

2023 ANNUAL
GROUNDWATER
AND SURFACE
WATER
MONITORING
REPORT
NEW LISKEARD WASTE
DISPOSAL SITE

THE CITY OF TEMISKAMING SHORES P.O. BOX 2050, 325 FARR DRIVE HAILEYBURY, ONTARIO POJ 1KO

PROJECT NO.: TY131010 DATE: APRIL 2024

WSP Canada Inc. 33 Mackenzie Stree, Suite 100 Sudbury, Ontario P3C 4Y1 T: +1 705 524-6861

WSP.com

WSP Canada Inc. prepared this report solely for the use of the intended recipient in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP Canada Inc. at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP Canada Inc. does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP Canada Inc. for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP Canada Inc., its integrity cannot be assured. As such, WSP Canada Inc. does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Site Location	1
1.2	Ownership and Key Personnel	1
1.3 1.3.1	Description and Development of the Site Waste Quantities Received	
1.3.2 1.3.3	On-Site Resource Recovery Activities	
1.4	Monitoring and Reporting Program Objectives and Requirements	4
2	PHYSICAL SETTING	6
2.1	Geology and Hydrogeology	6
2.2	Surface Water Features	7
3	DESCRIPTION OF MONITORING PROGRAM	8
3.1	Monitoring Locations	8
3.2	Monitoring Frequency	12
3.3	Field and Laboratory Parameters and Analysis	12
3.4	Monitoring Procedures and Methods	12
3.5	Quality Assurance for Sampling and Analysis	13
4	MONITORING RESULTS	14
4.1	Historical Data	14
4.2	Data Quality Evaluation	14
4.3	Groundwater Flow Monitoring	15
4.4 4.4.1	Groundwater Quality Monitoring Background Water Quality	
4.4.2	Upgradient Water Quality	16
4.4.3	Source Water Quality	
4.4.4	Mid-Site Downgradient Water Quality	17

4.4.5	Downgradient CAZ Boundary Water Quality	17
4.4.6	Downgradient Sentinel Water Quality	19
4.4.7	Field Parameter Measurements	19
4.4.8	Residential Supply Well Monitoring	19
4.5	Surface Water Quality Monitoring	20
4.5.1	Field Parameter Measurements	20
4.6	Landfill Gas monitoring	21
5	ASSESSMENT, INTERPRETATION AND	
	DISCUSSION	22
5.1	Groundwater Quality	22
5.1.1	Groundwater Chemistry Analysis	22
5.1.2	Groundwater Trend Analysis	23
5.1.3	Guideline B-7 Calculations	25
5.1.4	Trigger Level Monitoring Program	27
5.2	Surface Water Quality	29
5.2.1	Surface Water Trend Analysis	29
5.2.2	Trigger Level Monitoring Program	29
5.3	Adequacy of the Monitoring Program	30
6	CONCLUSION	31
7	RECOMMENDATIONS	32
8	CLOSURE	33

TABLES Table 1 - Monitoring Well Locations On-Site.....8 Table 2 - Residential Supply Well Locations......9 Table 3 – Surface Water Monitoring Locations......9 Table 4 – Sampled Groundwater Monitoring Well Construction Details9 Table 5 - Surface Water Monitoring Stations Summary......11 Table 6 – 2023 Landfill Gas Measurements......21 **FIGURES** Figure 1 Site Location Map Figure 2 2023 New Liskeard Site Operation Plan Figure 3 Groundwater Monitoring Location Plan Figure 3 Surface Water Monitoring Location Plan Hydrogeological Cross Section Figure 5 Inferred Shallow Groundwater Contour Figure 6A Plan - June 2023 Figure 6B Inferred Deep Groundwater Contour Plan - June 2023 Figure 6C Inferred Shallow Groundwater Contour Plan - August 2023 Figure 6D Inferred Deep Groundwater Contour Plan -August 2023 Figure 6E Inferred Shallow Groundwater Contour Plan - October 2023 Figure 6F Inferred Deep Groundwater Contour Plan -October 2023 Figure 7A Groundwater Tri-Linear Piper Plot - June 2023 Figure 7B Groundwater Tri-Linear Piper Plot - August 2023 Figure 7C Groundwater Tri-Linear Piper Plot -October 2023 Figure 7D Residential Groundwater Tri-Linear Piper Plot - June 2023

APPENDICES

Appendix A Environmental Compliance Approval No. A-500-1115044194 and MECP Correspondence

Appendix B Borehole Logs

Appendix C Hydraulic Conductivities

Appendix D

Summary of Groundwater Elevations

Appendix E 2023 Laboratory Analytical Reports

Appendix F Summary of Groundwater Geochemical Analyses

Appendix G Summary of Surface Water Geochemical Analyses

Appendix H Trend Analysis

Appendix I Photographic Inventory of Groundwater and Surface Water Monitoring Locations

Appendix J Field Parameter Measurements

Appendix K Piper Plot Tables

Appendix L Guideline B-7 Calculations

Appendix M Monitoring and Screening Checklist

Appendix N Limitations

1 INTRODUCTION

WSP Canada Inc. (WSP), formerly known as Wood Environment & Infrastructure Solutions, was retained by The City of Temiskaming Shores (the City) to prepare the 2023 annual groundwater and surface water monitoring report for the New Liskeard Waste Disposal Site (the Site). The following report provides a detailed evaluation and summary of the 2023 monitoring data and was completed to constitute the 2023 Annual Monitoring Report to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) in accordance with Condition F(3) of Environmental Compliance Approval (ECA) No. A-500-1115044194, provided in Appendix A. This document also includes a review of the historical and current groundwater and surface water flow and geochemical data, geochemical trends, as well as an evaluation of the groundwater quality with respect to MECP Guideline B-7, as well as a trigger level monitoring program.

1.1 SITE LOCATION

The Site is located approximately 3 kilometres (km) west of New Liskeard, Ontario, West ½ of Lot 5, Concession 2, within the City of Temiskaming Shores, in the District of Temiskaming. The Universal Transverse Mercator (UTM) coordinates of the Site are 596760 Easting and 5262520 Northing, Zone 17, relative to the North American Datum (NAD) 83 (collected via handheld Global Positioning System (GPS), accuracy +/- 5 metres (m)). The location of the Site is presented on Figure 1.

1.2 OWNERSHIP AND KEY PERSONNEL

Contact information for the Site contact representative and the Competent Environmental Practitioner (CEP) for both groundwater and surface water is outlined below.

Site Contact Representative:

Steve Burnett
The City of Temiskaming Shores
P.O. Box 2050, 325 Farr Drive
Haileybury, Ontario POJ 1K0
Phone: (705) 672-3363 ext. 4132

Priorie: (705) 672-3363 ext. 4

Fax: (705) 672-2911

Email: sburnett@temiskamingshores.ca

Groundwater and Surface Water CEP:

Larry Rodricks, M.A.Sc., P.Eng.
Senior Principal, Environmental Engineer
WSP Canada Inc.
900 Maple Grove Road, Unit 10
Cambridge, Ontario N3H 4R7
Phone: (519) 650-7108

1.3 DESCRIPTION AND DEVELOPMENT OF THE SITE

The Site ceased accepting waste in June 2009, at which time the final waste contours were achieved, and has since been inactive, but was formerly operated under C of A No. A571505, provided in Appendix A, issued in May 2000, and amended in April 2005, April 2007, October 2012 and December 2013. The Site was in operation prior to the issuance of the C of A and is reported to have been in operation for over 90 years prior to the current state of inactivity, before which time the area was used as a limestone quarry (Story Environmental Inc. (Story), 2013). The Site was approved to accept domestic, commercial and non-hazardous solid industrial waste. The former C of A specified an approved landfill area of 2.02 hectares (ha) within a total Site area of 32 ha, however it is reported that the historical waste fill area extended outside of the approved fill area footprint and is currently approximately 5.9 ha.

