table 1: Recommended plan scenario performance summary

Section	Description	Unit	Minimum performance scenario	Aggressive deep retrofit	Comprehensive	Organizational goal alignment	Business as usual
Utility use final	Electricity use	[kWh/yr]	147,188	147,188	102,552	147,188	121,792
	Electricity monthly peak (av)	[kW]	39.8	39.8	34.4	39.8	33.6
	Electricity yearly peak (max)	[kW]	62.5	62.5	56.8	62.5	46.2
	Natural gas use	[m3/yr]	0	0	0	0	8,859
GHG emissions final	Electricity GHGs	[tCO2e/yr]	1.4	1.4	1.0	1.4	1.2
	Natural gas GHGs	[tCO2e/yr]	0.0	0.0	0.0	0.0	17.1
	Carbon offsets GHGs	[tCO2e/yr]	0.00	0.00	0.00	0.00	0.00
	Total GHGs	[tCO2e/yr]	1.4	1.4	1.0	1.4	18.3
Utility cost final	Electricity utility cost	[\$/yr]	35,884	35,884	25,002	35,884	29,693
	Natural gas utility cost	[\$/yr]	0	0	0	0	4,010
	Carbon offsets utility cost	[\$/yr]	0.00	0.00	0.00	0.00	0.00
	Federal carbon charge	[\$/yr]	0.00	0.00	0.00	0.00	0.00
	Total utility cost	[\$/yr]	35,884	35,884	25,002	35,884	33,703
Utility use cumulative	Electricity use	[kWh]	3,977,014	4,127,743	3,438,315	3,977,014	3,531,960
	Natural gas use	[m3]	81,513	44,873	81,513	81,513	256,920
GHG emissions cumulative	Electricity GHGs	[tCO2e]	139	148	127	139	129
	Natural gas GHGs	[tCO2e]	158	87	158	158	496
	Carbon offsets GHGs	[tCO2e]	0.00	0.00	0.00	0.00	0.00
	Total GHGs	[tCO2e]	297	235	285	297	625
Utility cost cumulative	Electricity utility cost	[\$]	755,000	778,996	638,915	755,000	661,621
	Natural gas utility cost	[\$]	22,978	12,149	22,978	22,978	89,342
	Carbon offsets utility cost	[\$]	0.00	0.00	0.00	0.00	0.00
	Federal carbon charge	[\$]	3,338	3,338	3,338	3,338	3,338
	Total utility cost	[\$]	781,316	794,484	665,231	781,316	754,301
Financial cumulative	Project cost	[\$]	796,282	777,085	2,302,668	796,282	568,626
	Replacement cost	[\$]	197,928	185,010	197,928	197,928	44,508
	Life cycle cost	[\$]	970,940	1,021,793	899,230	970,940	812,288

1 INTRODUCTION

1.1 Overview

WalterFedy was engaged by the City of Temiskaming Shores to complete a Pathway to Decarbonization Feasibility Study for the Haileybury Medical Centre. This engagement aims to identify a recommended Greenhouse gas (GHG) reduction pathway by examining GHG reduction measures and various scenario developments. Based on a review of the Request For Proposal Document, the City's Corporate Greenhouse Gas Reduction Plan (GHGRP), and the Federation of Canadian Municipalities (FCM) Community Buildings Retrofit (CBR) funding program, the following scenarios will be developed:

- Business as usual: To follow the existing capital renewal plan and replace equipment at the end of its life with like-for-like equipment, meeting minimum energy-efficiency requirements of ASHRAE 90.1.
- Minimum performance: To achieve a 50% reduction in operational GHG emissions within 10 years and 80% within 20 years. This scenario addresses the minimum performance scenario of FCM's CBR program.
- Aggressive deep retrofit: Implement the same measures as in the minimum performance scenario but achieve an 80% reduction in GHG emissions within five years. This scenario addresses the additional scenario requirement of FCM's CBR program.
- Organizational goal alignment: To reduce emissions by 40% GHG emissions from 2019 levels by 2033 and 80% reduction by 2050 of on-site emissions. The remaining 20% is to be addressed through carbon offsets, as noted in the City's GHGRP.
- **Comprehensive**: To understand the limit of GHG reductions possible by implementing all measures with the greatest reduction on GHG emissions that are mutually exclusive.

1.2 Background

1.2.1 Corporate Greenhouse Gas Reduction Plan

The City of Temiskaming Shores has been dedicated to taking a leading role in the battle against climate change. As a committed member of the Partners for Climate Protection (PCP) program, they achieved Milestone 3 in May 2023 by creating the City's Corporate Greenhouse Gas Reduction Plan. The plan includes ambitious targets, aiming for a 40% reduction below 2019 levels by 2033 and striving for net zero emissions operations by 2050. After conducting an inventory of its greenhouse gas (GHG) emissions in 2019, the City discovered that its buildings and facilities accounted for 813 tCO2e, representing 41.6% of its total GHG emissions inventory. A significant portion of these GHG emissions comes from natural gas, which makes up 41.7% of all energy sources for the City. To reach these sustainability goals, the City has implemented several measures, including:

- Establishing a Climate Action Committee
- Implementing a Climate Lens with regular reporting
- Utilizing a combination of EnergyCAP and ENERGY STAR Portfolio Manager to monitor and report building utility use, including electricity, natural gas, and propane
- Transitioning its fleet to biodiesel
- Initiating decarbonization studies of its buildings

This study will contribute to the decarbonization studies of its buildings. The Haileybury Medical Centre is one of fourteen buildings being examined. Of these fourteen buildings, they represent over 77% of the buildings and facilities GHG emissions. In particular, the Haileybury Medical Centre represented 19 tCO2e in 2019, or 0.96% of the overall inventory.

1.2.2 Asset Management Plan

The City of Temiskaming Shores released Version 1.2 of their Asset Management Plan in 2024, providing a framework for prioritizing and optimizing asset management efforts from 2024 to 2034. The building and facility

assets are estimated to have a total replacement cost of \$76,178,722, with City Hall alone having an estimated replacement cost of \$8,613,308. The average annual financial requirements, including capital and operational expenditures, is \$2,153,014. Furthermore, the 2031 budget will see a significant increase in capital needs, nearing \$44 million. In 2032, this figure will exceed \$25 million, and in 2033, it will be more than \$5 million. Figure 2 summarizes the asset management data for the Haileybury Medical Centre.

Table 2: Asset management summary for this facility

Group	Metric	Unit	Value
F	Content Value Estimated	[\$]	39,383
Financial	Building Land Tank	[\$]	2,423,954
	Replacement Cost	[\$]	2,463,337
Information	Install Date	[yr]	1981
	Age	[yrs]	44
Condition Rating	Structure Condition Score	[-]	4
	Final Condition Score	[-]	4
D: 1	Probability of Failure	[-]	1
Risk	Consequence of Failure	[-]	5
	Risk Score	[-]	1.8

Contact information

Contact information for WalterFedy (the Consultant) and City of Temiskaming Shores (the Client) is provided in Table 3.

Table 3: Contact information

Description	Consultant	Client		
Organization	WalterFedy	City of Temiskaming Shores		
Address	Suite 111, 675 Queen St South	325 Farr Drive		
Location	Kitchener, ON	Haileybury, ON		
Postal code	N2M 1A1	P0J 1K0		
Contact name	Jordan Mansfield	Mathew Bahm		
Credentials	P.Eng., M.Eng., CEM, CMVP	-		
Title	Energy Engineer	Director of Recreation		
Phone	519 576 2150 x 336	705 672 3363 x 4106		
Email	jmansfield@walterfedy.com	mbahm@temiskamingshores.ca		

2 FACILITY DESCRIPTION

2.1 Facility description methodology

The facility was reviewed and described according to the following methodology. The intent of reviewing and describing the facility is to understand the pertinent operations and systems in the facility that use utilities so that the baseline (i.e. existing) utility use can be accurately quantified.

- 1. **Facility document review**. Facility documents from the following list were reviewed, if available. Further information on available documentation are available in Section 2.3.
 - · Building drawings.
 - Building automation system graphics and points lists.
 - Previously completed Engineering studies, including Energy Audits, Feasibility Studies, and Building Condition Assessments.
 - · Historical utility use data.
 - Other documentation made available by the City of Temiskaming Shores.
- 2. **Site survey**. A site survey was completed on 2024-04-17 to review the energy systems applicable to the desired retrofit scenario.

2.2 Facility overview

An overview of the Haileybury Medical Centre is provided in Table 4.

Description Unit Value Name [-] Haileybury Medical Centre Address 95 Meridian Avenue [-] Location [-] Hailevbury, ON Type [-] Medical services 1981 Construction year [-] Gross floor area [m2] 1,369 14,740 Gross floor area [ft2]

Table 4: Facility overview

An aerial view of the Haileybury Medical Centre is provided in Figure 3.

Figure 3: Haileybury Medical Centre aerial view

2.3 Building information

Renovations

The following renovations are known:

- HVAC spot audit (2009): a detailed report outlining the HVAC system at this facility. The report indicated
 that there was a minimum of 14 inches of blown-in insulation. Furthermore, the report provided the cost
 of upgrading the system and performed heating and cooling load calculations. However, the renovation did
 not proceed.
- Roof replacement (2013): the asphalt shingles were replaced. No additional insulation added at this time.
- Partial window installation (2023): five thermally broken aluminum awning windows were installed at the facility.

Additions

There have been no additions to this building.

Energy use not within the gross floor area

The following energy use is located outside the gross floor area of this building:

- Building-mounted exterior light fixtures
- · Parking lot pole lighting

Utility bill responsibility

Utility bill responsibility is as follows:

• Natural gas meter: the City

• Electricity meter: the City

Commissioning history

No commissioning history has been documented.

Previous studies

The following is a summary of known previous studies:

- Energy audits: one report focused on the HVAC system that was conducted in 2009.
- Engineering studies: none.
- Building condition assessments: none.

Documentation availability

In conjunction with the site survey, the following documents are being used to help us better understand this facility:

- Architectural drawings were not made available. The overall R-value of building envelope assemblies and area take-offs (e.g., window area) will be estimated.
- Mechanical drawings, ME01-ME03; M01-M02, dated July 1976.
- Electrical drawings, E01-E02, dated July 1976.
- Floor plans.
- Schematic drawings of HVAC system, July 2010.

2.4 Space use

Type summary

The following spaces were identified during the site survey and documentation review.

- Examination rooms
- Imaging room
- Lunch room
- Laundry
- Medical supply room
- Storage
- Janitorial
- Electrical/Mechanical room
- Office, enclosed and open
- Washroom
- Computer/Server room
- Meeting room
- Lobby

All spaces appear to be used as originally intended.

Occupancy scheduling

The facility operation hours are as follows:

- Family Health team hours: 09:00-16:00 Monday to Thursday; 09:00-12:00 Friday.
- **Dentist hours**: 08:00-17:00 Monday and Thurday; 08:00-18:00 Tuesday and Wednesday; 08:00-16:00 Friday.

Based on the GFA, it is assumed that this building has a peak occupancy of 35 people.

Space use breakdown

A space use breakdown, which was estimated via calibrated measurements performed on available facility floor plans, is presented in Table 5.

Table 5: Space use summary

Space name	Floor area of space	HVAC System	Data source
-	[m2]	-	-
North basement area	180.6	AC1	Assumption.
Dentist office	204.3	AC2	Assumption.
Central core, south, east, and west wings	437.9	AC3	Assumption.
North wing	198.9	AC4	Assumption.
Washrooms	35.3	-	Assumption.
Storage	203.4	-	Assumption.
Corridor and stairwells	72.1	-	Assumption.
Mechanical	37.0	-	Assumption.

2.5 Building Envelope

Building envelope area data summary

Building envelope areas are summarized in Table 6.

Table 6: Building envelope summary

Area of roof	Area of exterior walls net	Area of exterior walls	Area of exterior windows	Area of exterior doors
[m2]	[m2]	[m2]	[m2]	[m2]
727	938	734	188	16.7

Overview

No architectural drawings were available, and therefore no detailed information on building assemblies. All overall R-Values are based on observations at the site.

Roof

- The roof exterior layer consisted of asphalt shingles. The HVAC audit report indicated a minimum of 14 inches of blown-in insulation in the attic space.
- The overall R-Value is assumed to be R47.
- The roof condition was good.

Opaque Walls (above ground)

- The exterior walls comprised an outer layer of concrete block.
- The overall R-Value is assumed to be R20.
- The wall condition was excellent.

Fenestration

Windows

- The facility has aluminum-framed, double-pane windows. Five windows were installed in 2023, which were aluminum-framed, thermally broken.
- Windows appeared to be in good condition, including sealant around windows.
- The overall U-Value is assumed to be 3.18 W/m2K for the window system with a SHGC of 0.35.

Doors

- The facility has eight swing doors, 6 with glazing, and 2 hollow metal.
- The overall fenestration-to-wall ratio is estimated to be 20%, as elevation drawings were not made available.

Overall Enclosure Tightness

It is difficult to determine a building's infiltration rate without performing a blower door test. However, an infiltration rate is required for energy modelling purposes. Based on the site survey, an infiltration rate of 0.25 Lps/m2 of the above-grade building envelope area will be assumed here.

Building Envelope documentation

Building envelope documentation, including available drawings and photos from the site survey, is provided in the following images.

Figure 4: Asphalt shingled roof

Figure 5: Concrete block exterior walls

Figure 6: Door sweeps are in good condition

Figure 7: Entrance to the old literacy entrance

Figure 8: Hollow metal door

Figure 9: Main entrance

Figure 10: No insulation on foundation wall

Figure 11: North exit

Figure 12: Northeast elevation

Figure 13: One of the five awning windows added in 2023

Figure 14: Skylight in core wing

Figure 15: Swinging door with glazing

Figure 16: Typical window

2.6 HVAC

HVAC equipment summary

HVAC systems are summarized in Table 7, Table 8, and Table 9.

Table 7: Air distribution systems summary

			· · · · · · · · · · · · · · · · · · ·			
Tag	Make	Model	Serves	Design flow	Motor output	Data source
-	-	-	-	[cfm]	[hp]	-
AC1	Heil	NTG- M075EGA3	North basement area	1,300	1.50	Assumption.
AC2	Heil	NTG- M075EGA3	Dentist office	1,300	1.50	Assumption.
AC3	Heil	NTG- M125EKA3	Central core, south, east, and west wings	2,000	1.50	Assumption.
AC4	Heil	NTG- M100EHA3	North wing	1,700	1.50	Assumption.
HRV1	LifeBreath	195DCS	Serves AC1	210	0.25	Assumption.
HRV2	LifeBreath	195DCS	Serves AC2	210	0.25	Assumption.
HRV3	LifeBreath	195DCS	Serves AC3	210	0.25	Assumption.
HRV4	LifeBreath	195DCS	Serves AC4	210	0.25	Assumption.

Table 8: Heating systems summary

Tag	Serves	Utility	Efficiency	Output	Data source
-	-	-	[decimal]	[btuh]	-
AC1_HEAT	AC1	Natural gas	0.90	67,500	Nameplate.
AC2_HEAT	AC2	Natural gas	0.90	67,500	Nameplate.
AC3_HEAT	AC3	Natural gas	0.90	112,500	Nameplate.
AC4_HEAT	AC4	Natural gas	0.90	90,000	Nameplate.
DHW1	DHW	Natural gas	0.95	34,200	Nameplate.
ELECT_HT	-	Electricity	1.00	332,684	Drawings.

Table 9: Cooling systems summary

Tag	Serves	Efficiency	Output	Data source
-	-	[decimal]	[ton]	-
CU1	Serves AC1	4	2.0	Report.
CU2	Serves AC2	4	2.5	Report.
CU3	Serves AC3	4	5.0	Report.
CU4	Serves AC4	4	3.0	Report.

System type

The facility utilizes four furnaces, each with an outdoor condensing unit, and a heat recovery ventilator. Supplementary heat is delivered via electric basboard. A summary of this system is as follows:

- All furnaces are natural gas-fired burners complete with DX cooling.
- There are four HRVs with sensible effectiveness ranging from 68% to 81%.
- Most HRVs had dirty filters that require maintenance.
- The four air-cooled condensers range in size from 2 tons to 5 tons.

• CU3 was replaced and relocated to the opposite side of the building. The old CU3 is still present.

A take-off of the electrical drawings suggests a total heating capacity of 97.5 kW. This amount does not include additional electric baseboard heaters installed in the literacy and dentist office. Electric baseboards are controlled either by an integrated thermostat or a wall-mounted thermostat. These thermostats are non-programmable.

Central Plant

• There is no centralized plant at this facility.

Distribution system

The air distribution throughout the building uses a single-duct approach to registers. A central return is used.

There are no pumps present at this site.

Controls

AC1 to AC4

The following summarizes the controls for all the furnaces:

- AC1 is controlled by a programmable thermostat. However, its temperature setpoint was in a hold at 20C. There was no schedule present, and the fan was set to ON.
- AC2 is controlled by a programmable thermostat. However, its temperature setpoint was in a hold at 67F. There was no schedule present, and the fan was set to ON.
- AC3 is controlled by a non-programmable thermostat. The temperature setpoint was 72F and the fan was set to auto.
- AC4 is controlled by a programmable thermostat. However, its temperature setpoint was in a hold at 71F. There was no schedule present and the fan was set to auto.

HRV1 to HRV4

The following summarizes the controls for all the HRVs:

- HRV1 was set to continuous ventilation at the lowest fan speed. There was no RH setpoint, and the space was registering 24%. The controller was calling for maintenance.
- HRV2 controller was not observed during the site visit.
- HRV3 was set to operate for 10 minutes every hour and was at the lowest fan speed. The RH setpoint was 40%, and the space was registering 26%.
- HRV4 was set to continuous ventilation at the highest fan speed. The RH setpoint was 41%, and the space was registering 27%. The controller was calling for maintenance.

Electric baseboard heaters

All electric baseboard heaters were controlled by a built-in or wall-mounted thermostat. Most thermostats observed had their temperature setpoint turned down, suggesting minimal use of electricity at this facility for space heat.

HVAC system documentation

HVAC system documentation, including available drawings and photos from the site survey, is provided in the following images.

Figure 17: 5 kW electric heater with built-in thermostat

Figure 18: AC1

Figure 19: AC1 thermostat

Figure 20: AC2

Figure 21: AC2 thermostat

Figure 22: AC3

Figure 23: AC3 dirty filter

Figure 24: AC3 thermostat

Figure 25: AC4

Figure 26: AC4 nameplate

Figure 27: AC4 thermostat control

Figure 28: Additional HRV being installed in the old literacy area

Figure 29: CU1 protected by wood enclosure

Figure 30: CU2

Figure 31: CU3 - no longer in use

Figure 32: CU3

Figure 33: CU4 protected by wood enclosure

Figure 34: Dirty filter on HRV4

Figure 35: Electric heater at entrance to dentist office

Figure 36: Electric heater in room 240

Figure 37: Exhaust fan

Figure 38: Exhaust fan in dentist area washroom

Figure 39: HRV1

Figure 40: HRV1 dirty filter

Figure 41: HRV1 control

Figure 42: HRV2

Figure 43: HRV3

Figure 44: HRV3 control

Figure 45: HRV3 dirty filter

Figure 46: HRV3 nameplate

Figure 47: HRV4 control

Figure 48: HRV4 serving AC4

Figure 49: Men's washroom exhaust

heater with integrated thermostat

Figure 50: Men's washroom baseboard Figure 51: Plug in electric heater in an office

Figure 52: Portable dehumidifier in storage room

storage room-2

Figure 53: Portable dehumidifier in Figure 54: Portable heater in the dentist Figure 55: Supply and exhaust for HRV

Figure 56: Supply and exhaust for HRV - Figure 57: Thermostat for an electric heater in the waiting room

2.7 Domestic hot water

Overview

One natural gas DHW heater serves this building, and is located in the basement mechanical room. It has a capacity of 50 USG.

Domestic Hot Water documentation

Domestic Hot Water documentation, including available drawings and photos from the site survey, is provided in the following images.

Figure 58: DHW1

2.8 Lighting

Lighting system summary

Lighting systems are summarized in Table 10.

Table 10: Lighting systems summary

Space name	Floor area of space	Light power density	Light power input	Data source
-	[m2]	[W/m2]	[W]	-
North basement area	180.6	9.5	1,716	Assumption.
Dentist office	204.3	9.5	1,941	Assumption.
Central core, south, east, and west wings	437.9	9.5	4,160	Assumption.
North wing	198.9	9.5	1,889	Assumption.
Washrooms	35.3	9.5	335	Assumption.
Storage	203.4	9.5	1,932	Assumption.
Corridor and stairwells	72.1	9.5	684	Assumption.
Mechanical	37.0	9.5	351	Assumption.

Interior lighting

Fixtures

The following interior light fixtures were observed during the site survey:

- Type A1: 2'x4' surface-mounted, 4 lamp, 120V, assumed T8
- Type A2: 2'x4' surface-mounted, 4 lamp, 120V, T12, magnetic ballast
- Type A3: 2'x4' surface-mounted, 4 lamp, 120V, LED lamp retrofitted
- Type A4: 2'x4' recessed, 4 lamp, 120V, T12, magnetic ballast
- Type A5: 2'x4' recessed, 120V, LED integrated panel
- Type B: 1'x4' surface-mounted, 2 lamp, 120V, T8 lamp
- Type B1: 1'x4' surface-mounted, 2 lamp, 120V, LED lamp retrofitted
- Type C1: Recessed 6" downlight, 1 lamp, 120V, LED lamp
- Type C2: 1'x4' surface-mounted, 2 lamp, 120V, LED lamp retrofitted
- Type C3: Recessed 6" downlight, 1 lamp, 120V, LED
- Type F: sconce, 1 lamp, 120V, LED lamp

Controls

Interior lighting control is done through manual switches. The lights are assumed to be on one hour before typical hours of operation and three hours after hours of operation.

Exterior lighting

Fixtures

The following exterior light fixtures were observed during the site survey:

- Type C: Recessed 6" downlight, 1 lamp, 120V, LED lamp
- Type H: Pole, LED fixture

Controls

A timer controls the exterior lighting. The schedule runs from 17:00 to 07:00 each day.

Lighting system documentation

Lighting system documentation, including available drawings and photos taken during the site survey, is provided in the following images.

Figure 59: 100 W incadescent lamp in the AC4 mechanical room

Figure 60: Exterior light fixture on

Figure 61: Exterior light on in front of dental office

Figure 62: Exterior lights control

Figure 63: Exterior sign light control

Figure 64: Flood lights with integrated motion sensor

Figure 65: Manual switch in room 243

Figure 66: Type A1 in administration

Figure 67: Type A1 - surface mounted fixtures assumed to have T8 lamps

Figure 68: Type A2 - T12 lamps

Figure 69: Type A3 - retrofitted with LED lamps

Figure 70: Type A4 - T12 lamps with a magnetic ballast

Figure 71: Type A5 - Integrated LED panel

Figure 72: Type B1 - LED lamps

Figure 73: Type B - Washroom lighting with T8 lamps

Figure 74: Type C1 - Vestibule lighting with LED lamp

Figure 75: Type C2 - replaced 1x4 Figure 76: Type C3 - waiting room LED surface mounted fixtures with LED pot lights lamps

Figure 77: Type C - Soffit LED light

Figure 78: Type F - sconce fixtures with LED lamps

Figure 79: Type H - LED pole

2.9 Process and plug loads

Process

Various process loads are present at the facility, including:

- IT equipment
- Autoclaves
- Central vacuum
- Dental air compressor
- Dental dry vacuum
- Dental lubrication
- Pharmaceutical refrigerator
- X-ray machine
- Washer and dryer

Plug loads

Various plug loads are present at the facility, including:

- Office equipment (e.g., photocopier)
- Personal computers
- Appliances (e.g., dishwasher, kettle, stove, refrigerator, etc.)

Process and plug loads documentation

Process and plug loads documentation, including available drawings and photos from the site survey, is provided in the following images.

Figure 80: Air compressor

Figure 83: Central vacuum

Figure 81: Autoclave in family medicine

Figure 84: Coffee maker and kettle

Figure 82: Autoclaves in dentist area

Figure 85: Dental air compressor

Figure 86: Dental dry vacuum

Figure 87: Dental lubrication

Figure 88: Dentist chair

Figure 89: Dishwasher

Figure 90: Examination room equipment

Figure 91: IT equipment

Figure 92: Lab specimen refrigerator

Figure 93: Microwaves in the lunch room

Figure 94: Pharmaceutical refrigerator

Figure 95: Photo copier

Figure 96: Portable air compressor

Figure 97: Refrigerator

Figure 98: Refrigerator in the basement

Figure 99: Sound equipment in doctor's office

Figure 100: Stove and rangehood in the basmeent

Figure 101: Television in dentist area

Figure 102: Television in the lunchroom

Figure 103: Toaster and single serve coffee

Figure 104: Washer and dryer

Figure 105: X-ray machine

2.10 Water fixtures

Water fixture summary

Water fixtures at Haileybury Medical Centre are summarized in Table 11.

Table 11: Water fixture summary

Serves	Unit count	Flow	Volume	Data source
-	-	[gpm]	[gpc]	-
Kitchen faucets	3	2.2	-	Assumption.
Washroom faucets	8	1.0	-	Assumption.
Toilets	7	-	1.6	Assumption.
Urinals	1	-	1.0	Assumption.
Washroom faucets	1	2.5	-	Assumption.

Overview

A summary of water fixtures is as follows:

- Eight handwashing faucets.
- Three kitchen sinks.
- Two slop sinks.
- Seven toilets.
- One urinal.
- One shower.

Water fixture documentation

Water fixture documentation, including available drawings and photos taken during the site survey, is provided in the following images.

Figure 106: 1.6 gpf toilet

Figure 109: Hand faucet in the basement

Figure 107: Central vacuum

Figure 110: Handwashing faucet

Figure 108: Examination room sink

Figure 111: Handwashing faucet in rm

Figure 112: Handwashing faucet in dentist area

Figure 113: Janitorial sink

Figure 114: Kitchen faucet in the basement

Figure 115: Kitchen sink

Figure 116: Lab sink

Figure 117: Men's washroom faucets

Figure 118: Shower in the basement

Figure 119: Sob sink in the basement

Figure 120: Toilet in the basmeent

Figure 121: Urinal

Figure 122: Water fountain

2.11 Utility services

Utility services summary

Overview

The building utilizes electricity from Hydro One Networks Inc. and natural gas from Enbridge.

The one electricity meter operates on a General Energy rate structure.

There is one natural gas meter at this facility.

Utility services documentation

Utility services documentation, including available drawings and photos from the site survey, is provided in the following images.

Figure 124: Natural gas meter

Figure 125: Water meter

2.12 Onsite energy sources

Overview

There are no generators or renewable energy systems present at this facility.

Electrical infrastructure

Overview

The existing systems is 600A at 208V -3P service running at a maximum load of 34.2 kW, which is approximately 20% of the full load of 173 kW of the building. The main switchboard and house panel (Panel A) are both physically full. The building is fed from a pole-mounted transformer bank across the road. The feed travels underground to the mechanical room via 4-500 MCM into the main 120/208V switchgear, with a 600A main disconnect. There are an estimated ten panels throughout the building.

Panel summary

The ten panels at this site are summarized below:

- Panel A, 120/208V, 200A, three ph, 4W. Serves receptacles, lights, heating, vacuum, ac units, and outside lights.
- Panel B, 120/208V, 100A, three ph, 4W. Serves receptacles, lights, and heaters. This panel does not meet code as it is blocked by bookshelves.
- Panel C, 120/208V, 100A, three ph, 4W. This panel was not observed during the site visit.
- Panel D, 120/208V, 100A, three ph, 4W. Serves AC1 fan, receptacles, AC units, electric heating, and subpanel D.
- Panel E, 120/208V, 100A, three ph, 4W. Serves receptacles, lights, and heating (turned off).
- Panel F, 120/208V, 100A, three ph, 4W. This panel was not observed during the site visit.
- Panel G, 120/208V, 100A, three ph, 4W. Serves receptacles, lights, heaters, and air conditioners. The circuits labelled as heater and air conditioner are turned off.
- Panel unknown, 120/208V, 100A, three ph, 4W. Serves washer, dryer, stove, refrigerator, range hood, and receptacles.
- Dentist panel-1. Serves x-ray machines, dentist lighting, receptacles, vacuum pump, air compressor, sterilization cabinet, and dentist chairs.
- Dentist panel-2. Serves AC2, receptacles, lighting, dentist chairs, x-ray machines, and car receptacles.

Electrical infrastructure documentation

Electrical infrastructure documentation, including available drawings and photos from the site survey, is provided in the following images.

Figure 126: Dentist panel-1

Figure 129: Main switch - 600A

Figure 127: Dentist panel-2

Figure 130: Panel A (2 tub)

Figure 128: Exposed electrical wiring

Figure 131: Panel B

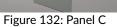


Figure 133: Panel D

Figure 134: Panel E

Figure 135: Panel G

Figure 136: Panel unknown

3 UTILITY USE ANALYSIS

3.1 Utility analysis methodology

The utility use analysis was completed according to the following methodology. Note that the results achieved from applying this methodology are presented in the same order in Sections 3.2 through 3.8.

- 1. **Utility analysis assumptions**. Assumptions applied in the utility use analysis were identified and summarized in Section 3.2.
- 2. **Metered utility use**. Metered utility use data, as available, were analyzed and summarized in a subsection corresponding to the utility. Metered utility use data were available for the following utilities for Haileybury Medical Centre.
 - Electricity; see Section 3.3.
 - Natural gas; see Section 3.4.
- 3. Utility use baseline. The utility use baseline was summarized in Section 3.5, and includes the following.
 - Baseline year: A baseline year was determined as the most recent year with the fewest anomalies in facility operations and utility metering. The baseline year was used to establish the historical weather data used for the energy model development, as explained in Section 4.1. If valid metered utility data was available for the baseline year, then the metered utility use data for the baseline year was used to establish baseline performance and for energy model calibration.
 - Baseline performance: Yearly utility use, GHG emissions and utility costs. For each utility, the baseline
 performance was derived from the metered utility use for the baseline year if available for that utility,
 or from the energy model described in Section 4 if metered data were unavailable or invalid for that
 utility. Table 12 summarizes the data source of the baseline performance for each utility.

Table 12: Baseline performance data source for each utility

Utility	Source
Electricity	Meter
Natural gas	Meter

- 4. **Benchmarking analysis**. The yearly baseline energy use and GHG emissions of Haileybury Medical Centre was compared with those of similar facilities in Section 3.6. Data for similar facilities were obtained from the Government of Ontario's website, made available for the Broader Public Sector (BPS) through O. Reg. 25/23. The list below includes all municipalities considered for the benchmarking process. If this building is the only one presented, it indicates that similar buildings are not being reported to the database.
 - City of Greater Sudbury
 - City of North Bay
 - City of Temiskaming Shores
 - City of Timmins
 - · Municipality of Temagami
 - Municipality of West Nipissing
 - Town of Iroquois Falls
 - Town of Kirkland Lake
 - Township of Armstrong
 - Township of Black River-Matheson
 - Township of Brethour
 - Township of Casey

- Township of Chamberlain
- Township of Gauthier
- Township of Harley
- Township of Harris
- Township of Hilliard
- Township of Hudson
- Township of James
- Township of Kerns
- Township of Larder Lake
- Township of Matachewan
- Township of McGarry
- 5. **Portfolio benchmarking analysis**. A portfolio benchmarking analysis was also performed, where Energy Star Portfolio Manager was used to benchmark the energy analysis of Haileybury Medical Centre.
- 6. Utility use analysis discussion. Results of the utility use analysis were studied and discussed in Section 3.8.

3.2 Utility analysis assumptions

Assumptions applied throughout the methodology are summarized as follows.

• GHG emissions factors were assumed as per Table 13.

Table 13: GHG emissions factor assumptions

Utility	Unit	Value	Source
Electricity	[tCO2e/kWh]	0.0000302	Environment and Climate Change Canada Data Catalogue, Electricity Grid Intensities-1
Natural gas	[tCO2e/m3]	0.0019324	National Inventory Report, 1990-2023, Table 1-1, Table A61.1-1 and Table A61.1-3

• Utility cost rates for the baseline year of 2022 were assumed as per Table 14. Electricity utility cost rates were assumed based on typical wholesale rates for the General Service Energy billing structure. Throughout this document, the Federal Carbon Charge ("FCC") was treated separately with respect to applicable fuels, rather than being blended into the utility cost rate for those fuels. As such, all other utility cost rates exclude the federal carbon charge. The Federal Carbon Charge was removed on April 1, 2025, as such, this document has been updated to have the FCC set to \$0/tCO2e for 2025 and onward.

Table 14: Utility cost rate assumptions for the baseline year (2022)

Utility	Line item	Unit	Value
Electricity	Electricity consumption - Class B	[\$/kWh]	0.0200
Electricity	Global adjustment - Class B	[\$/kWh]	0.0735
Electricity	Regulatory	[\$/kWh]	0.0057
Natural gas	Natural gas (blended)	[\$/m3]	0.2600
GHG emissions	Federal carbon charge	[\$/tCO2e]	50.0000

3.3 Electricity metered utility use

Hourly electricity use is plotted in Figure 137.

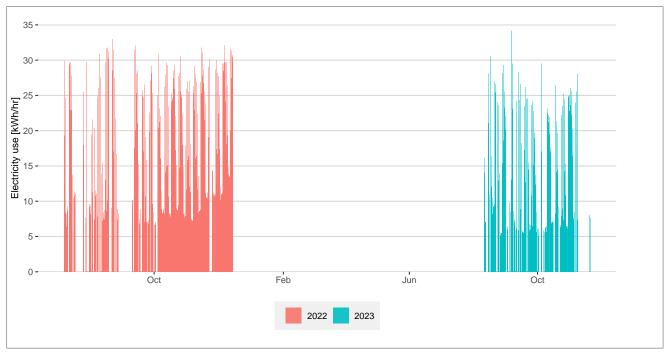


Figure 137: Hourly electricity use

The same hourly electricity use data is plotted in Figure 138, which highlights how electricity use is influenced by year, season, day of week and hour of day. The vertical axis on Figure 138 may be rescaled relative to in Figure 137 for greater resolution.

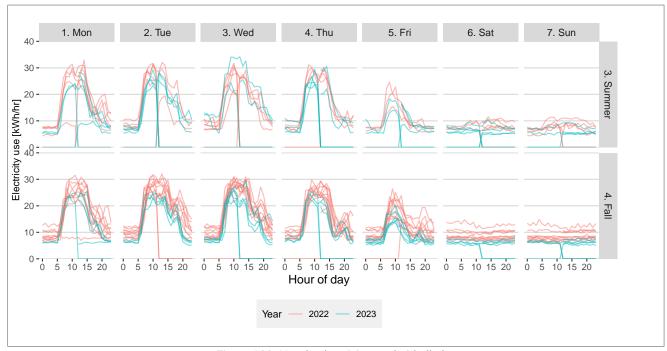


Figure 138: Hourly electricity use hairball plot

Monthly electricity use is plotted in Figure 139.

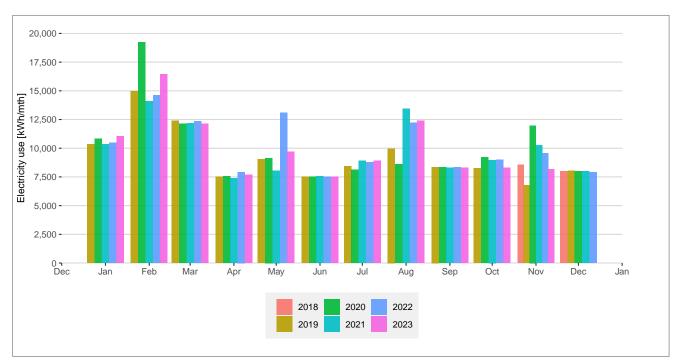


Figure 139: Monthly electricity use

3.4 Natural gas metered utility use

Monthly natural gas use is plotted in Figure 140.

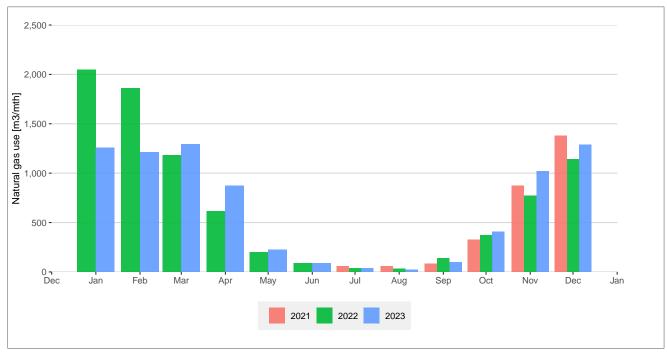


Figure 140: Monthly natural gas use

Utility use baseline

Baseline year

The baseline year for Haileybury Medical Centre, which is used to establish the baseline performance through the metered utility use data from that year, is as follows.

• Baseline year: 2022.

Baseline performance

Baseline utility use performance for the baseline year of 2022 is summarized in Table 15.

Table 15: Baseline utility use performace

Category	Utility	Unit	Value
Utility use	Electricity use	[kWh/yr]	121,792
	Natural gas use Carbon offset use	[m3/yr] [tCO2e/yr]	8,859 0
Equivalent energy use	Electricity energy	[kWh/yr]	121,792
	Natural gas energy	[kWh/yr]	93,525
	Total energy	[kWh/yr]	215,317
GHG emissions	Electricity GHGs	[tCO2e/yr]	4
	Natural gas GHGs	[tCO2e/yr]	17
	Carbon offsets GHGs	[tCO2e/yr]	0
	Total GHGs	[tCO2e/yr]	21
Utility cost	Electricity utility cost	[\$/yr]	12,082
	Natural gas utility cost	[\$/yr]	2,303
	Carbon offsets utility cost	[\$/yr]	0
	Federal carbon charge	[\$/yr]	856
	Total utility cost	[\$/yr]	15,241

3.6 Benchmarking analysis

Benchmarking analysis results are presented in the following figures.