The 2012 amendment to the C of A approved the construction of solar panels within the Contaminant Attenuation Zone (CAZ), the location of which is shown on Figure 2. Condition 30 of the C of A states that solar panels can be installed in this area, as long as they do not interfere with the ongoing groundwater monitoring program or functioning of the CAZ. Construction activities in this area were initiated in 2013. The most recent C of A amendment (i.e., December 2013) acknowledges the ongoing Environmental Assessment process and potential expansion of the Site.

The Site began accepting waste on 17 October 2023, and is currently operated under Environmental Compliance Approval (ECA) No. A-500-1115044194 issued December 2, 2021, revoking the former Compliance Approval (C of A) No. A571505. The ECA allows for the use of a 7.7 hectares (ha) waste fill area within a total Site area of 32 ha, and a maximum capacity not to exceed 366,845 cubic meters (m³) (Appendix A). The Site is approved to accept domestic, commercial, and industrial solid non-hazardous waste as defined under Ontario Regulation 347. At the request of the City, the 2023 monitoring program was completed in accordance with the former C of A due the landfill's continued state of inactivity. As per Condition H.6 of the ECA, a letter requesting permission from the District Manager for deviation from the monitoring plan requirements, as detailed in the ECA, has been provided in Appendix A.

Construction activities for the approved Site expansion have been ongoing since October 2022, and the Site started accepting waste on 17 October 2023, as per the City. In 2022, construction activities consisted of clearing and grubbing, internal roadway construction, drainage ditches and leachate pond construction, as well as foundation work for the weight scale. Also, the waste historically deposited outside the waste footprint area was excavated and deposited within the approved waste footprint in 2022, in compliance with condition G(2)(2) of the New Liskeard ECA. During the 2023 monitoring period, construction activities comprised of removing the existing storage building, adding the weigh scale, scale house and new equipment storage building. In addition, the seepage pond and ditching have also been completed over the 2023 monitoring period. There are no construction activities scheduled for the 2024 monitoring period. The approved landfill expansion boundaries, as well as the current Site facilities are illustrated on the Site Operations Plan (Figure 2).

As reported by the City, no landfill operations issues were encountered, or complaints received regarding the Site during 2023.

1.3.1 WASTE QUANTITIES RECEIVED

A weigh scale was installed at the Site, daily records are kept in order to estimate the amount of uncompacted waste received at the Site. The New Liskeard Landfill accepted approximately 1,761.48 tonnes of uncompacted waste in 2023. Estimates of uncompacted waste are illustrated below in Table 1.

All refrigerators received at the New Liskeard Landfill are tagged by licensed technicians, indicating that all potential ozone depleting substances (i.e., refrigerants) have been removed.

1.3.2 ON-SITE RESOURCE RECOVERY ACTIVITIES

Designated resource recovery areas are available at the landfill.

Tires: Tires are accepted at the Site in a designated area and stockpiled for shipment to a recycler. The number of tires collected from the landfill during 2023 and sent for recycling is unknown, as the City is not provided with this information under the new Full Producer Responsibility Program.

Scrap Metal: Scrap metal is accepted at the Site in a designated area and is sorted and removed from the Site regularly for recycling. Approximately 10.12 tonnes of scrap metal was transferred off-Site during 2023.

Table 1 - Waste Quantities Received in 2023

WASTE DESCRIPTION	TOTAL ANNUAL UNCOMPACTED WASTE (TONNES)
Residential/Commercial Waste	1,729.68
Yard Waste	28.01
Contaminated Waste	1.85
Ozone Depleting or Freon Containing Item	0.07
Asbestos	1.87
ANNUAL TOTAL	1,761.48

1.3.3 SITE CAPACTIY

Updated aerial photography or topographical surveys for the Site will be completed annually in order to accurately track the landfill capacity consumed and remaining, as well as the associated estimated remaining life span of the Site. The landfill volume consumed/remaining, and predictions of remaining life span can be estimated based on the final contours provided in the Site's D&O Plan (Wood, 2020a) and updated ground contour plan. The approved final contours for the Site are provided on Figures 6 and 7 of the D&O Plan (Wood, 2020a).

Bulk density can also be used to estimate landfill volume consumed; however an accurate estimate can only be calculated on the years that a Site survey is undertaken. The estimate weigh scale statistics from 2023 indicate that there were 1,761.48 tonnes of landfilled waste in 2023. A conversion factor of 0.593 tonnes per cubic meter (tonnes/m³) is used to estimate the volume of waste, which is based on prior experience with other landfills in northern Ontario. Using the tonnes of landfilled waste during 2023 and an estimated bulk density for waste of 0.593 tonnes/m³, the total landfill volume consumed during 2023 is estimated to be approximately 2,970 m³ based on general assumptions of waste composition.

The Site has a maximum landfill volume of 366,845 m³, not including the final cover volume. The approved final contour plan includes the placement of a 0.6 m thick layer of low permeable soil underlying a 0.15 m thick layer of

vegetated topsoil. The total volume of the final landfill cover is estimated to be 33,675 m³. The remaining landfill capacity for the disposal of waste based on the 2023 weigh scale statistics, is therefore calculated to be 363.875 m³.

In order to determine the remaining Site life, an annual waste disposal volume is required. As the Site has only been operational since October 17th, 2023, the assumed annual waste disposal volume was calculated using the 2023 combined waste volume estimates from the Haileybury Landfill (closed on October 17th, 2023) and the New Liskeard Landfill. Both the Haileybury and New Liskeard Landfills service the same geographical areas within the municipal boundary of the City of Temiskaming Shores, which includes the communities of New Liskeard, Haileybury and Dymond Township, as well as the Town of Cobalt. Therefore, the annual waste disposal volume for the geographical area of the City of Temiskaming Shores is estimated to be 17,656 m³ in 2023. Based on the remaining landfill capacity for waste disposal of 363,875 m³ and an annual waste disposal volume of 17,656 m³, the Site has a remaining life span of approximately 21 years.

It is recommended that an updated topographical survey be undertaken during the 2024 monitoring period to accurately track the consumed and remaining landfill capacity.

1.4 MONITORING AND REPORTING PROGRAM OBJECTIVES AND REQUIREMENTS

Previous investigations resulted in the instrumentation of the Site with a variety of groundwater monitoring wells. A total of 50 monitoring wells were previously used for monitoring purposes; two additional historical wells were historically confirmed destroyed (OW-19-I and OW-19-II). Twenty-three (23) of the historical monitoring wells currently comprising the monitoring network are sampled three times annually (OW-1R-I, OW-1R-III, OW-10-I, OW-10-II, OW-11-I, OW-11-II, OW-11-II, OW-11-II, OW-11-II, OW-11-II, OW-12-II, OW-12-II, OW-16-II, OW-16-III, OW-16-III, OW-17-II, OW-17-II, OW-17-III, OW-23-II, OW-23-II, OW-24-II, OW-24-III, OW-25-II, OW-25-II and OW-25-III). Nine additional wells are not sampled, but are retained for water level measurements (OW-1R-II, OW-13-II, OW-14-I, OW-14-II, OW-18-I, OW-20-II, OW-20-II, OW-21 and OW-22-I).

Adjustments were made to the monitoring well network during both 2014 and 2017, including the decommissioning of various historical wells, the re-installation of wells that had been damaged or destroyed, and the installation of additional monitoring wells to the network for inclusion in the annual monitoring program. As part of the 2014 monitoring well installation program, a new well nest, OW-30, was installed in order to delineate the southern extent of the landfill-derived groundwater plume at the downgradient CAZ boundary. Two wells were installed at this location, in the moderate depth and deep aquifers, and both wells were added to the annual monitoring well network. Four additional downgradient wells were installed along the CAZ boundary in 2017, comprising well nest OW-31, with shallow and moderate depth overburden installations, and the addition of deep bedrock wells OW-30-III and OW-25-IV at the associated well nests. In addition, a deep bedrock installation, OW-10-III, was installed at well nest OW-10 in 2017.

Static groundwater levels are measured at each well in the monitoring network during each of the three annual monitoring events. In addition to the above monitoring well network, seven residential supply wells are sampled once annually, during the spring (WS-7, WS-8, WS-9, WS-13, WS-14, WS-15 and WS-16). The locations of groundwater monitoring wells and residential supply wells, with respect to the landfill area, are presented on Figure 3.

An annual surface water monitoring program was initiated in 2017, but was not a requirement of the former C of A. Surface water monitoring is completed at six stations (SW-1 through SW-6), situated at upstream, mid-Site and downstream locations on various watercourses in the vicinity of the Site. Sampling is currently undertaken three times annually, in conjunction with the groundwater monitoring program. Surface water sampling locations are presented on Figure 4. The sampling frequency was reduced from eight sampling events to three over the 2023 monitoring period to align with the new ECA requirements. As the program has been conducted since 2017, a statistically valid dataset (i.e., at least eight data points over a minimum of 2 years) has been established for the monitoring network.

Although landfill gas monitoring was not a requirement at the Site, WSP observed evidence of methane gas in well OW-18 during the 2014 monitoring efforts. It was subsequently decided that a landfill gas monitoring program would be initiated in 2015, in order to measure and track potential landfill gas production within the waste deposits. Landfill gas measurements are now completed three times annually in OW-18, in conjunction with the groundwater monitoring program.

2 PHYSICAL SETTING

2.1 GEOLOGY AND HYDROGEOLOGY

Borehole logs, including those prepared by others, detailing soil and groundwater conditions for the monitoring well network are provided in Appendix B. In summary, the borehole logs indicate subsurface conditions at the Site consisting of silt over shallow limestone bedrock in the vicinity of the fill area. It is anticipated that the limestone unit is similar in hydraulic properties to the silt unit, and that the two units generally behave as one. As illustrated on the hydrogeological cross section provided on Figure 4, overburden increases in thickness with distance from the fill area towards the northeast, and comprises mostly silt, which varies in sand and clay content depending on location. Bedrock in the vicinity of the northeast CAZ boundary, and further to the northeast, is reported by Jagger Hims Limited to be an assumed mafic igneous, as opposed to the limestone type which was noted by others elsewhere on the site. The deeper bedrock unit to the northeast of the Site was encountered at depths of up to approximately 23 m below ground surface, but was not instrumented; rather, a deep silt/bedrock contact unit was instrumented in the multi-level wells in this area.

As described above, supplemental boreholes were drilled in 2017, at locations along the downgradient boundary of the CAZ and at a background location. A total of five boreholes were drilled, each adjacent to existing well nests, with the purpose of developing additional hydrogeologic data of the shallow and deep groundwater flow systems. The boreholes were identified as OW-10-III, OW-25-IV, OW-30-III, OW-31-I and OW-31-II, and locations are indicated on Figure 2. Borehole logs of these new installations are also included in Appendix B.

Boreholes were advanced through the overburden using a track mounted CME 55 drill outfitted with hollow stem augers. As bedrock was encountered, at selected locations the boreholes were cored using a diamond HQ coring bit. At one location, OW-10-III, bedrock in the open borehole was tested for hydraulic conductivity at three depth intervals, using standard Lugeon testing methods. At all locations, the boreholes were completed with a PVC monitoring well with the screens set to intercept a specific zone of interest. Hydraulic conductivity calculations are summarized in Appendix C.

Packer testing of OW-10-III indicated tight bedrock at the completion depth of 16.1 m, and the estimated hydraulic conductivity was 4.3 X 10-8 m/s. In the shallower reaches of the rock, between 3 m depth and 8.2 m depth, the hydraulic conductivity was initially 1.5 X 10-7 m/s, increasing up to 4.0 X 10-6 m/s at the highest pressure step of 60 psi. The increase in hydraulic conductivity with pressure steps may indicate an uplifting or washing out of bedded limestone. As such, the initial estimate of 1.5 X 10-7 m/s is considered representative of the hydraulic conductivity of the upper bedrock horizon at this test location.

Hydraulic testing was also carried out on OW-30-III and OW-25-IV. This testing was performed by adding water to the top of the well casing and recording the subsequent fall of water levels with respect to time to a near static condition. Estimation utilized a calculation method by Hvorslev, with calculations presented in Appendix C. At OW-25-IV, the well was installed to straddle the overburden-bedrock contact. The calculated hydraulic conductivity was 8.9 X 10-8 m/s.

At OW-30-II, the hydraulic testing interval was deep bedrock, between approximately 26.7 m depth and 30.4 m depth. The calculated hydraulic conductivity was 7.3 X 10-8 m/s.

In general, the limestone bedrock has a hydraulic conductivity on the order of 7 X 10-8 m/s, with a higher value in the upper weathered reaches of the bedrock, on the order of 1.5 X 10-7 m/s. The overburden and bedrock test location exhibited a hydraulic conductivity of 8.9 X 10-8 m/s, which is in the same range of the bedrock-only test locations. This would tend to support the previous assumptions that the bedrock and overburden have hydraulic conductivities in the same order of magnitude and would effectively act as a single hydraulic unit.

Static water levels were recorded by WSP at each of the wells during the spring, summer and fall 2023 groundwater monitoring events. Appendix D presents the groundwater elevations measured during the 2023 groundwater monitoring events. Figures 5A through 5F present the inferred groundwater elevation contours and groundwater flow directions for both the shallow and deep aquifers for each of the three 2023 monitoring events. In general, the recorded static groundwater levels indicate groundwater flow across the Site towards the northeast in both the shallow and deep groundwater flow systems. Groundwater elevations in the vicinity of the Site mimic the topography of the area, decreasing to the northeast within the fill area, then flattening out across the CAZ, and subsequently decreasing steeply from the northeast corner of the CAZ to Highway 65.