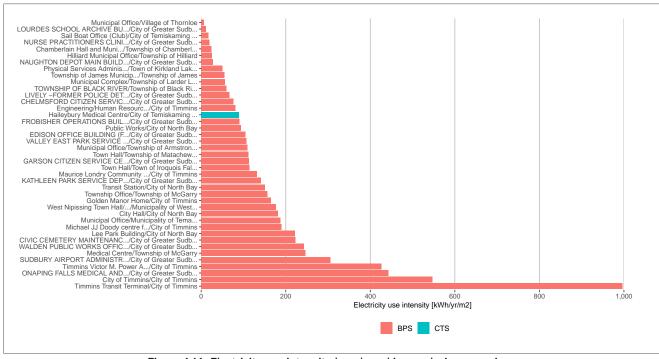


Figure 141: Electricity use intensity benchmarking analysis comparison

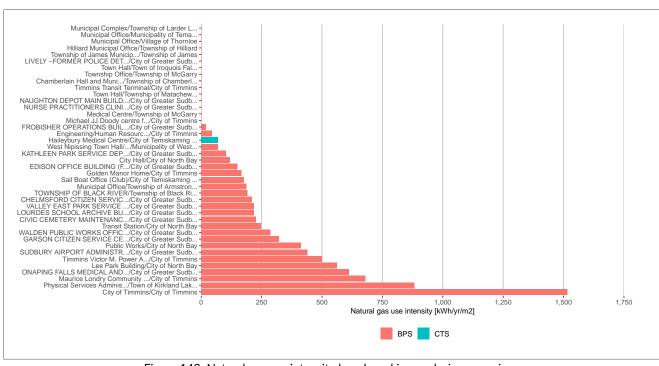


Figure 142: Natural gas use intensity benchmarking analysis comparison

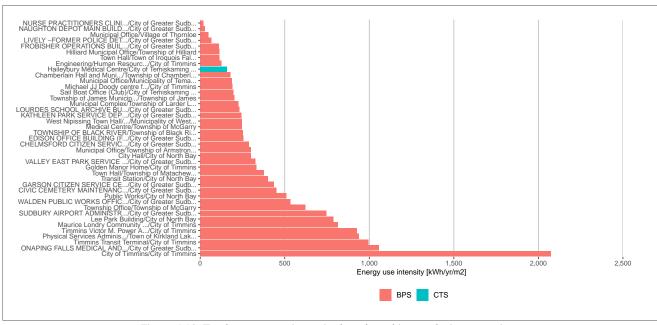


Figure 143: Total energy use intensity benchmarking analysis comparison

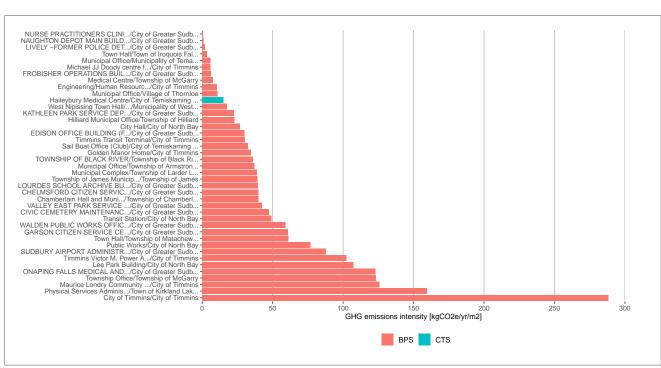


Figure 144: GHG emissions intensity benchmarking analysis comparison

3.7 ENERGY STAR Portfolio Manager benchmarking analysis

The scorecard is shown in Figure 145.

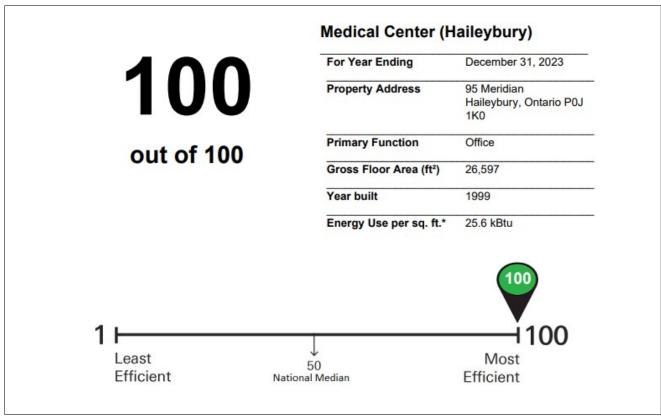


Figure 145: Energy Star energy performance scorecard.

3.8 Utility use analysis discussion

General

The following discussion seeks to explain utility use trends observed in the metered data, based on the understanding of the building systems and their operations presented in 2.

Electricity - Hourly

- There is limited hourly metered electricity data.
- From the available hourly data, it appears that the electricity consumption is typically around 5-10 kWh during unoccupied hours, and 20-30 kWh during occupied hours.

Electricity - Monthly

- 2018: The dataset provided started in November 2018 and did not allow for a full year of comparison. November and December for this year exhibited similar consumption to November and December in other years.
- 2019: Peak consumption in February and March, with spikes in consumption in May and August. This is consistent with other years, although the cause of these peaks is unknown. Electricity use in most other months (e.g. April, June, September, and December) is fairly constant at around 7,500 kWh/month, and the consumption in February is roughly double that value at about 15,000 kWh/month.
- 2020: Monthly consumption is similar to other years. February 2020 has the highest electrical consumption of the dataset.
- 2021: Monthly consumption is similar to other years.
- 2022: Monthly consumption is similar to other years, with consumption in May higher than the seasonal average.
- 2023: Monthly consumption is similar to other years.

Natural gas

- Natural gas consumption has maintained a consistent profile year over year. It is highest during the heating season and very low during the cooling season.
- This building has two end uses: space heating and domestic hot water heating.
- Natural gas consumption in the summer is due to domestic hot water heating.
- Of the 31 data points available for monthly natural gas consumption, only 13 were actual readings, not estimates. This observation can lead to calibration issues, as the model may not pass ASHRAE Guideline 14.

Energy Star Benchmarking

The score of 100 out of 100 is misleading, and is believed to be the result of the building being grouped with hospitals.

4 ENERGY MODEL DEVELOPMENT

4.1 Energy model development methodology

The utility use profile was developed from an hourly analysis, spanning one year, of the following energy systems. The analysis reflects the existing conditions of the facility as documented in Section 2.

The energy model was created in eQUEST v3.65, build 7175, using the DOE2.3 engine. The inputs were established to match the existing conditions as closely as possible. The following sources were used as background information to inform energy model inputs:

- Observations from site survey and conversations with facility staff.
- Schedules and setpoints from the BAS. As-built drawings provided by the City of Temiskaming Shores.
- References from the Ontario Building Code (OBC) SB-12, ASHRAE90.1, and NECB where the above data was not available.
- 1. **Hourly utility use profiles**. An hourly utility use profile for each utility was developed according to the following methodology. Results were presented in Section 4.2.
 - (a) Utilities and end uses. Hourly utility use profiles developed through this analysis were assigned to both utilities and end uses. The utilities and end uses that were modelled are summarized in Table 16.

Utility	End use	Definition of end use
Electricity	Cooling Equipment Exterior lights Fans Lights Other Space heat	Cooling energy use. Equipment energy use. Exterior lighting energy use. Fan motor energy use. Lighting energy use. Metered use less modelled use. Space heating energy use.
Natural gas	DHW heat Space heat	Domestic hot water heating energy use. Space heating energy use.

Table 16: Utility and end use summary and definitions

- (b) Weather data. Hourly weather data was obtained from the Earlton-Cimate weather station, ID 712130S.
- (c) Facility spaces. Facility spaces were grouped according to activities in the spaces and HVAC systems serving them. The thermal characteristics of the exterior building envelope components for each space were assumed based on findings documented in Section 2.7. Thermal loads within each space were calculated based on assumed space temperature and humidity setpoints, hourly weather data, and activities in the space that affect thermal conditions (e.g. lighting or equipment that generates heat).
- (d) Primary systems. Primary systems are defined as systems whose utility use can be predicted independent from other systems; examples include lighting, equipment (e.g. office and process equipment), pumps, etc. The hourly utility demand of primary systems was modelled based on assumed time-of-day operating schedules, peak power input and average loads relative to the peak power input. Peak power input was estimated from findings documented throughout Section 2, including lighting power or power density, nameplate horsepower of motors, etc.
- (e) HVAC systems. HVAC system energy use was modelled based on hourly weather data and space condition setpoints defined for the various spaces. The analysis also accounted for system-specific ventilation controls and activities and primary systems that have thermal influences on spaces (e.g. occupancy, lighting, equipment, processes that add heat to spaces). The analysis quantified hourly energy use of fans, heating (e.g. sensible, humidification, reheat) and cooling (e.g. sensible, dehumidification).

- (f) Generators. The utility use and generation of on-site systems that generate energy or utilities was modelled based on the assumed capacities and operations of those systems according to findings documented in Section 2; examples include solar PV, CHP, etc. Utilities generated on site were treated as negative utility consumption relative to utilities consumed on site so that the consumption, generation and the aggregate use of utilities could be tracked accordingly.
- (g) Other. For each utility having valid metered utility use data available for the baseline year, the Other end use was modelled from the top down to reconcile results of the above utility-consuming systems that were modelled from the bottom up with metered utility use data for the baseline year. This end use was called Other.
- 2. **Monthly utility use profiles**. A monthly utility use profile for each utility was developed by grouping and summing up the hourly utility use profiles by end use and by month. Results were presented in Section 4.3.
- 3. Calibration analysis. After explicitly modeling the above systems, the model was calibrated for each of the following utilities (utilities for which valid metered data for the baseline year was available) through the Other end use, which was calculated as the difference of metered and modeled utility use. The above modeling steps were iterated as required to achieve reasonable calibration.
 - Electricity
 - Natural gas
- 4. **End use analysis**. An end use analysis of each utility was completed. Since the hourly utility use profiles already track the hourly utility use by each end use, the end use analysis involved summarizing data from the hourly utility use profiles to obtain yearly utility use by each end use. Results were presented in Section 4.5.

4.2 Hourly utility use profiles

The hourly utility use profiles are presented graphically in this Section 4.2 in a format called a stacked bar plot. For each hour of the year, the utility use for all end uses active during that hour is presented in a single bar pertaining to that hour. The end uses are identified by colour, and all end uses are "stacked" on top of each other within each hour-specific bar such that the total height of each bar represents the total utility use of all end uses combined in that hour.

July 21, 2025

Electricity

The hourly electricity utility use profile by end use made by the energy model is plotted in Figure 146. See Table 16 for end use definitions.

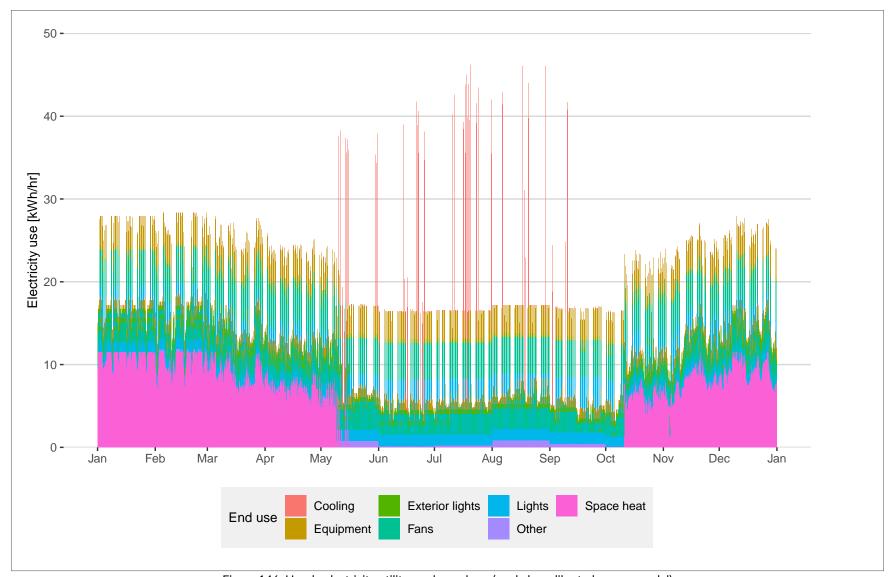


Figure 146: Hourly electricity utility use by end use (made by calibrated energy model)

Natural gas

The hourly natural gas utility use profile by end use made by the energy model is plotted in Figure 147. See Table 16 for end use definitions.

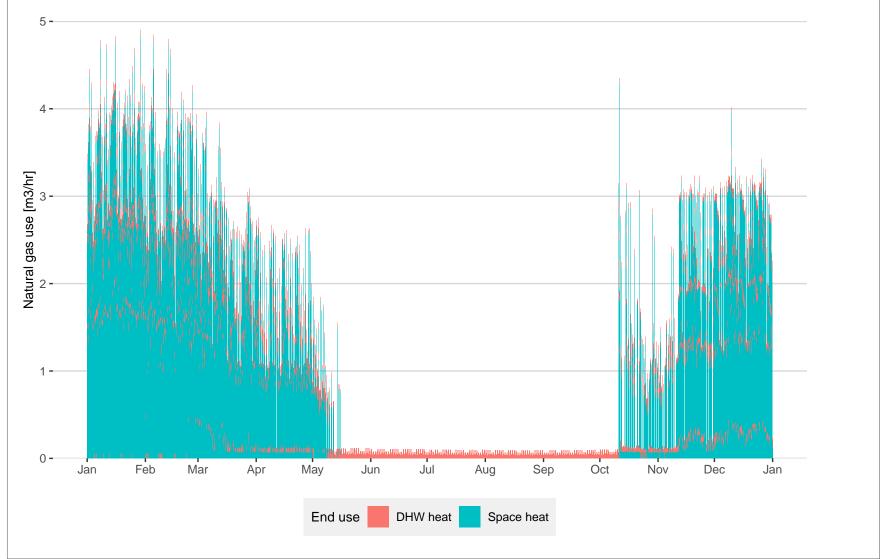


Figure 147: Hourly natural gas utility use by end use (made by calibrated energy model)

4.3 Monthly utility use profiles

Monthly utility use profiles for each modelled utility are presented in Figure 148.

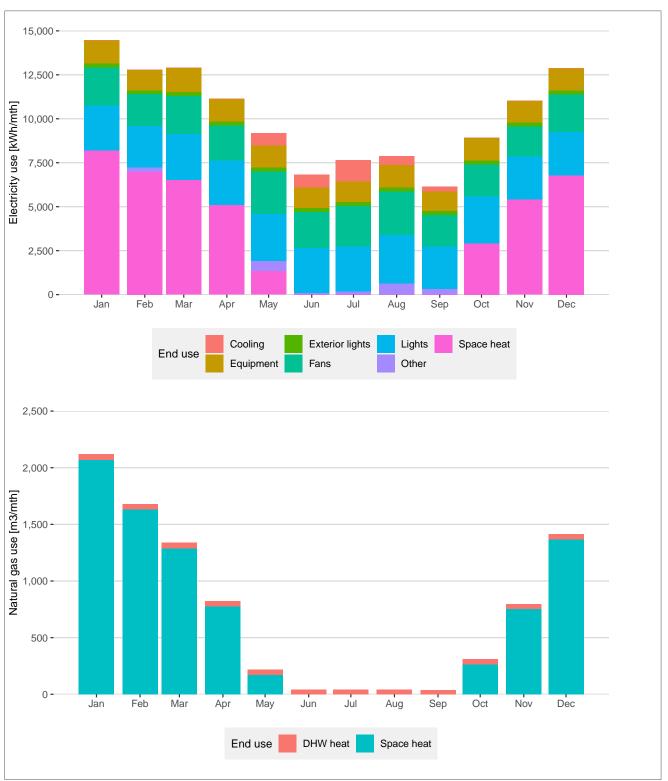


Figure 148: Monthly utility use profiles for each modelled utility

4.4 Calibration analysis

Electricity

Figure 149 compares the metered utility use with the modelled use to check how well the model is calibrated.

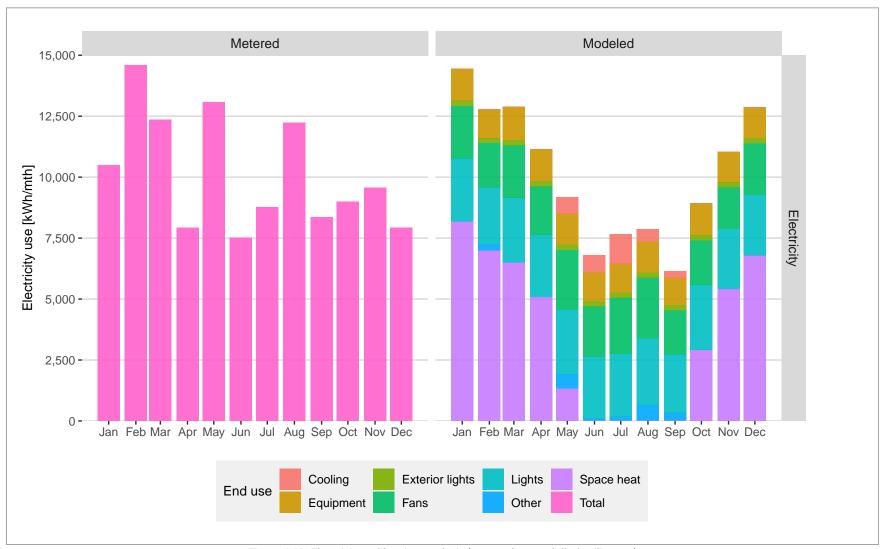


Figure 149: Electricity calibration analysis (metered vs modelled utility use)

Natural gas

Figure 150 compares the metered utility use with the modelled use to check how well the model is calibrated.

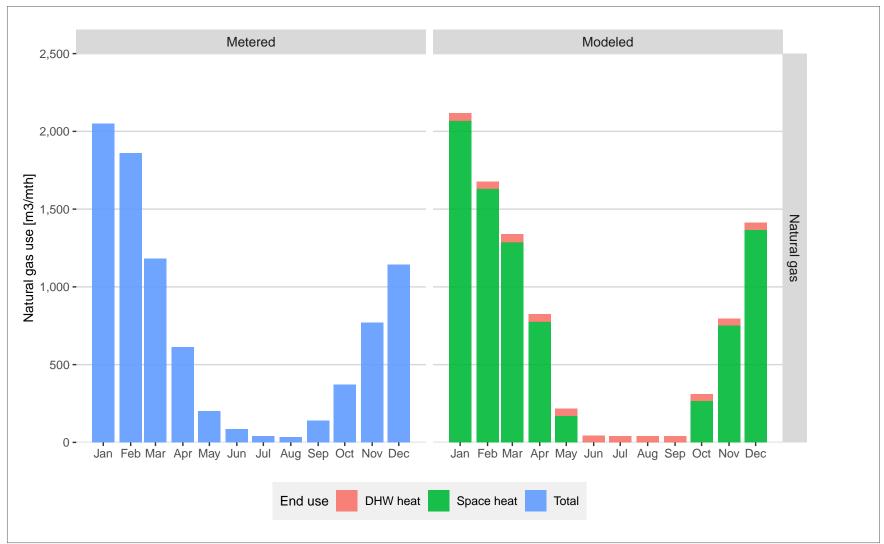


Figure 150: Natural gas calibration analysis (metered vs modelled utility use)

Statistical calibration analysis

ASHRAE Guideline 14 suggests maximum allowable values for the mean bias error, and the root mean bias error, which are defined as follows with respect to energy model calibration.