Based on September and July 2017 data, the hydraulic gradient of the groundwater in the shallow aquifer through the fill area and the CAZ for the Site is approximately 0.045 m/m to 0.050 m/m. The deep aquifer hydraulic gradient is similar, at approximately 0.038 m/m to 0.050 m/m. Downgradient of the CAZ, the hydraulic gradient steepens to a typical value of approximately 0.2 m/m.

Groundwater contaminant velocity was calculated historically for the above groundwater conditions. The typical gradient of groundwater movement through the CAZ is 0.05 m/m. Assuming a soil porosity of 0.3, and the overburden hydraulic conductivity calculated above (8.9 X 10-8 m/s), a contaminant velocity of 47 cm per year is calculated. Using the higher hydraulic conductivity calculated from the upper bedrock/overburden contact (1.5 X 10-7 m/s), a velocity of 79 cm per year is calculated.

Groundwater that leaves the CAZ experiences higher gradients as it moves toward Highway 65. For example, the overburden velocity would increase to 1.9 m per year, and deep groundwater movement at the bedrock contact would increase to 3.2 m per year.

2.2 SURFACE WATER FEATURES

The Site is situated on a limestone ridge which forms a portion of the watershed divide separating the South Wabi Creek catchment, located west of the Site, from the Wabi Creek catchment, located east of the Site. South Wabi Creek is situated approximately one km from the Site. There is no surface water on-Site, however an unnamed tributary, with headwaters near the northeast corner of the CAZ, flows away from the Site to the northeast, discharging to the Wabi River approximately 1.5 km downstream.

3 DESCRIPTION OF MONITORING PROGRAM

3.1 MONITORING LOCATIONS

Monitoring locations for groundwater and surface water are illustrated on Figures 2 and 3, respectively. Detailed monitoring locations are provided in Tables 1 through 3. Monitoring well elevations for top of casing are provided in Appendix D.

Table 1 - Monitornig Well Locations On-Site

MONITORING LOCATION	EASTING ZONE 16 NAD 83	NORTHING ZONE 16 NAD 83	COLLECTION METHOD	ACCURACY	COLLECTION PERSONNEL	DATE COLLECTED
OW-1R Nest	596848	5262959				
OW-10 Nest	596724	5263229				
OW-11 Nest	597001	5263159				
OW-12 Nest	597007	5262919				
OW-13 Nest	596602	5262921				
OW-14 Nest	596977	5262674				
OW-16 Nest	597372	5263132				
OW-17 Nest	597359	5263362				26-27 May 2013
OW-18	596771	5262904	Handheld GPS	+/- 5 m	Trained WSP field crew	
OW-20 Nest	596970	5262468				
OW-21-I	597141	5262527				
OW-22-I	596974	5262607				
OW-23 Nest	597678	5263239				
OW-24 Nest	597372	5263251				
OW-25 Nest	597370	5263000				
OW-30 Nest	597401	5262836				8 Sept 2014
OW-31 Nest	597398	5262893				13 June 2017

Table 2 - Residential Supply Well Locations

MONITORING LOCATION	EASTING ZONE 16 NAD 83	NORTHING ZONE 16 NAD 83	COLLECTION METHOD	ACCURACY	COLLECTION PERSONNEL	DATE COLLECTED	
WS-7	597484	5263623					
WS-8	597497	5263589					
WS-9	597857	5263155		+/- 5 m Trained W field crev			
WS-13	597321	5263658	Handheld GPS		Trained WSP	26-27 May 2013	
WS-14	597770	5263282			neid Grew		
WS-15	597818	5263188					
WS-16	597744	5263356					

Table 3 – Surface Water Monitoring Locations

MONITORING LOCATION	EASTING ZONE 16 NAD 83	NORTHING ZONE 16 NAD 83	COLLECTION METHOD	ACCURACY	COLLECTION PERSONNEL	DATE COLLECTED
SW-1	595598	5262440				
SW-2	597779	5263227				
SW-3	598065	5263297	Handheld GPS +/- 5 m	Trained WSP field crew	1 May 2017	
SW-4	598707	5263742				
SW-5	598717	5263939				
SW-6	598864	5263692				

Table 4 presents a summary of the available construction details and respective on-Site positions of the sampled groundwater monitoring wells. Most construction details are based on borehole logs prepared by others (Appendix B).

Table 4 – Sampled Groundwater Monitoring Well Construction Details

WELL ID	CONDITION	TOTAL DEPTH (mbgs)	SCREENED INTERVAL (mbgs)	UNIT SCREENED	ON-SITE POSITION
OW-1R-I	Good	20.3	17.3 – 20.3	Limestone Bedrock	Source
OW-1R-III	Good	4.2	1.2 – 4.2	Silty Sand / Limestone Bedrock	Source
OW-10-I	Good	5.5	4.0 – 5.5	Limestone Bedrock	Crossgradient
OW-10-II	Good	2.4	0.9 – 2.4	Silt	Crossgradient
OW-10-III	Good	18.1	12.1 – 18.1	Limestone Bedrock	Crossgradient
OW-11-I	Good	5.5	4.0 – 5.5	Limestone Bedrock	Downgradient

WELL ID	CONDITION	TOTAL DEPTH (mbgs)	SCREENED INTERVAL (mbgs)	UNIT SCREENED	ON-SITE POSITION
OW-11-II	Heaved	2.3	0.8 – 2.3	Silt / Bedrock	Downgradient
OW-12-I	Good	5.5	4.0 – 5.5	Limestone Bedrock	Downgradient
OW-12-II	Good	2.2	0.7 – 2.2	Silt / Bedrock	Downgradient
OW-13-I	Good	10.8	7.8 – 10.8	Limestone Bedrock	Upgradient
OW-16-I	Good	23.1	20.1 – 23.1	Silty Sand	CAZ Boundary
OW-16-II	Good	7.5	4.5 – 7.5	Silt	CAZ Boundary
OW-16-III	Good	4.0	1.0 – 4.0	Silty Sand / Silt	CAZ Boundary
OW-17-I	Good	11.9	8.9 – 11.9	Silty Sand	Downgradient of CAZ
OW-17-II	Good	7.5	4.5 – 7.5	Sandy Silt	Downgradient of CAZ
OW-17-III	Good	3.2	0.2 – 3.2	Silty Clay / Sand	Downgradient of CAZ
OW-23-I	Good	18.1	15.1 – 18.1	Sandy Silt	Downgradient Sentinel
OW-23-II	Good	13.0	10.0 – 13.0	Clayey Silt / Sandy Silt	Downgradient Sentinel
OW-24-I	Good	18.7	17.2 – 18.7	Sand	CAZ Boundary
OW-24-II	Good	8.4	6.9 – 8.4	Silty Clay / Sandy Silt	CAZ Boundary
OW-24-III	Good	4.9	3.4 – 4.9	Silty Clay / Clayey Silt	CAZ Boundary
OW-25-I	Good	22.8	21.3 – 22.8	Silt	CAZ Boundary
OW-25-II	Good	9.1	7.6 – 9.1	Silt	CAZ Boundary
OW-25-III	Good	4.0	2.5 – 4.0	Silt	CAZ Boundary
OW-25-IV	Good	30.3	27.3 – 30.3	Bedrock	CAZ Boundary
OW-30-I	Good	20.3	17.3 – 20.3	Silty Sand	CAZ Boundary
OW-30-II	Good	7.8	4.8 – 7.8	Silty Sand	CAZ Boundary
OW-30-III	Good	30.4	27.4 – 30.4	Sandstone	CAZ Boundary
OW-31-I	Good	7.6	4.6 – 7.6	Sand and Gravel	CAZ Boundary
OW-31-II	Good	15.9	12.9 – 15.9	Silty Sand / Sand and Gravel	CAZ Boundary