- Mean bias error (MBE). The average monthly error between modelled and metered utility use as a
 percentage of the mean monthly metered utility use. This metric indicates the ability of the model to
 accurately predict yearly utility use, despite month-to-month errors, by capturing the direction of all monthto-month errors.
- Root mean square error (RMBE). The square root of the sum of all squared monthly errors as a percentage
 of the mean monthly metered utility use. This metric indicates the ability of the model to accurately predict
 month-specific utility use.

Statistical calibration analysis results were calculated and are summarized in Table 17.

			,	•	
Utility	Description	Unit	ASHRAE 14	Model	Pass/Fail
Electricity	Mean bias error	[%]	< +/- 5	-0.0	Pass
	Root mean square error	[%]	< 15	29.2	Fail ———
Natural gas	Mean bias error	[%]	< +/- 5	-4.8	Pass
	Root mean square error	[%]	< 15	18.9	Fail

Table 17: Statistical calibration analysis summary

It should be noted that the root mean square error test suggested by ASHRAE Guideline 14 places undue emphasis on months that have relatively little utility use (e.g. natural gas or steam use in the summer). This is because the root mean square error test is calculated based on relative errors between monthly metered and modelled utility use. Because of this, a small absolute error between metered and modelled utility use for a certain month may also be a large relative error, causing a significant increase in the root mean square error. Practically, though, the ability of the energy model to accurately quantify utility use overall has little dependence on its ability to quantify utility use in months with relatively little metered use, because overall utility use is more heavily influenced by those months with greater utility use. Therefore, it may not always be suitable for the model to pass the root mean square error test, provided that it reasonably captures utility use in the months of greater use.

A discussion of the energy model calibration analysis is as follows.

- Figures 149 and 150 both demonstrate a reasonable agreement between monthly trends observed in the metered utility use data and the monthly utility use predicted by the calibrated energy model.
- Electricity use fails to follow ASHRAE Guideline 14 on the root mean square error. Note that the mean bias error is zero for electricity because the Other end-use ensures that the yearly modelled utility use matches the yearly metered utility use. Some notable issues are the peaks with unknown cause in February, March, May, and August.
- Natural gas consumption fails to follow ASHRAE Guideline 14 on the root mean square error. Some notable issues are that consumption is higher in the model in May and October. There is also a discrepancy in the summer months. Another note is that only 6 of 12 natural gas readings are actual readings. This issue makes it difficult to calibrate the model, especially against estimated data that the LDC typically underestimates.
- The successful energy model calibration is largely due to the methodology used in developing the calibrated energy model. Under this methodology, the major systems affecting utility use were studied in detail (see Section 2), so that these systems could be explicitly modelled one-to-one, precisely reflecting the unique operations associated with each system. Examples of such major systems include all air handling systems (AC1-AC4). The methodology also integrates the Other end-use category, which reflects the exact difference between metered and modelled utility use in a top-down calculation after all systems have been modelled from the bottom-up.

- Therefore, there can be confidence that the utility use impacts quantified in the various measure and scenario analyses under this report are reasonable.
- To achieve better alignment between the modelled and metered heating load, a relatively low infiltration rate was assumed for the building (0.25 lps/m2 envelope). In addition, although the fans for AC1 and AC2 were observed to be ON, it was assumed that they were set to Auto overnight. It was also assumed that the temperatures were setback overnight by an average of 4 degrees F.

Electricity

- Figure 149 indicates reasonable agreement between modelled and metered data.
- The peak and trough hourly consumption align with the metered interval data.
- The model does not capture the unexpected peaks in electrical consumption in February, March, May, and October.

Natural gas

- Figure 150 indicates good agreement between modelled and metered data.
- The annual amount of natural gas consumption in the model is very close to the annual amount of the metered data. However, there are variances within several months. That being said, there are several estimated readings for this particular dataset.

4.5 End use analysis

Electricity

The yearly electricity end use breakdown calculated by the energy model is plotted in Figure 151. See Table 16 for end use definitions.

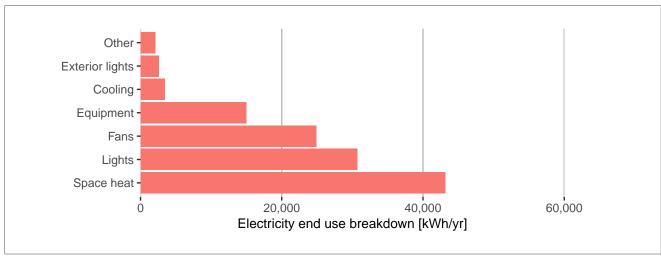


Figure 151: Electricity end use breakdown (calculated by calibrated energy model)

Natural gas

The yearly natural gas end use breakdown calculated by the energy model is plotted in Figure 152. See Table 16 for end use definitions.

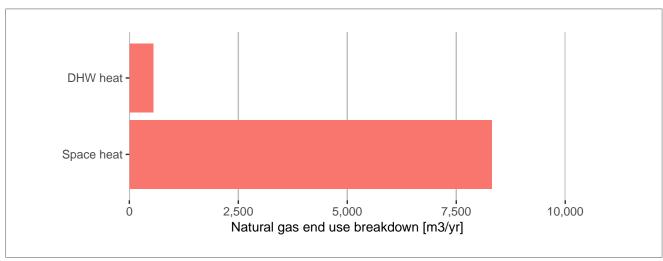


Figure 152: Natural gas end use breakdown (calculated by calibrated energy model)

5 MEASURE ANALYSIS

5.1 Measure analysis methodology

The measure analysis was completed according to the following methodology.

- 1. **Measure identification and triaging.** Measures that could be implemented to help achieve City of Temiskaming Shores's goals were identified based on the findings documented in Sections 2 and 3. Identified measures were triaged by labeling each one as either 'Analyzed' or 'Not analyzed'. The intent of triaging was to focus efforts on analyzing measures for which analysis was considered most valuable (typically for measures that are more complex or more impactful). Results are summarized in Section 5.3.
- 2. **Measure analysis**. For each 'Analyzed' measure, the analysis completed for that measure was summarized in a dedicated sub-section named after that measure (see Sections 5.4 through 5.12). In each sub-section, the following was documented.
 - Measure description. The relevant existing condition was summarized, an opportunity for improving the stated existing condition was described, and the intended utility-savings mechanism associated with the opportunity was described.
 - Design description. A conceptual design description was provided, including a written description of the proposed design concept and the associated project cost estimate.
 - Utility analysis. A utility analysis was completed using the energy model introduced in Section 4.
 Measure-specific assumptions applied in calculating the impacts on utility use were provided for
 each measure. For each measure, the expected GHG emissions, utility costs and financial incentives
 associated with implementing the measure were calculated based on utility use, using the assumptions
 outlined in Section 5.2. A life cycle cost analysis was completed, applying the assumptions summarized
 in Tables 14 and 20 according to the following methodology.
 - (a) The life cycle cost for each measure was calculated based on the assumed implementation year of 2026 for each measure. The life cycle cost for each measure was calculated as the sum of the following future financial cost expenditures, discounted back to present value using the discount rate from Table 20, over the evaluation period of present to 2050.
 - (b) Project costs: The future value of project costs was calculated based on the project cost estimate of each measure, inflated to future value associated with the assumed implementation year using the general inflation rate from Table 20. In the life cycle cost calculation, the project cost was amortized over the expected life of the measure such that the yearly present value is constant over every year of the expected life of the measure. This results in the net present value of the project cost being equal to what it would be if the owner was to pay for it via lump sum in the implementation year for that measure.
 - (c) Replacement costs: The future value of replacement costs was calculated assuming that a financial cost was incurred to replace equipment associated with each measure at the end of the expected life of that measure equal to 50% of the initial project cost, inflated to future value associated with the estimated time of replacement using the general inflation rate from Table 20. The same amortization approach as for project costs was used.
 - (d) Utility costs: The future value of yearly utility costs of the entire facility was accounted for in the life cycle cost calculation for each measure. The future value of yearly utility costs was calculated by applying the future utility cost rates from Table 18 to the utility use of the entire facility for that year as predicted by the calibrated energy model for each measure and scenario.
- 3. Measure risk analysis. A risk analysis of each individual measure was completed to test how the performance of that measure might be affected by changes to certain risk parameters. In this risk analysis, each of the risk parameters defined in Table 21 was tested under each risk case also defined in Table 21 for that risk parameter. For each risk case of each risk parameter, the expected performance of each measure was quantified, and the results were summarized using box and whisker plots indicating the range over

which performance might be expected to vary. Findings from the risk analysis were summarized in Section 5.13.

4. **Measure analysis summary**. Measure analysis results for all measures were summarized in table format in Section 5.14.

5.2 Measure analysis assumptions

Assumptions general to all measures are as follows.

- GHG emissions factor assumptions are summarized in Table 13, in Section 3.2.
- Utility cost rate assumptions applied to quantify yearly utility cost impacts relative to the baseline are summarized in Table 14, in Section 3.2. Utility cost rate future assumptions applied in the life cycle analysis for each measure are summarized in Table 18. Note that throughout this Pathway to Decarbonization Feasibility Study the Federal Carbon Charge is treated separately (if applicable) with respect to associated fuels (rather than being accounted for within the rates of the applicable fuels, the federal carbon charge line item is calculated separately based on the estimated yearly GHG emissions for that fuel). As such, all other utility cost rates exclude the federal carbon charge.

Table 18: Utility cost rate future assumptions

Year	Natural gas	Federal carbon	Carbon offsets	Class B	Class B GA	Class B
	_	charge		HOEP		regulatory
-	[\$/m3]	[\$/tCO26	e][\$/tCO2	e][\$/kWh]	[\$/kWh]	[\$/kWh]
2022	0.26	50	30	0.02	0.0735	0.0057
2023	0.2652	65	30	0.0204	0.075	0.0058
2024	0.2705	80	30.6	0.0208	0.0765	0.0059
2025	0.2759	0	31.21	0.0212	0.078	0.006
2026	0.2814	0	31.84	0.0216	0.0796	0.0061
2027	0.287	0	32.47	0.022	0.0812	0.0062
2028	0.2927	0	33.12	0.0224	0.0828	0.0063
2029	0.2986	0	33.78	0.0228	0.0845	0.0064
2030	0.3046	0	34.46	0.0233	0.0862	0.0065
2031	0.3107	0	35.15	0.0238	0.0879	0.0066
2032	0.3169	0	35.85	0.0243	0.0897	0.0067
2033	0.3232	0	36.57	0.0248	0.0915	0.0068
2034	0.3297	0	37.3	0.0253	0.0933	0.0069
2035	0.3363	0	38.05	0.0258	0.0952	0.007
2036	0.343	0	38.81	0.0263	0.0971	0.0071
2037	0.3499	0	39.58	0.0268	0.099	0.0072
2038	0.3569	0	40.38	0.0273	0.101	0.0073
2039	0.364	0	41.18	0.0278	0.103	0.0074
2040	0.3713	0	42.01	0.0284	0.1051	0.0075
2041	0.3787	0	42.85	0.029	0.1072	0.0077
2042	0.3863	0	43.7	0.0296	0.1093	0.0079
2043	0.394	0	44.58	0.0302	0.1115	0.0081
2044	0.4019	0	45.47	0.0308	0.1137	0.0083
2045	0.4099	0	46.38	0.0314	0.116	0.0085
2046	0.4181	0	47.31	0.032	0.1183	0.0087
2047	0.4265	0	48.25	0.0326	0.1207	0.0089
2048	0.435	0	49.22	0.0333	0.1231	0.0091
2049	0.4437	0	50.2	0.034	0.1256	0.0093
2050	0.4526	0	51.21	0.0347	0.1281	0.0095

Financial incentive assumptions are summarized in Table 19.

Table 19: Financial incentive assumptions

Incentive program	Incentive calculation rules
Enbridge custom	0.25 \$/m3/yr of natural gas reduction
	Up to a maximum of 50% of eligible project costs Up to a maximum of \$100,000
FCM CBR GHG reduction pathway grant	Up to 80% of project costs (grant + loan)
	Up to \$5 million (grant + loan) Up to 25% of funding can be grant

• Life cycle cost analysis assumptions are summarized in Table 20.

Table 20: Life cycle cost analysis assumptions

Description	Unit	Value
General cost inflation	[%]	2
Discount rate	[%]	5

• Risk analysis assumptions, including risk parameters and risk cases that were tested in the measure risk analysis are summarized in Table 21.

Table 21: Risk parameter and case definitions

Parameter	Description	Methodology	Case	X	Unit
Project cost	Project cost may differ from the estimated values.	The case project cost = x TIMES the initial project cost estimate.	Very low Low High Very high	0.75 .9 1.1 1.25	[decimal]
Replacement cost	Replacement cost may differ from the estimated values.	The case replacement cost = x TIMES the initial replacement cost estimate.	Very low Low High Very high	0.75 .9 1.1 1.25	[decimal]
Utility use change	Changes to utility use and thermal energy demand in a measure or scenario may differ from reality.	The case utility use profile is the baseline profile plus x TIMES the difference between the initial proposed profile and the baseline profile.	Very low Low High Very high	0.75 .9 1.1 1.25	[decimal]
Electricity GHG factor	Future GHG factors for electricity may differ than those assumed.	For each year for which the GHG factor is projected, the case GHG factor for that year = the current year factor PLUS (x TIMES the difference between the initial value for that year, and the factor for the current year).	Very low Low High Very high	0.75 .9 1.1 1.25	[decimal]
Incentive rates	Actual incentives may be different from estimated ones. While project cost and utility use affects incentive amounts, this risk parameter seeks to identify the risk in changes to the financial rates used in incentive amount calculations (e.g.\ if saveon energy provides incentives at 0.05\\$/kWh rather than 0.04\\$/kWh, etc).	For each financial rate used in incentive amount calculations, the case rate is x TIMES the initial rate.	Very low Low High Very high	0.75 .9 1.1 1.25	[decimal]
Federal carbon charge	Future federal carbon charge rates may differ than those assumed.	The default federal carbon charge increases to 170 \$/tCO2e by 2030 and to 300 \$/tCO2e by 2050. The case federal carbon charge follows the default trend but limited to a maximum value of x.	Very low Low High Very high	0 100 240 300	[\$/tCO2e]
Utility cost inflation	Future utility cost rates may differ than what was assumed.	The case utility cost inflation rate for all utilities is x (as a decimal) compounded yearly.	Very low Low High Very high	0.01 0.015 0.025 0.03	[decimal]
General cost inflation	General cost inflation may differ from what was assumed. Note that general cost inflation is applied ONLY to project costs, replacement costs, and maintenance costs (future utility cost rates are handled separately).	The case general cost inflation rate is x.	Very low Low High Very high	0.01 0.015 0.025 0.03	[decimal]
Discount rate	It is worth testing the sensitivity of the discount rate on life cycle cost / net present value calculations.	The case discount rate is x.	Very low Low High Very high	0.05 0.06 0.08 0.09	[decimal]

• This building has not undergone a building condition assessment, and therefore, business as usual (BAU) measures were not available. WalterFedy utilized previous reports to gauge the potential costing of BAU renewal measures. These measures are provided for reference only and are not intended for use in budgetary requirements. It's recommended that the City of Temiskaming Shores undertake a Building Condition Assessment of this building.

Measure identification 5.3

Results of the measure identification and triaging process are summarized in Table 22.

Table 22: Measure identification and triaging summary

Measure name	Triage for analysis
Baseline	
AC01-AC04 conversion to ASHP with electric backup	Analyzed.
AC01-AC04 conversion to ASHP with natural gas backup	Analyzed.
Carbon offsets 20	Analyzed.
DHW to ASHP	Analyzed.
Interior LED lighting upgrade	Analyzed.
Roof upgrade to high performance	Analyzed.
Solar PV rooftop	Analyzed.
Wall upgrade to high performance	Analyzed.
Windows and doors to high performance	Analyzed.
AC01-AC04 renewal	Business as usual.
DHW renewal	Business as usual.
Exterior walls renewal	Business as usual.
Interior lighting renewal	Business as usual.
Roof renewal	Business as usual.
Windows and doors renewal	Business as usual.
Exterior LED lighting upgrade	Not analyzed: already LED.

5.4 AC01-AC04 conversion to ASHP with electric backup

Measure description

Existing condition

AC01 to AC04 are natural gas-fired furnaces complete with DX cooling.

Opportunity

Replace the AC units and use air-source heat pumps as the heating and cooling source with electric backup.

Utility-savings mechanism

The primary intent of this measure is to reduce GHG emissions by converting the fuel used for heating from natural gas to electricity due to electricity having a lower GHG intensity than natural gas. Reduced natural gas use and increased electricity use would be expected as a result.

Design description

Overview

Replace existing Furnace/AC combo with a pair of Cold Climate ASHPs with backup electric resistance. The following units shall be supplied:

- Moovair Central-Moov 5T Capacity with 20kW backup electric
- Moovair Central-Moov 2.5T Capacity with 10kW backup electric
- 2 x Moovair Central-Moov 2T Capacity with 10kW backup electric

Alternate manufacturers include Daikin, Mitsubishi, Panasonic, LG, Samsung, and Fujitsu.

Condensing units installed at grade outside must be raised to account for snow cover and drifting.

Electrical

The ASHP with the electric backup will add approximately 67.25 kW of power to the existing system, which will put the system at 101.45 kW, which is approximately 59% of the full load of the electrical capacity of the building. A new 200 A panel will need to be installed off a new bus tap from the main switchboard. The fuse in the main switchboard will need to be replaced.

Project cost estimate

Table 23: Project cost estimate (AC01-AC04 conversion to ASHP with electric backup)

Category	Line item	Unit	Value
Construction	Supply	[\$]	28,500
	Install	[\$]	24,000
	Electrical contingency	[\$]	53,000
	General requirements (25%)	[\$]	26,400
Contingency	Subtotal after Construction	[\$]	131,900
	Design Contingency (25%)	[\$]	33,000
	Construction Contingency (10%)	[\$]	13,200
Design, Contractors, PM	Subtotal after Contingency	[\$]	178,100
	Engineering Design and Field Review (10%)	[\$]	17,800
	Contractor Fee (7%)	[\$]	12,500
Total	Total	[\$]	208,400

Utility analysis

Utility analysis methodology

The following assumptions were applied to the calibrated energy model to estimate utility use impacts.

- Baseline: AC1-4 provide space heating and cooling through natural gas-fired burners and DX, respectively. The existing heat efficiency and cooling COP are 90% and 4, respectively.
- **Proposed**: AC1-4 provide space heating and cooling through air-source heat pumps. The proposed average heating and cooling COPs are 3 and 4.1 (14 EER), respectively. Backup heating is provided through electric resistance when the outdoor air temperature is below -15 C.

Utility analysis results

Table 24: AC01-AC04 conversion to ASHP with electric backup analysis results summary

Category	Description	Unit	Baseline	Proposed	Reduction	Reduction [%]
Utility use	Electricity use	[kWh/yr]	121,792	152,205	-30,413	-25.0
	Natural gas use	[m3/yr]	8,859	563	8,297	93.7
	Carbon offset use	[tCO2e/yr]	0	0	0	_
Equivalent energy use	Electricity energy	[kWh/yr]	121,792	152,205	-30,413	-25.0
	Natural gas energy	[kWh/yr]	93,525	5,938	87,587	93.7
	Total energy	[kWh/yr]	215,317	158,143	57,174	26.6
GHG emissions	Electricity GHGs	[tCO2e/yr]	3.7	4.6	-0.92	-25.0
	Natural gas GHGs	[tCO2e/yr]	17.1	1.1	16.0	93.7
	Carbon offsets GHGs	[tCO2e/yr]	0	0	0	_
	Total GHGs	[tCO2e/yr]	20.8	5.7	15.1	72.7
Utility cost	Electricity utility cost	[\$/yr]	12,082	15,099	-3,017	-25.0
	Natural gas utility cost	[\$/yr]	2,303	146	2,157	93.7
	Carbon offsets utility cost	[\$/yr]	0	0	0	_
	Federal carbon charge	[\$/yr]	856	54.3	802	93.7
	Total utility cost	[\$/yr]	15,241	15,299	-58.2	-0.38
Financial	Assumed life	[yrs]	15	15	_	_
	Project cost	[\$]	0	208,400	_	_
	Incentive amount	[\$]	0	41,680	_	_
	Incremental project cost	[\$]	0	166,720	_	_
	Life cycle cost	[\$]	443,213	687,962	_	_
	Net present value	[\$]	0	-244,749	_	_
	Project cost per GHG reduction	[\$yr/tCO2e]	_	11,031	_	_
	Simple payback period	[yr]	_	_	_	_

5.5 AC01-AC04 conversion to ASHP with natural gas backup

Measure description

Existing condition

AC01 to AC04 are natural gas-fired furnaces complete with DX cooling.

Opportunity

Replace the AC units and use air-source heat pumps as the heating and cooling source with natural gas backup.

Utility-savings mechanism

The primary intent of this measure is to reduce GHG emissions by converting the fuel used for heating from natural gas to electricity due to electricity having a lower GHG intensity than natural gas. Reduced natural gas use and increased electricity use would be expected as a result.

Design description

Overview

This measure adds a heat pump section to each of the gas-fired furnaces located in the building with an air-source heat pump (ASHP) option. The available heating output from an air source heat pump decreases as the outdoor air temperature decreases. The following units shall be provided:

- Moovair indoor unit model CUB60 and outdoor unit model DMA60
- Moovair indoor unit model CUB30 and outdoor unit model DMA30
- 2 x Moovair indoor unit model CUB24 and outdoor unit model DMA24

Condensing units installed at grade outside must be raised to account for snow cover and drifting.

Electrical

The ASHP with the electric backup will add approximately 25.8 kW of power to the existing system, which will put the system at 60 kW, which is approximately 35% of the full load of the electrical capacity of the building. A new 200 A panel will need to be installed off a new bus tap from the main switchboard. The fuse in the main switchboard will need to be replaced.

Project cost estimate

Table 25: Project cost estimate (ACO1-ACO4 conversion to ASHP with natural gas backup)

Category	Line item	Unit	Value
Construction	Equipment	[\$]	19,000
	Installation	[\$]	16,000
	Electrical contingency	[\$]	24,000
	General requirements (25%)	[\$]	14,800
Contingency	Subtotal after Construction	[\$]	73,800
	Design Contingency (25%)	[\$]	18,400
	Construction Contingency (10%)	[\$]	7,400
Design, Contractors, PM	Subtotal after Contingency	[\$]	99,600
	Engineering Design and Field Review (10%)	[\$]	10,000
	Contractor Fee (7%)	[\$]	7,000
Total	Total	[\$]	116,600

Utility analysis

Utility analysis methodology

The following assumptions were applied to the calibrated energy model to estimate utility use impacts.

- Baseline: AC1-4 provide space heating and cooling through natural gas-fired burners and DX, respectively. The existing heat efficiency and cooling COP are 90% and 4, respectively.
- **Proposed**: AC1-4 provide space heating and cooling through air-source heat pumps. The proposed average heating and cooling COPs are 3 and 4.1 (14 EER), respectively. Backup heating is provided from the existing gas-fired furnaces when the outdoor air temperature is below -15 C.

Utility analysis results

Table 26: AC01-AC04 conversion to ASHP with natural gas backup analysis results summary

Category	Description	Unit	Baseline	Proposed	Reduction	Reduction [%]
Utility use	Electricity use	[kWh/yr]	121,792	132,787	-10,995	-9.0
,	Natural gas use	[m3/yr]	8,859	2,786	6,073	68.6
	Carbon offset use	[tCO2e/yr]	0	0	0	_
Equivalent energy use	Electricity energy	[kWh/yr]	121,792	132,787	-10,995	-9.0
	Natural gas energy	[kWh/yr]	93,525	29,410	64,116	68.6
	Total energy	[kWh/yr]	215,317	162,196	53,121	24.7
GHG emissions	Electricity GHGs	[tCO2e/yr]	3.7	4.0	-0.33	-9.0
	Natural gas GHGs	[tCO2e/yr]	17.1	5.4	11.7	68.6
	Carbon offsets GHGs	[tCO2e/yr]	0	0	0	_
	Total GHGs	[tCO2e/yr]	20.8	9.4	11.4	54.8
Utility cost	Electricity utility cost	[\$/yr]	12,082	13,172	-1,091	-9.0
	Natural gas utility cost	[\$/yr]	2,303	724	1,579	68.6
	Carbon offsets utility cost	[\$/yr]	0	0	0	_
	Federal carbon charge	[\$/yr]	856	269	587	68.6
	Total utility cost	[\$/yr]	15,241	14,166	1,075	7.1
Financial	Assumed life	[yrs]	15	15	_	_
	Project cost	[\$]	0	116,600	_	_
	Incentive amount	[\$]	0	23,320	_	_
	Incremental project cost	[\$]	0	93,280	_	_
	Life cycle cost	[\$]	443,213	557,544	_	_
	Net present value	[\$]	0	-114,331	_	_
	Project cost per GHG reduction	[\$yr/tCO2e]	_	8,180	_	_
	Simple payback period	[yr]	_	>20	_	_

5.6 Carbon offsets 20

Measure description

Existing condition

The facility is currently purchasing no carbon offsets.

Opportunity

After implementing other measures, purchase carbon offsets to offset 20% of the remaining GHG emissions.

Utility-savings mechanism

Energy use is not affected by purchasing carbon offsets. Yearly GHG emissions accounted against the facility will be reduced by the same quantity as those purchased for that year.

Design description

Net zero definition

The Canadian Green Building Council (CAGBC) defines net carbon emissions for a facility as in the following formula.

Net emissions = Embodied carbon + Operational carbon - Avoided emissions

The terms of this formula are defined as follows.

- **Embodied carbon**. GHG emissions associated with the construction, maintenance and final end-of-life disposal of the facility.
- Operational carbon. GHG emissions associated with the use of energy of the facility while in operation.
- Avoided emissions. GHG emissions avoided through activities such as exporting green power to local grids, or the purchase of carbon offsets.

Net Zero emissions as achieved when the Net emissions from this formula is zero or less.

This measure focuses on the on-going use of avoided emissions (as defined above) to offset operational carbon associated with ongoing energy use at the facility. Note that embodied carbon emissions tend to be a one-time event, in contrast to the on-going emissions associated with operations, which must also be accounted for through avoided emissions.

Renewable energy certificates

As defined above, emission avoidance activities recognized by the CaGBC definition of Net-Zero include exporting green power, or the purchase of carbon offsets. Green power exports include the exporting of on-site renewable energy, as well as the injection of renewable energy into local grids through off-site renewable energy generation facilities. The latter approach is typically accomplished through the purchase of Renewable Energy Certificates (RECs). RECs are utility-specific and are purchased by unit energy of the utility in question (e.g. kWh for electricity, or m³ for natural gas), and can only be used to offset GHG emissions associated with the specific utility in question. For example, electricity RECs can be purchased to offset up to 100% of electricity used by the building, but cannot be used to offset natural gas used by the building (and vice versa). RECs are typically considered best practise because they facilitate an immediate injection of renewable energy into grids. RECs can be purchased through REC providers such as Bullfrog Power.

Carbon offsets

The purchase of carbon offsets is the second approach for avoided emissions recognized by CaGBC. Carbon offsets are purchased per tonne of GHG emissions, and can be used to offset either direct (e.g. natural gas combustion on-site) or indirect (e.g. electricity use on-site, which is generated offsite) GHG emissions. Carbon offsets must be certified as stipulated within the CaGBCs Zero Carbon Building Standard, which is required to

uphold quality standards of the carbon offsets. Carbon offsets can be purchased through certified providers such as Less Emissions Inc.

Cost rates

Cost rates for RECs and carbon offsets are summarized as follows.

- Electricity REC cost rate (Bullfrog Power): 0.025 \$/kWh.
- Natural gas REC cost rate (Bullfrog Power): 0.186 \$/m3.
- Carbon offset cost rate (Less Emissions Inc.): 30 \$/mtCO2e.

Utility analysis

Utility analysis methodology

Energy use is not affected by purchasing carbon offsets. Yearly GHG emissions accounted against the facility will be reduced by the same quantity as those purchased for that year.

Baseline. It is assumed that no carbon offsets are purchased.

Proposed. Carbon offsets are assumed to be purchased in the quantity equal to 20% of remaining GHG emissions. Note that as an individual measure, the analysis indicates the impact of offsetting baseline GHG emissions with carbon offsets. When considered as part of the scenario analyses in Section 6, this measure will cause 20% of remaining GHG emissions to be offset.

Table 27: Carbon offsets 20 analysis results summary

Category	Description	Unit	Baseline	Proposed	Reduction	Reduction [%]
Utility use	Electricity use	[kWh/yr]	121,792	121,792	0	0
	Natural gas use	[m3/yr]	8,859	8,859	0	0
	Carbon offset use	[tCO2e/yr]	0	4.2	-4.2	_
Equivalent energy use	Electricity energy	[kWh/yr]	121,792	121,792	0	0
	Natural gas energy	[kWh/yr]	93,525	93,525	0	0
	Total energy	[kWh/yr]	215,317	215,317	0	0
GHG emissions	Electricity GHGs	[tCO2e/yr]	3.7	3.7	0	0
	Natural gas GHGs	[tCO2e/yr]	17.1	17.1	0	0
	Carbon offsets GHGs	[tCO2e/yr]	0	-4.2	4.2	_
	Total GHGs	[tCO2e/yr]	20.8	16.6	4.2	20.0
Utility cost	Electricity utility cost	[\$/yr]	12,082	12,082	0	0
	Natural gas utility cost	[\$/yr]	2,303	2,303	0	0
	Carbon offsets utility cost	[\$/yr]	0	125	-125	_
	Federal carbon charge	[\$/yr]	856	856	0	0
	Total utility cost	[\$/yr]	15,241	15,366	-125	-0.82
Financial	Assumed life	[yrs]	15	20	_	_
	Project cost	[\$]	0	_	_	_
	Incentive amount	[\$]	0	0	_	_
	Incremental project cost	[\$]	0	_	_	_
	Life cycle cost	[\$]	443,213	445,489	_	_
	Net present value	[\$]	0	-2,276	_	_
	Project cost per GHG reduction	[\$yr/tCO2e]	_	_	_	_
	Simple payback period	[yr]	_	_	_	_

5.7 DHW to ASHP

Measure description

Existing condition

One natural gas DHW heater serves this building, and is located in the basement mechanical room. It has a capacity of 50 USG.

Opportunity

Replace the gas-fired DHW heater with ASHP (air source heat pump) equivalent.

Utility-savings mechanism

This measure will convert the heat fuel from natural gas to electricity. This will result in an overall energy reduction due to the higher efficiency of the heat pump compared to that of the natural gas DHW tanks and a reduction in GHG intensity.

Design description

Design concept

It is recommended that the gas-fired hot water be replaced with a hybrid heat pump hot water heater that extracts heat from the space for hot water.

The following units are to be installed to match the existing capacity:

• Rheem Proterra 80 USG

Electrical

The ASHP will add approximately 5 kW of power to the existing system, which will put the system at 39.2 kW, which is approximately 23% of the full load of the electrical capacity of the building.

Project cost estimate

Table 28: Project cost estimate (DHW to ASHP)

Category	Line item	Unit	Value
Materials and labour	Supply	[\$]	5,000
	Installation	[\$]	4,000
	Electrical work	[\$]	12,000
Contingency	Subtotal after Materials and labour	[\$]	21,000
	General Contingency (50%)	[\$]	10,500
Total	Total	[\$]	31,500

Utility analysis

Utility analysis methodology

The following assumptions were applied to the energy model to estimate utility use impacts.

- Baseline. DHW heating is provided by gas-fired tanks at an efficiency of 95%.
- **Proposed**. DHW heating is provided by an ASHP at a COP of 3.5.

Table 29: DHW to ASHP analysis results summary

Category	Description	Unit	Baseline	Proposed	Reduction	Reduction [%]
Utility use	Electricity use	[kWh/yr]	121,792	124,651	-2,860	-2.3
	Natural gas use	[m3/yr]	8,859	8,313	547	6.2
	Carbon offset use	[tCO2e/yr]	0	0	0	_
Equivalent energy use	Electricity energy	[kWh/yr]	121,792	124,651	-2,860	-2.3
	Natural gas energy	[kWh/yr]	93,525	87,755	5,771	6.2
	Total energy	[kWh/yr]	215,317	212,406	2,911	1.4
GHG emissions	Electricity GHGs	[tCO2e/yr]	3.7	3.8	-0.09	-2.3
	Natural gas GHGs	[tCO2e/yr]	17.1	16.1	1.1	6.2
	Carbon offsets GHGs	[tCO2e/yr]	0	0	0	_
	Total GHGs	[tCO2e/yr]	20.8	19.8	0.97	4.7
Utility cost	Electricity utility cost	[\$/yr]	12,082	12,365	-284	-2.3
	Natural gas utility cost	[\$/yr]	2,303	2,161	142	6.2
	Carbon offsets utility cost	[\$/yr]	0	0	0	_
	Federal carbon charge	[\$/yr]	856	803	52.8	6.2
	Total utility cost	[\$/yr]	15,241	15,330	-88.7	-0.58
Financial	Assumed life	[yrs]	15	15	_	_
	Project cost	[\$]	0	31,500	_	_
	Incentive amount	[\$]	0	137	_	_
	Incremental project cost	[\$]	0	31,363	_	_
	Life cycle cost	[\$]	443,213	485,090	_	_
	Net present value	[\$]	0	-41,877	_	_
	Project cost per GHG reduction	[\$yr/tCO2e]	_	32,336	_	_
	Simple payback period	[yr]	_	_	_	_

5.8 Interior LED lighting upgrade

Measure description

Existing condition

Some areas of the building currently operate with LED fixtures (e.g. corridors and waiting rooms). The remaining areas of the building primarily utilize T8 or T12 lamps.

Opportunity

Replace remaining fixtures containing T8 and T12 lamps with new LED fixtures.

Utility-savings mechanism

Reduced interior lighting energy use with higher efficiency LED fixtures. However, heating energy use will increase to offset the reduction in internal heat gain from the fixtures, while cooling energy use will decrease.

Design description

Overview

The lighting system shall be designed to meet the latest ASHRAE 90.1 energy codes, IESNA standards, the Haileybury Medical Centre standards and other applicable regulations and standards.

The existing site has gone through some recent LED upgrades. It will be proposed that all the remaining fluorescent fixtures will be replaced with new LED fixtures.

LED luminaires shall be provided with an expected service life of over 50,000 hours and be listed on the Energy Star Qualified Commercial Lighting List or the Design Lights Consortium List (DLC) for incentive eligibility from the IESOs Save on Energy Program.

With the extended lifespan associated with LED fixtures, the likelihood of a complete fixture failure is significantly less likely than previous fixture types. Rather, the user would witness a slow degradation of the lighting output

of the fixtures. It would be recommended that an annual lighting review is conducted to measure the lighting levels within each space of the facility. At the 70% output level, the owner would expect a much quicker decline in the loss of lighting output in each fixture. As such, at the 70% lighting level, it would be recommended that the fixtures within that room be replaced.

Type A1, A2, A4, and B fixtures should be replaced.

Project cost estimate

Table 30: Project cost estimate (Interior LED lighting upgrade)

Category	Line item	Unit	Value
Materials and labour	Interior LED lighting upgrade	[\$]	15,000
Contingency	Subtotal after Materials and labour General Contingency (50%)	[\$] [\$]	15,000 7,500
Total	Total	[\$]	22,500

Utility analysis

Utility analysis methodology

The following assumptions were applied to the calibrated energy model to estimate utility use impacts.

- Baseline: It is assumed that there is an average LPD of 9.5 W/m2.
- Proposed: It is assumed that the average LPD is reduced to 5.7 W/m2. Operation schedules are maintained.

Table 31: Interior LED lighting upgrade analysis results summary

Category	Description	Unit	Baseline	Proposed	Reduction	Reduction [%]
Utility use	Electricity use	[kWh/yr]	121,792	108,069	13,723	11.3
	Natural gas use	[m3/yr]	8,859	9,436	-576	-6.5
	Carbon offset use	[tCO2e/yr]	0	0	0	_
Equivalent energy use	Electricity energy	[kWh/yr]	121,792	108,069	13,723	11.3
	Natural gas energy	[kWh/yr]	93,525	99,610	-6,084	-6.5
	Total energy	[kWh/yr]	215,317	207,678	7,639	3.5
GHG emissions	Electricity GHGs	[tCO2e/yr]	3.7	3.3	0.41	11.3
	Natural gas GHGs	[tCO2e/yr]	17.1	18.2	-1.1	-6.5
	Carbon offsets GHGs	[tCO2e/yr]	0	0	0	_
	Total GHGs	[tCO2e/yr]	20.8	21.5	-0.70	-3.4
Utility cost	Electricity utility cost	[\$/yr]	12,082	10,720	1,361	11.3
	Natural gas utility cost	[\$/yr]	2,303	2,453	-150	-6.5
	Carbon offsets utility cost	[\$/yr]	0	0	0	_
	Federal carbon charge	[\$/yr]	856	912	-55.7	-6.5
	Total utility cost	[\$/yr]	15,241	14,085	1,156	7.6
Financial	Assumed life	[yrs]	15	20	_	_
	Project cost	[\$]	0	22,500	_	_
	Incentive amount	[\$]	0	0	_	_
	Incremental project cost	[\$]	0	22,500	_	_
	Life cycle cost	[\$]	443,213	433,640	_	_
	Net present value	[\$]	0	9,573	_	_
	Project cost per GHG reduction	[\$yr/tCO2e]	_	-32,177	_	_
	Simple payback period	[yr]		19	_	

5.9 Roof upgrade to high performance

Measure description

Existing condition

The building has a gable roof which is assumed to be on wood trusses, with some batt insulation in the attic space. The HVAC audit report indicated a minimum of 14 inches of blown-in insulation in the attic space.