According to the groundwater elevation data collected to date, well nest OW-10 is considered unlikely to be impacted by landfill leachate since it is located north of the Site (i.e., crossgradient). Based on this conclusion, well nest OW-10 has historically been considered to be representative of background (i.e., non-impacted) water quality conditions, and allows a detailed evaluation of the Site to be undertaken with respect to MECP Guideline B-7.

Well nest OW-1R is situated immediately downgradient of the historical fill area, and wells OW-1R-I and OW-1R-III are therefore considered to be source monitoring locations. OW-13-I is situated immediately upgradient of the fill area, however this location is not appropriate for use as a background monitoring location given its close proximity to the waste deposits. Well nests OW-11 and OW-12 are situated at the historical downgradient property boundary, prior to the establishment of the CAZ. These wells are representative of downgradient groundwater quality, however additional property is available downgradient of these well nests for continued natural attenuation.

The downgradient CAZ boundary is monitored by a variety of multi-level well nests, including OW-30, OW-31, OW-25, OW-16 and OW-24, which are situated at slightly increasing distances from the fill area. Well nest OW-17 is situated slightly further downgradient from OW-24, and is outside of the CAZ, immediately south of the hydro corridor. An additional well nest, OW-23, is situated further downgradient, much outside of the CAZ, and is intended to be a downgradient sentinel monitoring well nest, situated upgradient of Highway 65 and the associated residential supply well monitoring locations.

Table 5 presents a summary of the surface water monitoring locations. Surface water monitoring station SW-1 is situated on South Wabi Creek, at the Rockley Road crossing located west of the Site and is therefore considered to be representative of upstream water quality conditions. Surface water stations SW-2, SW-3 and SW-4 are all situated on the unnamed tributary to the Wabi River, whose headwaters originate in the vicinity of the CAZ. These three monitoring stations are located at varying distances downstream of the CAZ. Surface water stations SW-5 and SW-6 are situated on the Wabi River, upstream and downstream of the confluence with the unnamed tributary, respectively. Locations of all surface water sampling stations are indicated on Figure 4.

Table 5 - Surface Water Monitoring Stations Summary

STATION ID	WATERCOURSE	POSITION
SW-1	South Wabi Creek	Upstream
SW-2	Unnamed Tributary to the Wabi River	Downstream
SW-3	Unnamed Tributary to the Wabi River	Downstream
SW-4	Unnamed Tributary to the Wabi River	Downstream
SW-5	Wabi River	Downstream
SW-6	Wabi River	Downstream

3.2 MONITORING FREQUENCY

As per previous annual monitoring events, groundwater was sampled three times annually by WSP, during the spring, summer and fall. Landfill gas monitoring was conducted concurrently with groundwater sampling. Sampling events occurred on the following dates:

- Spring 19-20 June 2023;
- Summer 28-30 August 2023; and,
- Fall 16-18 October 2023.

Surface water sampling was undertaken on three occasions during 2023, on the following dates:

- 19 June 2023:
- 30 August 2023; and,
- 17 October 2023.

3.3 FIELD AND LABORATORY PARAMETERS AND ANALYSIS

Geochemical analyses for general chemistry, metals and nitrogen cycle parameters were completed on all groundwater samples collected. Geochemical analyses for surface water samples comprised those listed in Column 3 of Schedule 5 of the MECP Landfill Standards Guideline during the three sampling events. A detailed list of laboratory parameters is included in Appendix E. Field parameters comprised temperature, pH, conductivity and dissolved oxygen. Static water level measurements were also recorded. Steam flow measurements were recorded during each surface water monitoring event, with the exception of stations SW1, SW5, and SW6 given the width of the watercourses where an accurate measurement cannot be recorded. All field equipment was maintained and calibrated appropriately prior to each use.

3.4 MONITORING PROCEDURES AND METHODS

Monitoring and sample collection followed typical industry standard practices and WSP standard operating procedures (SOPs). Each groundwater monitoring well was purged prior to sampling to ensure the sample was representative of the formation water. Dedicated well instrumentation (Waterra Tube and foot valve system) was used to obtain water samples from the groundwater monitoring wells, and samples were immediately transferred to laboratory-prepared sample vials and bottles. Samples identified for heavy metals analysis were field-filtered using a single use 0.45 µm filter unit, and the remaining samples were preserved following standard laboratory protocols as established in the MECP "Guidance on Sampling for Use at Contaminated Sites in Ontario" (revised December 1996). Care was taken during collection of surface water samples to ensure that a representative sample was collected, and that underlying sediments were not disturbed.

Samples were submitted under chain of custody, in a temperature-controlled setting (i.e., in a cooler, on ice) to a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory sub-contractor, SGS Laboratories (SGS), in Lakefield, Ontario for analysis. The analytical results were subsequently forwarded to WSP. Laboratory analytical reports for 2023 are provided in Appendix E.

The 2023 groundwater monitoring data were reviewed by comparison to the current MECP Ontario Drinking Water Standards (ODWS). Environmental compliance of groundwater quality was evaluated according to MECP Guideline B-7. The 2023 surface water monitoring data were reviewed by comparison to the current MECP Provincial Water Quality Objectives (PWQO), as well as the Canadian Water Quality Guidelines (CWQG) and the Aquatic Protection Values (APV) from Table 3.1 of the 2011 MECP document Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Sites in Ontario.

3.5 QUALITY ASSURANCE FOR SAMPLING AND ANALYSIS

WSP uses recognized industry standards, including the Canadian Council of Ministers of the Environment (CCME) Subsurface Assessment Handbook for Contaminated Sites and MECP's manual *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* for conducting environmental assessments. For quality assurance, all work is supervised and internally reviewed by senior staff members.

Field sampling equipment decontamination was completed in accordance with accepted protocols. As a minimum, sampling equipment was washed with detergent solution and rinsed with distilled water between sampling locations. Decontamination procedures were undertaken to prevent any cross-contamination between monitoring locations and sampling sites. Screening instruments were calibrated prior to each use.

As a minimum, for every ten groundwater or surface water samples collected, one field duplicate sample was collected and included in the laboratory submission for analysis. Three groundwater field duplicate samples were collected during the summer and fall sampling events; four groundwater field duplicate samples were collected during the spring sampling event, including one from a residential monitoring location. One duplicate sample was collected during each of the surface water monitoring events.