Opportunity

Upgrade upon the end of useful life or as required to meet scenario criteria.

Utility-savings mechanism

Reduced heating energy use through improved thermal performance of the roof.

Design description

Overview

The building has a gable roof, which we assume is on wood trusses, with some batt insulation in the attic space. The current code requires this type of insulation to have a thermal performance of R70 in this climatic zone, which would mean providing a minimum total of at least 12 inches of insulation in the attic. Spray foam could be applied where the attic trusses meet the exterior walls if the depth of the trusses does not allow a full 12 inches of batts.

Project cost estimate

Table 32: Project cost estimate (Roof upgrade to high performance)

Category	Line item	Unit	Value
Construction	Roof replacement General requirements (25%)	[\$] [\$]	80,000 20,000
Contingency	Subtotal after Construction Design Contingency (25%) Construction Contingency (10%)	[\$] [\$] [\$]	100,000 25,000 10,000
Design, Contractors, PM	Subtotal after Contingency Engineering Design and Field Review (10%) Contractor Fee (7%)	[\$] [\$] [\$]	135,000 13,500 9,400
Total	Total	[\$]	157,900

Utility analysis

Utility analysis methodology

The following assumptions were applied to the calibrated energy model to estimate utility use impacts.

- Baseline. An average roof U-value of 0.0213 BTU/hr.ft2.F (R47) was assumed.
- Proposed. An average roof U-value of 0.0143 BTU/hr.ft2.F (R70) was assumed.

Table 33: Roof upgrade to high performance analysis results summary

Category	Description	Unit	Baseline	Proposed	Reduction	Reduction [%]
Utility use	Electricity use	[kWh/yr]	121,792	121,801	-9.1	-0.01
	Natural gas use	[m3/yr]	8,859	8,337	522	5.9
	Carbon offset use	[tCO2e/yr]	0	0	0	_
Equivalent energy use	Electricity energy	[kWh/yr]	121,792	121,801	-9.1	-0.01
	Natural gas energy	[kWh/yr]	93,525	88,014	5,512	5.9
	Total energy	[kWh/yr]	215,317	209,814	5,503	2.6
GHG emissions	Electricity GHGs	[tCO2e/yr]	3.7	3.7	-0.00	-0.01
	Natural gas GHGs	[tCO2e/yr]	17.1	16.1	1.0	5.9
	Carbon offsets GHGs	[tCO2e/yr]	0	0	0	_
	Total GHGs	[tCO2e/yr]	20.8	19.8	1.0	4.8
Utility cost	Electricity utility cost	[\$/yr]	12,082	12,083	-0.90	-0.01
	Natural gas utility cost	[\$/yr]	2,303	2,168	136	5.9
	Carbon offsets utility cost	[\$/yr]	0	0	0	_
	Federal carbon charge	[\$/yr]	856	806	50.4	5.9
	Total utility cost	[\$/yr]	15,241	15,056	185	1.2
Financial	Assumed life	[yrs]	15	20	_	_
	Project cost	[\$]	0	157,900	_	_
	Incentive amount	[\$]	0	31,580	_	_
	Incremental project cost	[\$]	0	126,320	_	_
	Life cycle cost	[\$]	443,213	574,161	_	_
	Net present value	[\$]	0	-130,948	_	_
	Project cost per GHG reduction	[\$yr/tCO2e]	_	125,241	_	_
	Simple payback period	[yr]	_	>20	_	_

5.10 Solar PV rooftop

Measure description

Existing condition

There is no solar PV on the roof. Some rooftop space is available.

Opportunity

Install a solar PV system on the roof where feasible. A net-metering agreement is recommended so that the reduced GHG emissions associated with the electricity generated by the system can be retained by the City of Temiskaming Shores or exported to the grid if on-site electricity consumption is fulfilled.

Utility-savings mechanism

The solar PV system will reduce the electricity use from the grid, GHG emissions, and utility costs.

Design description

Helioscope overview

Helioscope was used to determine a preliminary design concept for the proposed solar PV system. The Helioscope model is depicted in the following image.

Based on the results from the Helioscope model, the proposed solar PV system was assumed to have the following output capacity.

Total system output capacity (DC) = 22 kW.

Proposed scope

Supply and install a rooftop solar PV electricity generation system, including the following.

- · Solar PV modules.
- Racking system for mounting the solar panels onto.
- DC to AC inverters.
- Wiring, disconnects, meters, panels and transformers. The AC output from inverters is to be wired into a dedicated solar PV electrical panel before being connected to the main switchboard via a new breaker.
- Connection impact assessment, and other requirements to satisfy the utility provider for executing a Net Metering agreement.
- Installation of the above.

Electrical

With the existing system, the panel is rated high enough to accommodate the additional incoming load of the solar. No additional upgrades outside of the solar equipment will be required.

Project cost estimate

Table 34: Project cost estimate (Solar PV rooftop)

Category	Line item	Unit	Value
Materials and labour	Solar PV electricity system installed (assuming 22 kW at 2000 \$/kW) Electrical	[\$] [\$]	44,000 5,000
Contingency	Subtotal after Materials and labour General Contingency (20%) Design Contingency (10%)	[\$] [\$] [\$]	49,000 9,800 4,900
Total	Total	[\$]	63,700

Utility analysis

Utility analysis methodology

The following assumptions were applied to the calibrated energy model to estimate utility use impacts.

- Baseline. There is no solar PV present at this site.
- **Proposed**. The proposed solar PV electricity generation system described above was assumed to be implemented. Helioscope was used to model the hourly electricity output from the solar PV system. All electricity generated by the system was assumed to be used on-site, directly reducing grid electricity consumption, GHG emissions and utility costs.

Table 35: Solar PV rooftop analysis results summary

Category	Description	Unit	Baseline	Proposed	Reduction	Reduction [%]
Utility use	Electricity use	[kWh/yr]	121,792	98,560	23,231	19.1
·	Natural gas use	[m3/yr]	8,859	8,859	0	0
	Carbon offset use	[tCO2e/yr]	0	0	0	_
Equivalent energy use	Electricity energy	[kWh/yr]	121,792	98,560	23,231	19.1
	Natural gas energy	[kWh/yr]	93,525	93,525	0	0
	Total energy	[kWh/yr]	215,317	192,086	23,231	10.8
GHG emissions	Electricity GHGs	[tCO2e/yr]	3.7	3.0	0.70	19.1
	Natural gas GHGs	[tCO2e/yr]	17.1	17.1	0	0
	Carbon offsets GHGs	[tCO2e/yr]	0	0	0	_
	Total GHGs	[tCO2e/yr]	20.8	20.1	0.70	3.4
Utility cost	Electricity utility cost	[\$/yr]	12,082	9,777	2,305	19.1
	Natural gas utility cost	[\$/yr]	2,303	2,303	0	0
	Carbon offsets utility cost	[\$/yr]	0	0	0	_
	Federal carbon charge	[\$/yr]	856	856	0.00	0.00
	Total utility cost	[\$/yr]	15,241	12,937	2,305	15.1
Financial	Assumed life	[yrs]	15	30	_	_
	Project cost	[\$]	0	63,700	_	_
	Incentive amount	[\$]	0	12,740	_	_
	Incremental project cost	[\$]	0	50,960	_	_
	Life cycle cost	[\$]	443,213	423,951	_	_
	Net present value	[\$]	0	19,262	_	_
	Project cost per GHG reduction	[\$yr/tCO2e]	_	72,635	_	_
	Simple payback period	[yr]	_	>20	_	_

5.11 Wall upgrade to high performance

Measure description

Existing condition

The building appears to have a concrete block exterior, which may be on wood stud framing or maybe a masonry cavity wall with concrete block backup.

Opportunity

Upgrade upon the end of useful life or as required to meet scenario criteria.

Utility-savings mechanism

Reduced heating energy use through improved thermal performance of exterior walls.

Design description

Overview

To avoid having to rework and remove interior finishes, we recommend adding an EIFS system to the exterior walls to a depth of 6 inches. This system comes with its own air barrier, which will help to reduce air leakage if the proper flashing is applied at all door and window openings. The new thermal performance value should be at least R20, if not more, and can be applied to the lower-level concrete walls as well as the masonry, as long as the concrete finish is in good repair.

Project cost estimate

Table 36: Project cost estimate (Wall upgrade to high performance)

Category	Line item	Unit	Value
Construction	Wall upgrade	[\$]	561,000
	General requirements (25%)	[\$]	140,200
Contingency	Subtotal after Construction	[\$]	701,200
	Design Contingency (25%)	[\$]	175,300
	Construction Contingency (10%)	[\$]	70,100
Design, Contractors, PM	Subtotal after Contingency	[\$]	946,600
-	Engineering Design and Field Review (10%)	[\$]	94,700
	Contractor Fee (7%)	[\$]	66,300
Total	Total	[\$]	1,107,600

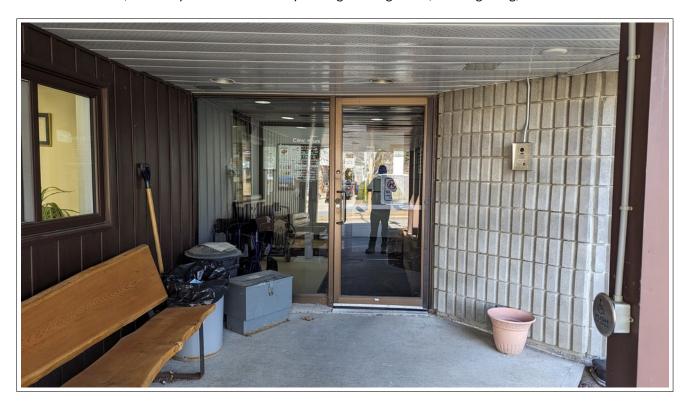
Utility analysis

Utility analysis methodology

The following assumptions were applied to the calibrated energy model to estimate utility use impacts.

- Baseline. An average wall U-value of 0.05 BTU/hr.ft2.F (R20) was assumed.
- **Proposed**. An average wall U-value of 0.025 BTU/hr.ft2.F (R40) was assumed. Infiltration flow was assumed to be reduced by 10% in total relative to the Baseline for affected spaces.

Table 37: Wall upgrade to high performance analysis results summary


Category	Description	Unit	Baseline	Proposed	Reduction	Reduction [%]
Utility use	Electricity use	[kWh/yr]	121,792	123,542	-1,750	-1.4
	Natural gas use	[m3/yr]	8,859	6,469	2,391	27.0
	Carbon offset use	[tCO2e/yr]	0	0	0	_
Equivalent energy use	Electricity energy	[kWh/yr]	121,792	123,542	-1,750	-1.4
	Natural gas energy	[kWh/yr]	93,525	68,288	25,238	27.0
	Total energy	[kWh/yr]	215,317	191,829	23,488	10.9
GHG emissions	Electricity GHGs	[tCO2e/yr]	3.7	3.7	-0.05	-1.4
	Natural gas GHGs	[tCO2e/yr]	17.1	12.5	4.6	27.0
	Carbon offsets GHGs	[tCO2e/yr]	0	0	0	_
	Total GHGs	[tCO2e/yr]	20.8	16.2	4.6	22.0
Utility cost	Electricity utility cost	[\$/yr]	12,082	12,255	-174	-1.4
	Natural gas utility cost	[\$/yr]	2,303	1,682	622	27.0
	Carbon offsets utility cost	[\$/yr]	0	0	0	_
	Federal carbon charge	[\$/yr]	856	625	231	27.0
	Total utility cost	[\$/yr]	15,241	14,562	679	4.5
Financial	Assumed life	[yrs]	15	75	_	_
	Project cost	[\$]	0	1,107,600	_	_
	Incentive amount	[\$]	0	221,520	_	_
	Incremental project cost	[\$]	0	886,080	_	_
	Life cycle cost	[\$]	443,213	723,133	_	_
	Net present value	[\$]	0	-279,920	_	_
	Project cost per GHG reduction	[\$yr/tCO2e]	_	194,028	_	_
	Simple payback period	[yr]	_	>20	_	

5.12 Windows and doors to high performance

Measure description

Existing condition

The facility has aluminum-framed, double-pane windows. Five windows were installed in 2023, which were aluminum-framed, thermally broken. The facility has eight swing doors, 6 with glazing, and 2 hollow metal.

Opportunity

Upgrade upon the end of useful life or as required to meet scenario criteria.

Utility-savings mechanism

Reduced heating energy use through improved thermal performance of windows and doors.

Design description

Windows

We recommend replacing all windows with Passive House Certified Triple-glazed, thermally broken windows. These could be framed in aluminum, vinyl or fiberglass. At the very least we would recommend double-glazed windows in thermally broken frames to bring them up to current code standards.

Doors

Doors are a significant source of heat loss and air infiltration. To minimize their impact, we recommend the following measures:

- Hollow Metal Doors: Replace existing hollow metal doors with insulated doors in thermally broken frames.
- Glazed Entry Doors: Should be triple-glazed and thermally broken as part of the curtain wall/window improvements.

Project cost estimate

Table 38: Project cost estimate (Windows and doors to high performance)

Category	Line item	Unit	Value
Construction	Window and door replacement General requirements (25%)	[\$] [\$]	162,000 40,500
Contingency	Subtotal after Construction Design Contingency (25%) Construction Contingency (10%)	[\$] [\$] [\$]	202,500 50,600 20,200
Design, Contractors, PM	Subtotal after Contingency Engineering Design and Field Review (10%) Contractor Fee (7%)	[\$] [\$] [\$]	273,300 27,300 19,100
Total	Total	[\$]	319,700

Utility analysis

Utility analysis methodology

The following assumptions were applied to the calibrated energy model to estimate utility use impacts.

- Baseline. The average U-value of all windows and doors was assumed to be 0.5601 BTU/hr.ft2.F.
- **Proposed**. The average U-value of all windows and doors was assumed to be 0.125 BTU/hr.ft2.F (R8). Infiltration flow was assumed to be reduced by 10% in total relative to the Baseline for affected spaces.

Table 39: Windows and doors to high performance analysis results summary

Category	Description	Unit	Baseline	Proposed	Reduction	Reduction [%]
Utility use	Electricity use	[kWh/yr]	121,792	121,740	51.5	0.04
	Natural gas use	[m3/yr]	8,859	8,684	175	2.0
	Carbon offset use	[tCO2e/yr]	0	0	0	_
Equivalent energy use	Electricity energy	[kWh/yr]	121,792	121,740	51.5	0.04
	Natural gas energy	[kWh/yr]	93,525	91,675	1,851	2.0
	Total energy	[kWh/yr]	215,317	213,415	1,902	0.88
GHG emissions	Electricity GHGs	[tCO2e/yr]	3.7	3.7	0.00	0.04
	Natural gas GHGs	[tCO2e/yr]	17.1	16.8	0.34	2.0
	Carbon offsets GHGs	[tCO2e/yr]	0	0	0	_
	Total GHGs	[tCO2e/yr]	20.8	20.5	0.34	1.6
Utility cost	Electricity utility cost	[\$/yr]	12,082	12,077	5.1	0.04
	Natural gas utility cost	[\$/yr]	2,303	2,258	45.6	2.0
	Carbon offsets utility cost	[\$/yr]	0	0	0	_
	Federal carbon charge	[\$/yr]	856	839	16.9	2.0
	Total utility cost	[\$/yr]	15,241	15,174	67.6	0.44
Financial	Assumed life	[yrs]	15	40	_	_
	Project cost	[\$]	0	319,700	_	_
	Incentive amount	[\$]	0	63,940	_	_
	Incremental project cost	[\$]	0	255,760	_	_
	Life cycle cost	[\$]	443,213	597,514	_	_
	Net present value	[\$]	0	-154,301	_	_
	Project cost per GHG reduction	[\$yr/tCO2e]	_	751,537	_	_
	Simple payback period	[yr]	_	>20	_	_

5.13 Measure risk analysis

Utility use sensitivity

Figure 153 indicates how sensitive cumulative electricity and natural gas use are to variations in each risk parameter.

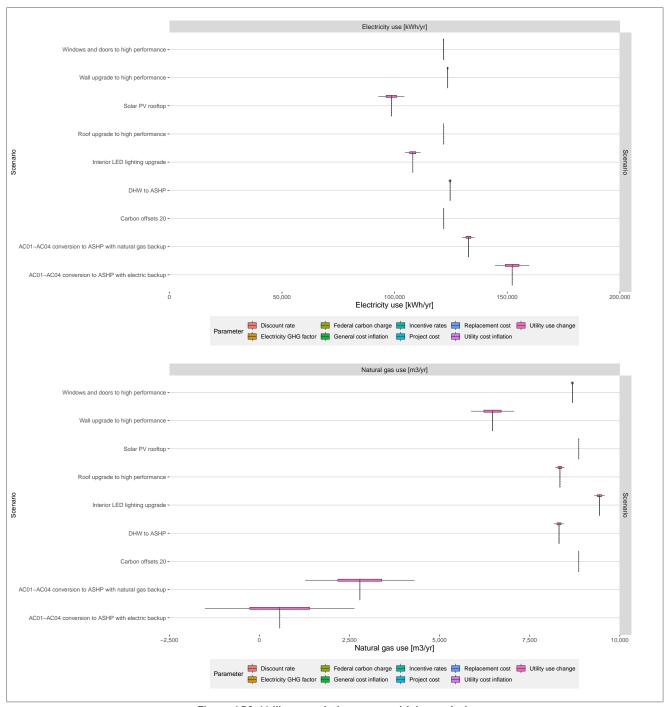


Figure 153: Utility cumulative use sensitivity analysis

GHG emissions and life cycle cost sensitivity

Figure 154 indicates how sensitive cumulative GHG emissions and life cycle costs are to variations in each risk parameter.

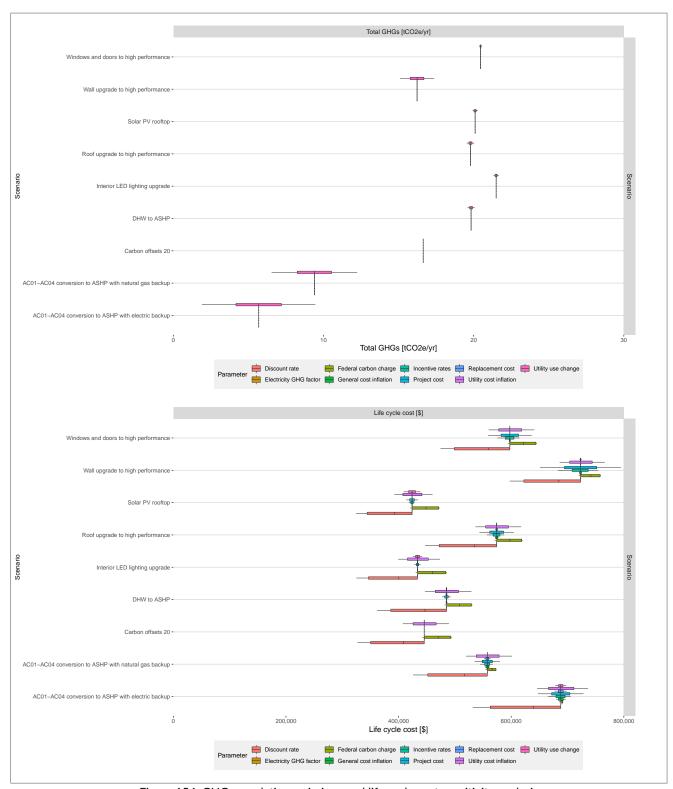


Figure 154: GHG cumulative emissions and life cycle cost sensitivity analysis

5.14 Measure analysis summary

For each analyzed measure, the analysis results are summarized in Table 40.

Table 40: Measure analysis summary

Measure ID	Utility use				Equivalent ene	rgy use	GHG emissions		Utility cost		Financial							
Measure name	Electricity use reduction	Electricity use reduction	Natural gas use reduction	Natural gas use reduction	Total energy reduction	Total energy reduction	Total GHG reduction	Total GHG reduction	Utility cost reduction	Utility cost reduction	Assumed life	Project cost	Incentive amount	Incremental project cost	Life cycle cost	Net present value	Project cost per GHG reduction	Simple payback period
-	[kWh/yr]	[%]	[m3/yr]	[%]	[kWh/yr]	[%]	[tCO2e/yr]	[%]	[\$/yr]	[%]	[yrs]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$yr/tCO2e]	[yr]
Baseline	121,792	100.0	8,859	100.0	215,317	100.0	21	100.0	15,241	100.0	15	0	0	0	443,213	0	-	-
AC01-AC04 conversion to ASHP with electric backup AC01-AC04 conversion to ASHP with natural gas backup Carbon offsets 2D DHW to ASHP Interior LED lighting upgrade Roof upgrade to high performance Solar PV norboty Wall upgrade to high performance Wall upgrade to high performance Windows and doors to high performance	-30,413 -10,995 0 -2,860 13,723 -9 23,231 -1,750 51	-25.0 -9.0 0.0 -2.3 11.3 -0.0 19.1 -1.4	8,297 6,073 0 547 -576 522 0 2,391 175	93.7 68.6 0.0 6.2 -6.5 5.9 0.0 27.0 2.0	57,174 53,121 0 2,911 7,639 5,503 23,231 23,488 1,902	26.6 24.7 0.0 1.4 3.5 2.6 10.8 10.9 0.9	15 11 4 1 -1 1 1 5	72.7 54.8 20.0 4.7 -3.4 4.8 3.4 22.0 1.6	-58 1,075 -125 -89 1,156 185 2,305 679 68	-0.4 7.1 -0.8 -0.6 -7.6 1.2 15.1 4.5	15 15 20 15 20 20 30 75 40	208,400 116,600 31,500 22,500 157,900 63,700 1,107,600 319,700	41,680 23,320 0 137 0 31,580 12,740 221,520 63,940	166,720 93,280 31,363 22,500 126,320 50,960 886,080 255,760	687,962 557,544 445,488 485,090 433,640 574,161 423,951 723,133 597,514	-244,749 -114,331 -2,276 -41,877 9,573 -130,948 19,262 -279,920 -154,301	11,031 8,180 - 32,336 -32,177 125,241 72,635 194,028 751,537	-2,864 87 -353 19 682 22 1,305 3,782
Total project cost	-							-				2,027,900					-	
ACO1-ACO4 renewal DHW renewal Exterior walls renewal Interior lighting renewal Roof renewal Windows and doors renewal BAU measure totals	0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	15 15 75 20 20 40	38,000 4,000 8,000 19,000 388,000 48,000 505,000	0 0 0 0 0	38,000 4,000 8,000 19,000 388,000 48,000	488,093 447,937 445,803 462,962 846,513 472,356	-44,880 -4,724 -2,590 -19,749 -403,300 -29,143	- - - -	-

6 SCENARIO ANALYSIS

6.1 Cluster scenario analysis methodology

A scenario analysis was completed to estimate the costs and benefits expected from implementing various combinations (i.e. scenarios) of the measures that were individually analyzed in Section 5. Whereas in Section 5, each measure was individually analyzed as though implemented by itself, in Section 6, scenarios of multiple measures being implemented together were analyzed, and the interactive effects between measures within each scenario were accounted for. The scenario analysis was completed according to the following methodology.

- 1. Cluster scenario objectives. All scenarios that were analyzed and their objectives were defined as summarized in Table 41.
- 2. **Cluster scenario composition**. Each scenario was composed by iteratively assigning measures to that scenario to achieve the objectives of that scenario as closely as possible. Results are presented in Section 6.3
- 3. Cluster scenario performance analysis. Each scenario was analyzed using the energy model to estimate the overall performance that implementing all measures in that scenario would have on utility use, equivalent energy use, GHG emissions, utility costs and several financial performance metrics. Results are presented in Section 6.4.
- 4. Cluster scenario analysis discussion. Results of the scenario analysis were discussed in Section 6.4.

6.2 Cluster scenario objectives

The cluster scenarios that were analyzed and their objectives are summarized in Table 41.

ScenarioObjectivesControl optimizationTo estimate the impact of all control optimization measures combined.Envelope upgradesTo estimate the impact of all envelope upgrade measures combined.Load minimizationTo estimate the impact of all controls optimization, envelope upgrades, and other measures intended to reduce the thermal and electrical load of the facility, which would ideally reduce the capacity requirements of new equipment.Comprehensive clusterTo understand the limit of GHG reductions possible by implementing all measures that have the greatest reduction on GHG emissions.

Table 41: Scenario objectives

6.3 Cluster scenario composition

In the scenario composition exercise, individual measures were assigned to each scenario in an iterative process to achieve the objectives of that scenario as closely as possible. Figure 155 and Table 42 present the results of this exercise, indicating which measures were assigned to which scenario.

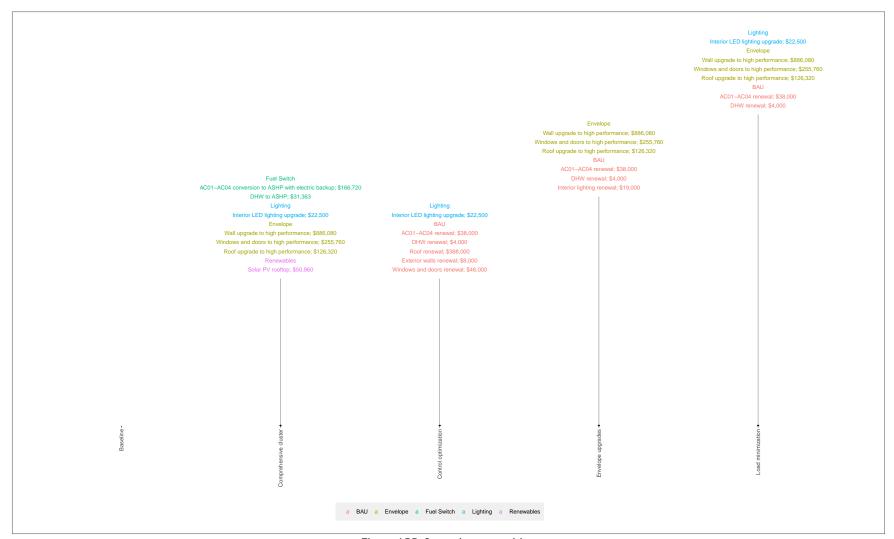


Figure 155: Scenario composition

Table 42: Cluster composition

Measure	Control optimization	Envelope upgrades	Load minimization	Comprehensive cluster
AC01-AC04 conversion to ASHP with electric backup	×	*	*	✓
AC01-AC04 conversion to ASHP with natural gas backup	×	×	*	*
Carbon offsets 20	*	*	×	*
DHW to ASHP	×	×	*	✓
Interior LED lighting upgrade	V	×	✓	V
Roof upgrade to high performance	*	✓	✓	V
Solar PV rooftop	*	×	×	V
Wall upgrade to high performance	×	✓	✓	✓
Windows and doors to high performance	*	✓	V	✓
AC01-AC04 renewal	✓	✓	✓	×
DHW renewal	✓	✓	✓	*
Exterior walls renewal	✓	*	×	*
Interior lighting renewal	×	✓	×	×
Roof renewal	✓	*	×	×
Windows and doors renewal	✓	*	×	×

Cluster scenario performance analysis

The scenario performance analysis was completed by using the energy model (see Section 4) to determine the expected performance of implementing all measures in each scenario. Results are presented throughout Section 6.4.

Cluster scenario performance analysis summary

Results of the scenario analysis are summarized in Table 43, which indicates all individual measures that were considered to be implemented under each scenario, the measure-specific impacts that each measure was estimated to have if implemented by itself, and the combined impacts that implementing all measures in each scenario is expected to have, accounting for the interactive effects between measures within each scenario.

Table 43: Scenario analysis summary

Measure ID		Utility use				Equivalent ene	rgy use	GHG emissions		Utility cost		Financial							
Scenario	Measure name	Electricity use reduction	Electricity use reduction	Natural gas use reduction	Natural gas use reduction	Total energy reduction	Total energy reduction	Total GHG reduction	Total GHG reduction	Utility cost reduction	Utility cost reduction	Assumed life	Project cost	Incentive amount	Incremental project cost	Life cycle cost	Net present value	Project cost per GHG reduction	Simple payback period
-	-	[kWh/yr]	[%]	[m3/yr]	[%]	[kWh/yr]	[%]	[tCO2e/yr]	[%]	[\$/yr]	[%]	[yrs]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$yr/tCO2e]	[yr]
Comprehensive cluster	Combined	19,240	15.8	8,859	100.0	112,765	52.4	18	85.1	5,068	33.3	-	1,911,300	371,597	1,539,703	1,187,133	-743,920	86,987	304
Comprehensive cluster Comprehensive cluster Comprehensive cluster Comprehensive cluster	Interior LED lighting upgrade Wall upgrade to high performance Windows and doors to high performance Roof upgrade to high performance	-30,413 -2,860 13,723 -1,750 51 -9 23,231	-25.0 -2.3 11.3 -1.4 0.0 -0.0 19.1	8,297 547 -576 2,391 175 522 0	93.7 6.2 -6.5 27.0 2.0 5.9 0.0	57,174 2,911 7,639 23,488 1,902 5,503 23,231	26.6 1.4 3.5 10.9 0.9 2.6 10.8	15 1 -1 5 0 1	72.7 4.7 -3.4 22.0 1.6 4.8 3.4	-58 -89 1,156 679 68 185 2,305	-0.4 -0.6 7.6 4.5 0.4 1.2 15.1	15 15 20 75 40 20 30	208,400 31,500 22,500 1,107,600 319,700 157,900 63,700	41,680 137 0 221,520 63,940 31,580 12,740	166,720 31,363 22,500 886,080 255,760 126,320 50,960	687,962 485,090 433,640 723,133 597,514 574,161 423,951	-244,749 -41,877 9,573 -279,920 -154,301 -130,948 19,262	11,031 32,336 -32,177 194,028 751,537 125,241 72,635	-2,864 -353 19 1,305 3,782 682 22
Control optimization	Combined	13,723	11.3	-576	-6.5	7,639	3.5	-1	-3.4	1,156	7.6		508,500	0	508,500	898,078	-454,865	-727,206	440
Control optimization Control optimization Control optimization Control optimization Control optimization Control optimization	Interior LED lighting upgrade ACO1-ACO4 renewal DHW renewal Roof renewal Roof renewal Exterior walls renewal Windows and doors renewal	13,723 0 0 0 0 0	11.3 0.0 0.0 0.0 0.0 0.0	-576 0 0 0 0 0	-6.5 0.0 0.0 0.0 0.0 0.0	7,639 0 0 0 0 0	3.5 0.0 0.0 0.0 0.0 0.0	-1 0 0 0 0	-3.4 0.0 0.0 0.0 0.0 0.0 0.0	1,156 0 0 0 0 0	7.6 0.0 0.0 0.0 0.0 0.0	20 15 15 20 75 40	22,500 38,000 4,000 388,000 8,000 48,000	0 0 0 0 0	22,500 38,000 4,000 388,000 8,000 48,000	433,640 488,093 447,937 846,513 445,803 472,356	9,573 -44,880 -4,724 -403,300 -2,590 -29,143	-32,177 - - - - -	19 - - - -
Envelope upgrades	Combined	-1,998	-1.6	3,090	34.9	30,620	14.2	6	28.4	904	5.9	-	1,646,200	317,040	1,329,160	1,040,220	-597,007	224,885	1,471
Envelope upgrades Envelope upgrades Envelope upgrades Envelope upgrades Envelope upgrades Envelope upgrades Envelope upgrades	Wall upgrade to high performance Windows and doors to high performance Roof upgrade to high performance AC01-AC04 renewal Interior lighting renewal	-1,750 51 -9 0 0	-1.4 0.0 -0.0 0.0 0.0 0.0	2,391 175 522 0 0	27.0 2.0 5.9 0.0 0.0 0.0	23,488 1,902 5,503 0 0	10.9 0.9 2.6 0.0 0.0 0.0	5 0 1 0 0	22.0 1.6 4.8 0.0 0.0 0.0	679 68 185 0 0	4.5 0.4 1.2 0.0 0.0 0.0	75 40 20 15 15 20	1,107,600 319,700 157,900 38,000 4,000 19,000	221,520 63,940 31,580 0 0	886,080 255,760 126,320 38,000 4,000 19,000	723,133 597,514 574,161 488,093 447,937 462,962	-279,920 -154,301 -130,948 -44,880 -4,724 -19,749	194,028 751,537 125,241	1,305 3,782 682
Load minimization	Combined	11,694	9.6	2,506	28.3	38,150	17.7	5	25.0	2,054	13.5	-	1,649,700	317,040	1,332,660	1,012,683	-569,470	256,490	649
Load minimization Load minimization Load minimization Load minimization Load minimization Load minimization	Interior LED lighting upgrade Wall upgrade to high performance Windows and doors to high performance Roof upgrade to high performance AC01-AC04 renewal DHW renewal	13,723 -1,750 51 -9 0	11.3 -1.4 0.0 -0.0 0.0 0.0	-576 2,391 175 522 0 0	-6.5 27.0 2.0 5.9 0.0 0.0	7,639 23,488 1,902 5,503 0	3.5 10.9 0.9 2.6 0.0 0.0	-1 5 0 1 0	-3.4 22.0 1.6 4.8 0.0 0.0	1,156 679 68 185 0	7.6 4.5 0.4 1.2 0.0 0.0	20 75 40 20 15	22,500 1,107,600 319,700 157,900 38,000 4,000	0 221,520 63,940 31,580 0	22,500 886,080 255,760 126,320 38,000 4,000	433,640 723,133 597,514 574,161 488,093 447,937	9,573 -279,920 -154,301 -130,948 -44,880 -4,724	-32,177 194,028 751,537 125,241	19 1,305 3,782 682

Utility use comparison

The following figures compare the total expected yearly utility use by end use between each scenario.

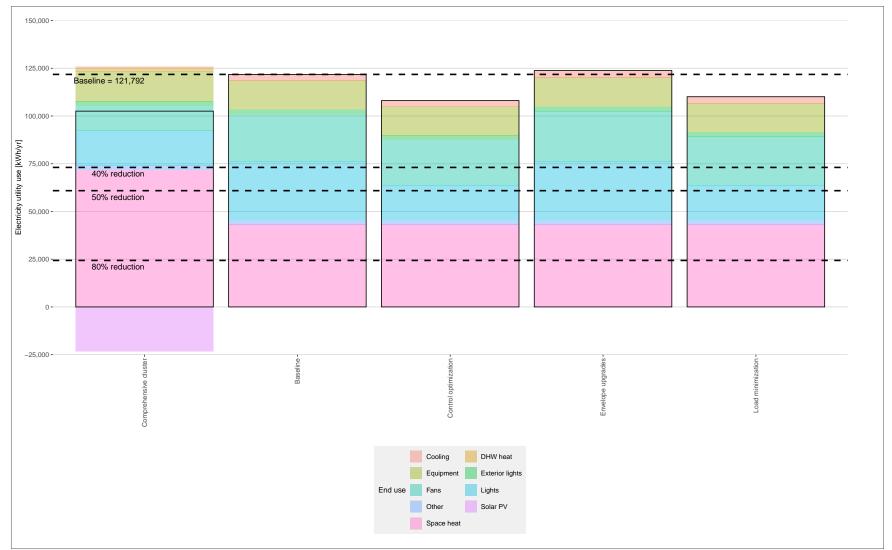


Figure 156: Electricity utility use expected yearly for each scenario by end use

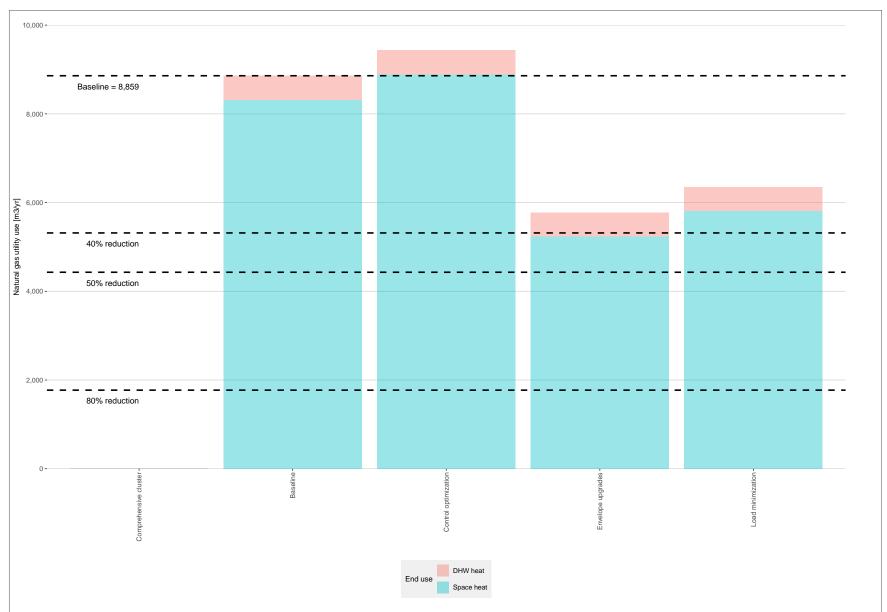


Figure 157: Natural gas utility use expected yearly for each scenario by end use

Energy, GHG and utility cost comparison

The following figures compare the total expected yearly equivalent energy use, GHG emissions and utility costs between each scenario.