Samples were submitted to a CALA accredited laboratory that is MECP certified for the analysis of drinking water samples. Laboratory blanks and duplicates were used to ensure sample integrity. Relative Percent Differences (RPDs) were calculated and discussed where applicable. Samples were placed in appropriate sample containers provided by the laboratory and preserved (as required based on type of analysis) until delivered (shipped by courier) to the laboratory for analysis. A chain of custody form accompanied samples at all points of handling.

4 MONITORING RESULTS

4.1 HISTORICAL DATA

Historical groundwater data are provided in Appendix F. Water quality data dating back to 2011 and 2002 are presented for monitoring wells and residential supply wells, respectively. All available groundwater quality data (i.e., dating back to either September 2014 or September 2017, depending on location) are presented for the more recently installed monitoring wells. Similarly, seven years of historical data are available for the surface water monitoring stations; surface water data dating back to 2017 are provided in Appendix G.

4.2 DATA QUALITY EVALUATION

The analytical laboratory employed to perform the laboratory analyses (SGS) is accredited by the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999 – "General Requirements for the Competence of Testing and Calibration Laboratories" for the tested parameters and has met the standards for proficiency testing developed by the Standards Council of Canada for parameters set out in the Soil, Ground Water and Sediment Standards.

Sample analysis dates provided on the laboratory analytical reports issued by SGS indicate that all sample analyses were performed within the required sample/extract hold times, as indicated by the dates presented in columns for each sample parameter on the analytical report.

The measured cooler temperatures when received by the laboratory were within acceptable limits (< 10 degrees Celsius), with the exception of groundwater and residential samples during the spring monitoring event (i.e., work order CA15728-JUN23 and CA15726-JUN23, respectively). These samples were delivered to the laboratory with an average temperature of 12°C for the groundwater samples and 13°C for the residential samples. Temperatures above 10°C are more conducive to chemical and biological activity in the sample, which can lead degradation or transformation of target contaminants. Therefore, results for samples delivered to the laboratory above 10°C should be qualified and considered estimated, especially biological, and organic samples.

The laboratory minimum detection limits were reported to be at or lower than the required MECP reporting detection limits for the parameters analyzed. A comparison of the internal laboratory duplicate samples indicates that all samples and the respective duplicates are within acceptable limits.

As a quality control measure, groundwater and surface water duplicate samples were collected during each sampling event. All duplicate data are provided in Appendix E and are summarized in Appendices F and G. When compared to concentrations reported in the original samples, groundwater and surface water duplicate water quality data reported that all parameters were within an acceptable range with respect to relative percent difference (i.e., the industry standard of less than 50%), with the exceptions of organic nitrogen and aluminum during the spring event; fluoride, total kjeldahl nitrogen (TKN), aluminum, arsenic, chromium, copper, molybdenum, nickel, tin, and titanium during the summer event; organic nitrogen, TKN, aluminum, copper and nickel during the fall event; chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), and mercury in surface water during various sampling events throughout the year; and, dissolved organic carbon (DOC), aluminum, copper, nickel and zinc during the residential sampling event in the spring.

A breakdown of parameters by event and sample is provided in the associated tables in Appendices F and G. This deviation in duplicate water quality data with respect to relative percent difference is not interpreted to be indicative of a sampling or laboratory bias and does not impact the findings of this report.

4.3 GROUNDWATER FLOW MONITORING

As discussed in Section 2.1, the recorded static groundwater levels indicate groundwater flow across the Site towards the northeast in both the shallow and deep groundwater flow systems. Static groundwater elevations are presented in Appendix D; groundwater elevations, inferred groundwater elevation contours and groundwater flow directions for the 2023 groundwater monitoring events are illustrated on Figures 5A through 5F.

In addition to the current groundwater elevation data, historical groundwater elevations were reviewed in order to identify any trends or inconsistencies in the data. Overall, the reported static groundwater elevations are consistent with those recorded during historical sampling efforts. A time-elevation graph was developed for monitoring wells from 2000 to 2023, presented in Appendix H. The available groundwater elevation data indicate relatively stable elevations over time at monitoring locations.

4.4 GROUNDWATER QUALITY MONITORING

Samples were collected from all targeted wells during all three 2023 monitoring events, with the exception of OW-25-IV which was dry during the spring event; OW-17-III and OW-25-IV which were dry during the summer event; and OW-17-III which was dry during the fall event. Monitoring well OW-16-III, OW-23-I, and OW-24-III were damaged and not sampled during the 2023 monitoring period.

A photographic inventory of the monitoring wells is provided in Appendix I. The condition of each monitoring well was confirmed during each 2023 monitoring event, monitoring well OW-16-III was reported to be damaged below ground surface since 2022. Monitoring well OW-23-I was reported to be destroyed in spring 2023, likely as a result of tree clearing activities in the area. Monitoring well OW-24-III was reported to be damaged below ground surface in spring 2023. No other noticeable requirement for maintenance or repair were observed. During the fall 2020 event, OW-11-Iwas noted as having heaved historically but is still in operable condition.

4.4.1 BACKGROUND WATER QUALITY

Background water quality at the Site has historically been represented by well nest OW-10, situated crossgradient to the fill area. Until 2017, this multi-level well nest was comprised of a moderate depth limestone bedrock installation (OW-10-I) and a shallow overburden installation (OW-10-II). As previously discussed, a third monitoring well was completed at this nest during 2017, comprising a deep bedrock installation (OW-10-III). This deep installation is considered representative of background water quality conditions in the deep bedrock aquifer and is used for determination of compliance in deep downgradient installations.

Groundwater quality in this well nest is similar in the shallow and the moderate depth installations and is characterized by low concentrations of chloride and most metals parameters, moderate concentrations of alkalinity, dissolved organic carbon (DOC) and sulphate, and high concentrations of hardness, organic nitrogen and total dissolved solids (TDS), in comparison to the ODWS. Concentrations of some parameters, including fluoride boron and iron, are particularly higher in OW-10-I, as compared to OW-10-II. Water quality in OW-10-III is generally similar, with exceptions including elevated concentrations of sodium and fluoride, and lower

concentrations of calcium, hardness and TDS, in comparison to the historical installations at this nest. It is noted that the fall 2017 results for OW-10-III appear to be indicative of residual drilling effects, despite efforts to thoroughly develop the well prior to initial sampling. All results, including event-specific exceedances of the ODWS, are presented in the associated data summary tables in Appendix F.

Aluminum concentrations quantified at the three background monitoring locations appear to be returning to within the historical range in 2023, since elevated concentrations were recorded in 2021. As similar trends in aluminum were apparent at various downgradient locations during 2022, it is important to note that these conditions are the result of background conditions. Although additional data are required in order to further assess this potential trend, any elevated aluminum concentrations reported during 2023 are not interpreted to be landfill-derived.

Based on the inferred groundwater flow direction, concentrations of landfill indicator parameters quantified at this location are considered to be representative of regional background water quality in the aquifers intersected by the well screens. Hardness, organic nitrogen, and TDS were quantified at levels exceeding the ODWS at well nest OW-10 during at least one of the monitoring events in 2023. Hardness and organic nitrogen are operational guidelines, intended to ensure efficient and effective treatment and distribution of water, and to aid in water source selection. TDS is an aesthetic objective, established to assess potential taste, odour or colour problems that may interfere with good water quality control practices. Exceedances of these parameters do not constitute a health hazard and can likely be attributed to elevated compounds produced by natural processes occurring in the aquifer.

4.4.2 UPGRADIENT WATER QUALITY

The 2023 groundwater quality in OW-13-I, situated upgradient of, but immediately adjacent to, the waste fill area, is characterized by concentrations of most parameters at levels sightly elevated as compared to background, with the exceptions of boron, which is lower as compared to background water quality. No substantial impact to groundwater quality is apparent at this location.

4.4.3 SOURCE WATER QUALITY

Source groundwater quality conditions are measured by monitoring wells OW-1R-I and OW-1R-III, situated immediately downgradient of the waste fill area. Similar groundwater quality is reported in both the shallow (OW-1R-III) and deep (OW-1R-I) wells and is characterized by significantly elevated concentrations of most analytical parameters, when compared to background concentrations. A number of parameters exceeded the ODWS at this source location, as presented in the associated data summary tables in Appendix F.

Concentrations of fluoride were quantified below background water quality at this well nest during 2023; therefore, any elevated concentrations of fluoride quantified at downgradient locations are interpreted to be associated with background water quality conditions and not landfill-derived.

4.4.4 MID-SITE DOWNGRADIENT WATER QUALITY

As discussed above, well nests OW-11 and OW-12, formerly representative of the downgradient property boundary, are now situated mid-Site with respect to the CAZ. Multi-level well nests at both locations are comprised of a shallow installation (OW-11-II and OW-12-II) and a moderate depth installation (OW-11-I and OW-12-I), instrumented similarly to background well nest OW-10 (i.e., shallow overburden and limestone aguifer).

Groundwater quality in the shallow installations is noticeably degraded in comparison to the moderate depth installations at both locations. In addition, OW-12 indicates a slightly greater impact in both the shallow and moderate depth wells, as compared to OW-11. Groundwater quality in both shallow wells is characterized by elevated concentrations of alkalinity, chloride, DOC, hardness, TDS, organic nitrogen, boron, sodium, and manganese in comparison to background water quality. Groundwater quality in both moderate depth wells is characterized by elevated concentrations of chloride and sodium, concentrations of alkalinity, hardness, DOC and TDS similar to those quantified at background, and concentrations of sulphate lower than background. An improvement in water quality is apparent at these locations, as compared to well nest OW-1R. Parameters exceeding the ODWS are presented in Appendix F.

4.4.5 DOWNGRADIENT CAZ BOUNDARY WATER QUALITY

Downgradient water quality at the CAZ boundary is measured by multi-level well nests OW-30, OW-31, OW-25, OW-16 and OW-24, which are considered to be representative of the downgradient property boundary, as well as OW-17, which is situated slightly downgradient of the CAZ boundary. Well nests OW-25, OW-16, OW-24 and OW-17 include wells installed in the shallow, moderate depth and deep aquifers. Well nest OW-30 includes wells installed in the moderate depth and deep aquifers. Deeper bedrock installations were added to both OW-25 and OW-30 during 2017. Well nest OW-31 was also added to the monitoring network in 2017, comprising moderate depth and deep installations. Given the groundwater flow direction, the OW-25, OW-31 and OW-30 nests are situated in closest proximity to the waste deposits. The OW-30 well nest was installed in 2014 in order to delineate the southern extent of the landfill-derived groundwater plume at the downgradient CAZ boundary. Similarly, the OW-31 nest and deeper bedrock installations at adjacent nests were installed in 2017 in order to further delineate the plume in this area. All 2023 water quality results, including any exceedances of the ODWS, are presented in the data summary tables in Appendix F.

Differing water quality is apparent in the three installations at well nest OW-30. Groundwater quality in moderate depth well OW-30-II is characterized by elevated concentrations of sodium, fluoride, and boron, and lower concentrations of alkalinity, chloride, hardness, TDS, and calcium, in comparison to background. Water quality in deep overburden well OW-30-I is characterized by elevated concentrations of fluoride, boron and sodium, and low concentrations of alkalinity, hardness, calcium, and manganese, when compared to background water quality. Concentrations of aluminum and iron have returned to within the historical range over the 2023 monitoring period in deep overburden well OW-30-I, since exhibiting elevated concentrations in2022. Groundwater in OW-30-III, a deeper bedrock installation, is characterized by elevated concentrations of DOC, barium, iron and manganese, and low concentrations of TDS, and boron, as compared to background. Concentrations during the summer 2023 monitoring event differ from the natural range of fluctuation since 2019, however fall concentrations have returned within the natural range.

Water quality differs slightly in recently installed wells OW-31-I and OW-31-II, which are moderate depth and deep overburden installations, respectively. Groundwater quality at well nest OW-31 is characterized by slightly

elevated concentrations of most metal parameters, including fluoride, sulphate, and TDS, and low concentrations of alkalinity, chloride, hardness, calcium, and boron, when compared to background water quality at similar depths. Elevated concentrations of nitrate are also exhibited in OW-31-I, relative to background. Concentrations of most leachate indicator parameters are slightly elevated within the deep installation (OW-31-II) when compared to the moderate depth installation (OW-31-I), with the exception of hardness and TDS concentrations which are lower in OW-31-II. Concentrations of certain leachate indicator parameters (i.e., chloride, barium, and boron) are generally similar to the moderate depth background water quality within both installations.

Groundwater quality in the OW-25 well nest differs between each of the four wells. Water quality in deep overburden well OW-25-I is characterized by concentrations of most parameters at levels similar to or lower than background, with the exceptions of slightly elevated concentrations of DOC, barium and total ammonia. Groundwater quality in moderate depth well OW-25-II is characterized by slightly elevated concentrations of fluoride, nitrate, barium, boron, chloride, sulphate and sodium, and concentrations of alkalinity, hardness, and TDS at levels lower than background. Water quality in shallow well OW-25-III is characterized by elevated concentrations of fluoride, alkalinity, barium, iron, manganese, sodium; remaining parameters were quantified at levels similar to or lower than background groundwater quality. Recently installed deep bedrock monitoring well OW-25-IV has quantified water quality to date characterized by elevated concentrations of chloride, DOC, fluoride, boron, and sodium, and low concentrations of TDS, sulphate, hardness, and barium.

Groundwater quality also differs with depth in the OW-16 well nest. Deep overburden well OW-16-I indicates water quality characterized by elevated concentrations of all leachate indicator parameters, with the exception of hardness, when compared to background water quality. Groundwater quality in OW-16-II (moderate depth) is characterized by low concentrations of alkalinity, hardness, sulphate, TDS and calcium, and elevated concentrations of chloride, fluoride, nitrate, barium, boron, and sodium, relative to background. Shallow well OW-16-III, has not been sampled since 2021, however water quality at this location has historically been characterized by elevated concentrations of organic nitrogen, barium, and manganese, as well as low concentrations of TDS and sulphate.