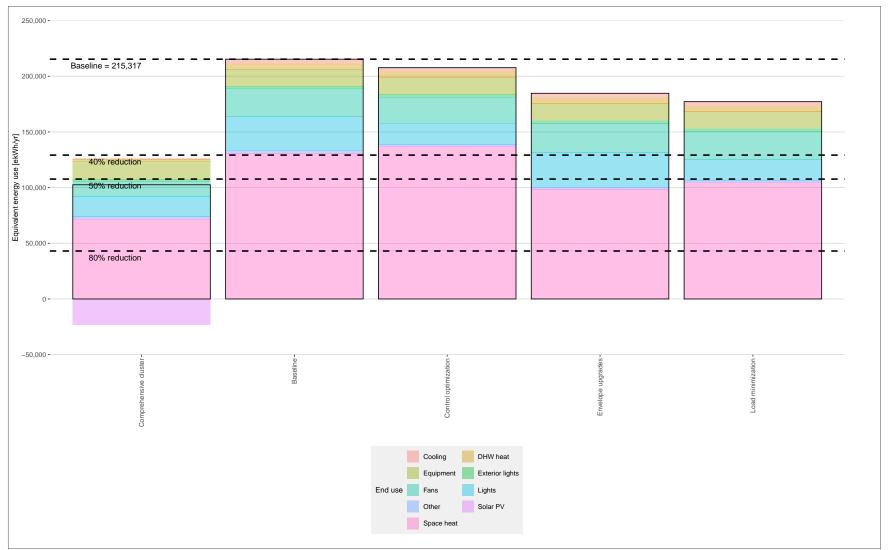
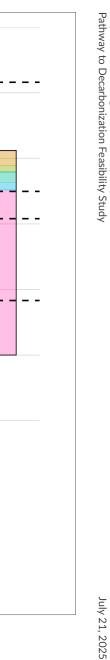


Figure 158: Equivalent energy use expected yearly for each scenario by end use


25 -

GHG emissions [ton/yr]

40% reduction

50% reduction

80% reduction

Cooling DHW heat Exterior lights End use Solar PV Space heat Figure 159: GHG emissions expected yearly for each scenario by end use

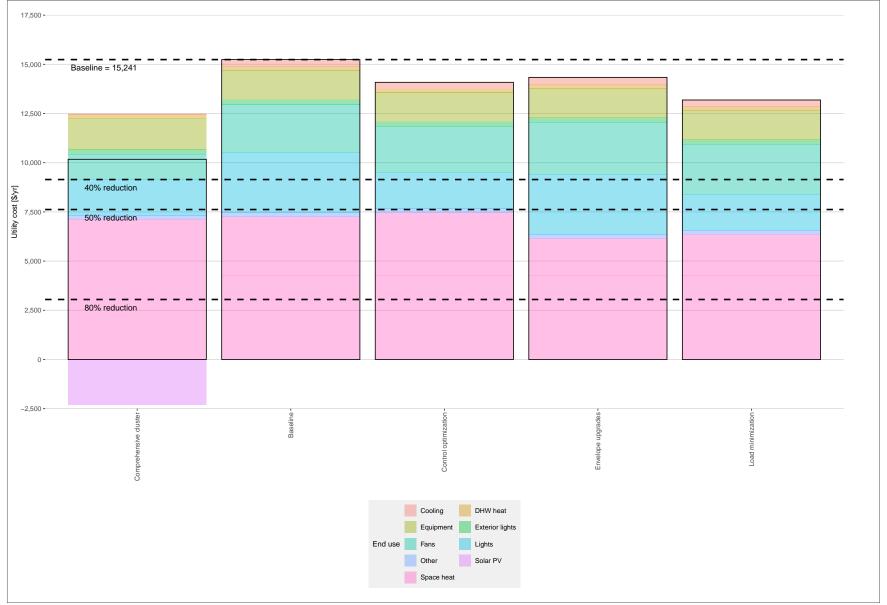


Figure 160: Utility costs expected yearly for each scenario by end use

Financial performance comparison

The following figures compare the financial performance between each scenario.

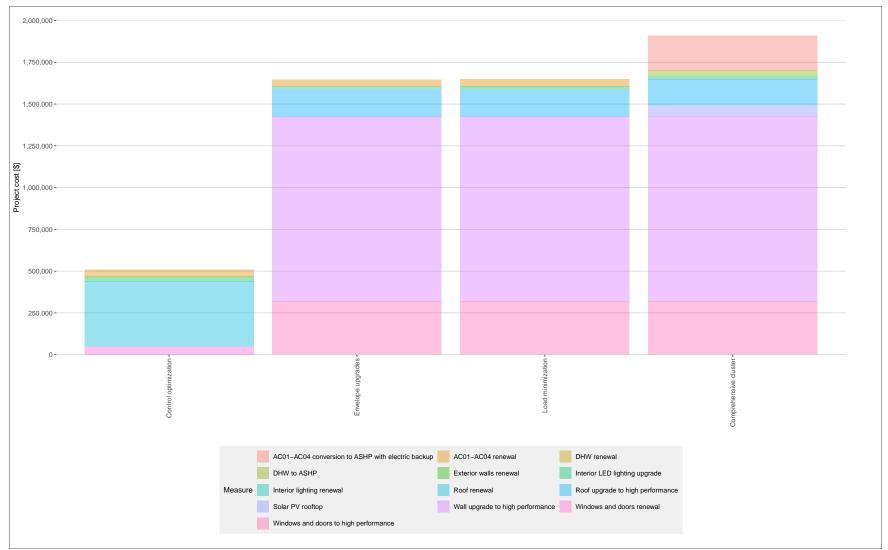


Figure 161: Project cost expected for each scenario by measure

1,250,000 -

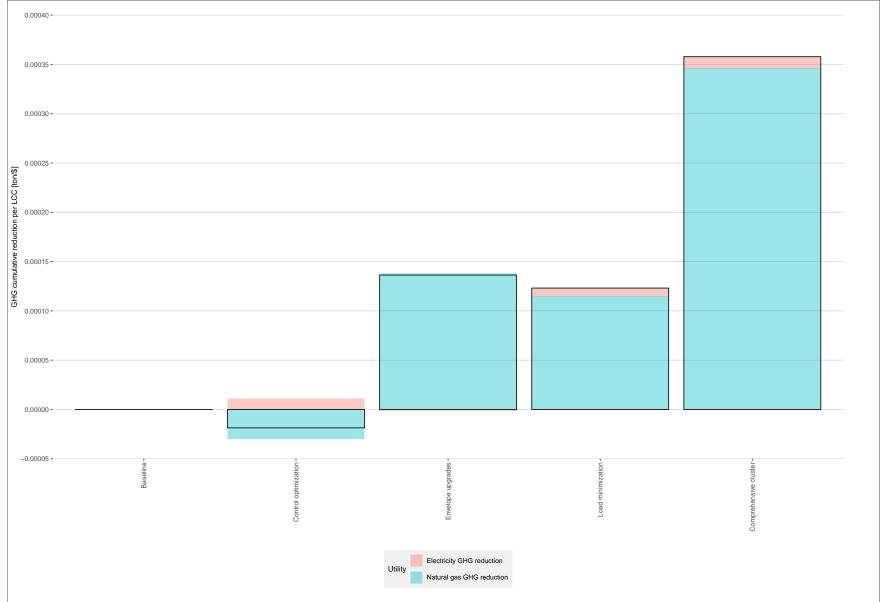


Figure 163: GHG cumulative reduction per life cycle cost (LCC) dollar expected for each scenario by utility

6.5 Plan scenario development

Plan scenario identification and objectives

The plan scenarios that were analyzed and their objectives are summarized in Table 44.

Table 44: Plan scenario identification and objectives

Plan scenario	Objectives
Minimum performance scenario	To achieve a 50% reduction in operational GHG emissions within 10 years and 80% within 20 years. This scenario addresses the minimum performance scenario of FCM's CBR program.
Aggressive deep retrofit	Implement the same measures as in the minimum performance scenario but achieve an 80% reduction in GHG emissions within five years. This scenario addresses the additional scenario requirement of FCM's CBR program.
Comprehensive	To understand the limit of GHG reductions possible by implementing all mutually exclusive measures that have the greatest reduction on GHG emissions and excluding the use of carbon offsets.
Organizational goal alignment	To reduce emissions by 40% GHG emissions from 2019 levels by 2033 and 80% reduction by 2050 of on-site emissions. The remaining 20% is to be addressed through carbon offsets, as noted in the City's Corporate Greenhouse Gas Reduction Plan (GHGRP).
Business as usual	To follow the existing capital renewal plan and replace equipment at the end of its life with like-for-like equipment, meeting minimum energy-efficiency requirements of ASHRAE 90.1.

Plan scenario composition

The plan scenarios were composed with the intent of achieving the objective of each plan scenario, as outlined in Table 44. Results of the plan scenario composition are presented in Figure 164, which is a measure implementation timeline plot indicating which measures were assumed to be implemented in which plan scenarios and when, and the estimated project cost of each measure. The measures are also colour-coded according to measure group. The same information is included in plan performance analysis results figures in Section 6.6 for ease of reference. The plan scenario composition is also presented in Tables 45 to 50.

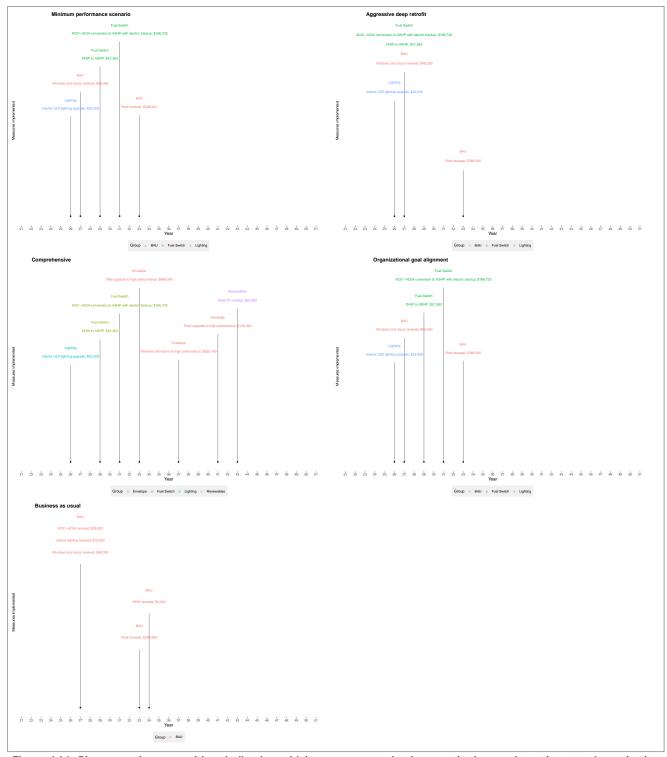


Figure 164: Plan scenario composition, indicating which measures are implemented when and at what cost in each plan scenario

Table 45: Scenario composition summary

Measure	Minimum performance scenario	Aggressive deep retrofit	Comprehensive	Organizational goal alignment
AC01-AC04 conversion to ASHP with electric backup	V	V	✓	✓
AC01-AC04 conversion to ASHP with natural gas backup	×	×	×	×
Carbon offsets 20	×	×	×	×
DHW to ASHP	✓	✓	✓	✓
Interior LED lighting upgrade	✓	✓	✓	✓
Roof upgrade to high performance	×	×	✓	×
Solar PV rooftop	×	×	✓	×
Wall upgrade to high performance	×	×	✓	×
Windows and doors to high performance	×	×	✓	×
AC01-AC04 renewal	×	×	×	×
DHW renewal	×	×	×	×
Exterior walls renewal	✓	✓	×	✓
Interior lighting renewal	×	×	*	×
Roof renewal	✓	✓	*	✓
Windows and doors renewal	✓	✓	×	✓

Table 46: Minimum performance scenario measure implementation timeline

Measure	Year
Interior LED lighting upgrade	2026
Windows and doors renewal	2027
DHW to ASHP	2029
AC01-AC04 conversion to ASHP with electric backup	2031
Roof renewal	2033
Exterior walls renewal	2056

Table 47: Aggressive deep retrofit measure implementation timeline

Year
Tear
2026
2027
2027
2027
2033
2056

Table 48: Comprehensive measure implementation timeline

Measure	Year
Interior LED lighting upgrade	2026
DHW to ASHP	2029
AC01-AC04 conversion to ASHP with electric backup	2031
Wall upgrade to high performance	2033
Windows and doors to high performance	2037
Roof upgrade to high performance	2041
Solar PV rooftop	2043

Table 49: Organizational goal alignment measure implementation timeline

Measure	Year
Interior LED lighting upgrade	2026
Windows and doors renewal	2027
DHW to ASHP	2029
AC01-AC04 conversion to ASHP with electric backup	2031
Roof renewal	2033
Exterior walls renewal	2056

Table 50: Business as usual measure implementation timeline

Measure	Year
AC01-AC04 renewal	2027
Interior lighting renewal	2027
Windows and doors renewal	2027
Roof renewal	2033
DHW renewal	2034
Exterior walls renewal	2056

6.6 Plan performance analysis

Figures 165 through 168 present the projected yearly electricity use, natural gas use, GHG emissions and life cycle costs associated with each plan scenario.

Figure 165: Electricity yearly utility use projection for each scenario

Figure 166: Natural gas yearly utility use projection for each scenario

Figure 167: GHG yearly emissions projection for each scenario

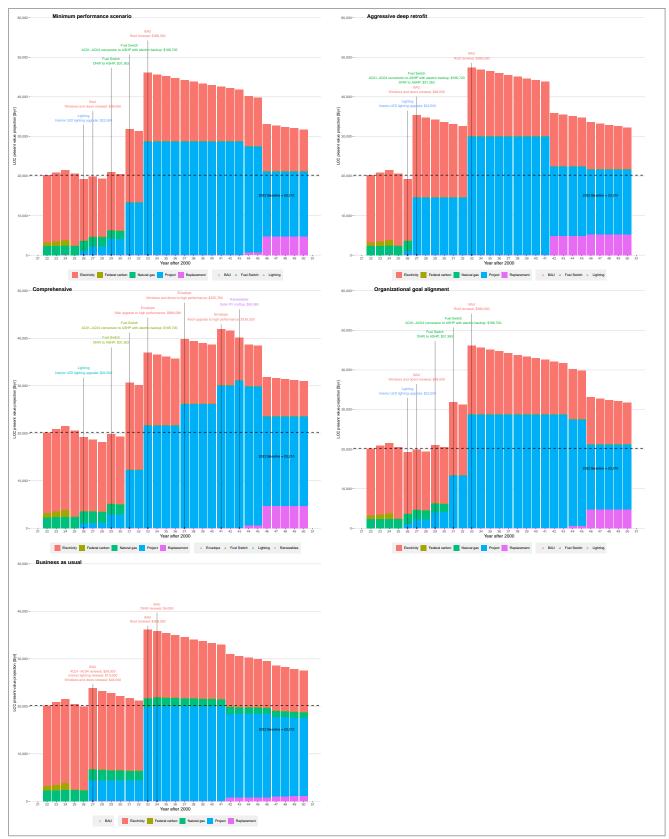


Figure 168: Life cycle yearly cost (after discounting to present value) projection for each scenario

6.7 Plan performance summary

Plan performance summary

Table 51 summarizes the performance of each plan scenario with respect to utility use, GHG emissions, utility cost, and financial metrics. The first half of Table 51 represents the estimated performance in the final year (2050) of the evaluation period. The second half of Table 51 represents the estimated cumulative performance across the entire evaluation period (present to 2050). All final year dollar values are in the value of today's currency. All cumulative dollar values presented in Table 51 are calculated as the simple sum of expenditures over the evaluation period, except for the life cycle cost, which is discounted to present value (as illustrated in Figure 168).

Table 51: Plan performance summary

Section	Description	Unit	Minimum performance scenario	Aggressive deep retrofit	Comprehensive	Organizational goal alignment	Business as usual
Utility use final	Electricity use	[kWh/yr]	147,188	147,188	102,552	147,188	121,792
	Electricity monthly peak (av)	[kW]	39.8	39.8	34.4	39.8	33.6
	Electricity yearly peak (max)	[kW]	62.5	62.5	56.8	62.5	46.2
	Natural gas use	[m3/yr]	0	0	0	0	8,859
GHG emissions final	Electricity GHGs	[tCO2e/yr]	1.4	1.4	1.0	1.4	1.2
	Natural gas GHGs	[tCO2e/yr]	0.0	0.0	0.0	0.0	17.1
	Carbon offsets GHGs	[tCO2e/yr]	0.00	0.00	0.00	0.00	0.00
	Total GHGs	[tCO2e/yr]	1.4	1.4	1.0	1.4	18.3
Utility cost final	Electricity utility cost	[\$/yr]	35,884	35,884	25,002	35,884	29,693
	Natural gas utility cost	[\$/yr]	0	0	0	0	4,010
	Carbon offsets utility cost	[\$/yr]	0.00	0.00	0.00	0.00	0.00
	Federal carbon charge	[\$/yr]	0.00	0.00	0.00	0.00	0.00
	Total utility cost	[\$/yr]	35,884	35,884	25,002	35,884	33,703
Utility use cumulative	Electricity use	[kWh]	3,977,014	4,127,743	3,438,315	3,977,014	3,531,960
,	Natural gas use	[m3]	81,513	44,873	81,513	81,513	256,920
GHG emissions cumulative	Electricity GHGs	[tCO2e]	139	148	127	139	129
	Natural gas GHGs	[tCO2e]	158	87	158	158	496
	Carbon offsets GHGs	[tCO2e]	0.00	0.00	0.00	0.00	0.00
	Total GHGs	[tCO2e]	297	235	285	297	625
Utility cost cumulative	Electricity utility cost	[\$]	755,000	778,996	638,915	755,000	661,621
	Natural gas utility cost	[\$]	22,978	12,149	22,978	22,978	89,342
	Carbon offsets utility cost	[\$]	0.00	0.00	0.00	0.00	0.00
	Federal carbon charge	[\$]	3,338	3,338	3,338	3,338	3,338
	Total utility cost	[\$]	781,316	794,484	665,231	781,316	754,301
Financial cumulative	Project cost	[\$]	796,282	777,085	2,302,668	796,282	568,626
	Replacement cost	[\$]	197,928	185,010	197,928	197,928	44,508
	Life cycle cost	[\$]	970,940	1,021,793	899,230	970,940	812,288

6.8 Scenario analysis discussion

Baseline

This scenario reflects existing conditions.

Minimum performance scenario

• To meet the FCM minimum performance scenario, significant capital retrofits would be required. Full heating system electrification would be required.

Aggressive deep retrofit

• For the aggressive deep retrofit, the same measures as the minimum performance scenario need to be implemented, but on a shorter timeframe.

Organizational goal alignment

• To achieve the organizational goal alignment of 80% reduction in GHG emissions without carbon offsets, all heating systems must be electrified, using electricity as a backup heating source.

Comprehensive

• The comprehensive scenario demonstrates the upper limit of energy-efficiency that the Haileybury Medical Centre could achieve, based on the measures that were analyzed under this Pathway to Decarbonization Feasibility Study.

END