Groundwater quality in well nest OW-24 is more consistent with depth, as compared to that discussed above for well nests OW-25 and OW-16. Groundwater quality in shallow, moderate depth and deep wells (OW-24-III, OW-24-II and OW-24-I, respectively) is characterized by concentrations of indicator parameters alkalinity, DOC, and barium slightly elevated compared to background water quality at their respective depths. Chloride concentrations are also slightly elevated in moderate depth well OW-24-II when compared to background. Sodium, chloride, alkalinity, and barium are slightly elevated in OW-24-II and OW24-III (historically) in comparison to background concentrations. Fluoride concentrations reported in OW-24-II are slightly elevated relative to background concentrations.

Downgradient of the CAZ, groundwater quality in well nest OW-17 is characterized by concentrations of most indicator parameters at levels similar to, or lower than, background water quality. Parameters slightly elevated above background concentrations include iron and manganese in the deep installation (OW-17-I), as well as barium in the moderate depth installation (OW-17-II). Water quality is relatively consistent in all three wells, however concentrations of some indicator parameters, particularly fluoride, barium, boron, and sodium, are slightly higher in OW-17-II, as compared to the shallow (historically) and deep wells (OW-17-III and OW-17-I, respectively).

4.4.6 DOWNGRADIENT SENTINEL WATER QUALITY

The 2023 groundwater quality in sentinel well nest OW-23 is characterized by concentrations similar to or lower than background. Concentrations of chloride, fluoride, boron, DOC and sodium, are slightly elevated in OW-23-II in comparison to background water quality. Given the installation depth of OW-23-II, both wells are considered to be representative of the deep aquifer. It is important to note that this well nest is immediately adjacent to Highway 65 and could be potentially impacted by activities along the highway corridor, such as road salting.

4.4.7 FIELD PARAMETER MEASUREMENTS

Field parameters were measured at all monitoring wells sampled, comprising temperature, pH, conductivity and dissolved solids, and are presented in Appendix J.

4.4.8 RESIDENTIAL SUPPLY WELL MONITORING

Samples were collected from six of the seven residential supply wells during the spring 2023 monitoring event. Samples were obtained at WS-7, WS-8, WS-9, WS-13, WS-14, and WS-16 during the 2023 sampling effort. The results of the 2023 monitoring event are summarized and compared to the ODWS, with any exceedances identified by bold entries (Appendix F). For locations at which no sample was collected during 2023 (i.e., WS-15), the discussion of water quality below applies to the 2022 results. Samples were not collected from residential supply wells WS-15 during the 2023 sampling event due to access issues.

Analytical parameters at the residential supply wells are generally reported at levels similar to, or lower than, those quantified at the background wells. Chloride is elevated at WS-7, WS-8, WS-9, WS-13 and WS-15, but is not interpreted to be landfill-related given the low boron concentrations, particularly at WS-7 and WS-8. Exceedances of the ODWS were quantified for high hardness at five of the seven locations during the 2023 sampling event. Hardness concentrations exceeded the ODWS at WS-15 in 2022. A low hardness exceedance at WS-9 was quantified in 2023. Other exceedances included organic nitrogen at WS-15 in 2022, no exceedances were quantified at the locations sampled in 2023. Iron exceeded the ODWS at five of the seven locations, including WS-15 in 2022. Organic nitrogen, iron and manganese have also exceeded the ODWS at various residential monitoring locations throughout the historical monitoring record.

Barium is slightly elevated in five of the seven locations when compared to background concentrations, as well as the deep aquifer CAZ boundary monitoring wells, with the exception of OW-30-III. In comparison to the remainder of the downgradient monitoring network, monitoring well OW-30-III is also characterized by low concentrations of fluoride and sodium, therefore these concentrations are not interpreted to be a result of landfill-derived impacts, but the result of geochemical processes (i.e., groundwater type) within the deep sedimentary rock aquifer, further discussed in Section 5.1.1. Concentrations of barium within the residential supply wells are quantified at levels at least 10-times lower than the ODWS limit of 1.0 mg/L. Barium is naturally occurring in sedimentary rocks, elevated barium concentrations exhibited within the residential water supply wells are therefore not interpreted to be a result of landfill-derived impacts, but naturally occurring.

Hardness exceeded the ODWS at the background monitoring well nest OW-10, and at similar or higher concentrations than those reported at the residential supply well locations. Iron, manganese and organic nitrogen are often naturally elevated in groundwater throughout northern Ontario. Hardness, iron and organic nitrogen are operational guidelines (non-health related) and specifically address potential treatment issues if the groundwater

is used as a communal water supply. Manganese is an aesthetic objective (non-health related), set by appearance effects since excessive concentrations may impart an undesirable colour to laundered goods, plumbing fixtures and the water itself, and may produce a bitter astringent taste in water and beverages.

No atypical data points were recorded during the current monitoring period. WS-16 previously reported unusually low concentrations of parameters such as hardness and iron during the 2019 monitoring event; however, concentrations of these parameters have since returned within the historical range. Although a consistent sampling point was used during 2019, as compared to historical monitoring events, it should be confirmed that the sampling point is still positioned prior to a water treatment system in order to ensure that an untreated sample is obtained for analysis.

It is noted that inconsistent results have been reported at WS-9 over time. An incomplete monitoring record is available for WS-9, however available data indicate a reduction in concentrations for a number of parameters between the 2013 and 2014 monitoring events, and a concurrent spike in sodium concentrations. No samples were obtained at this location between 2009 and 2013, during 2015 or 2016, as well as 2020 and 2022, but 2017 through 2019, 2021, and 2023 data indicate a reduction in the concentrations of parameters such as hardness and a number of metals parameters including iron and manganese, as well as an increase in the concentration of sodium. It is possible that this inconsistent water quality is the result of a water treatment system at the residence, which is either no longer bypassed at the tap used during sampling or was installed between the 2013 and 2014 monitoring events. None of the inconsistent water quality results at this monitoring location are interpreted to be attributed to the landfill.

In summary, a review of the 2023 geochemical data from the residential water supply wells located downgradient of the Site indicates that these locations are not experiencing any evidence of a landfill-derived impact.

4.5 SURFACE WATER QUALITY MONITORING

As a result of dry conditions, samples could not be obtained from surface water station SW-3 during the spring monitoring event in 2023. A photographic inventory of the monitoring stations is provided in Appendix I.

The 2023 surface water quality results indicate similar water quality at stations SW-1, SW-5 and SW-6, which generally quantify lower concentrations of indicator parameters than stations SW-2, SW-3 and SW-4. Stations SW-2 and SW-3 are characterized by elevated concentrations of alkalinity, total dissolved solids (TDS), and chloride, while the remaining parameters are generally similar to or lower than background water quality. Concentrations of indictor parameters at SW-4 are significantly higher than those at the remaining monitoring stations and appear to be consistently elevated based on the data available to date. The 2023 data indicate stable results at all locations. The consistently elevated concentrations of indicator parameters at SW-4 are not interpreted to be landfill-related; the results at all other stations indicate no impact to surface water quality. Station- and event-specific exceedances of the PWQO, APV and CWQG are provided in Appendix G.

4.5.1 FIELD PARAMETER MEASUREMENTS

Field parameter and flow measurements were undertaken at the monitoring stations, comprising temperature, pH, conductivity, and dissolved oxygen, and are presented in Appendix J.

4.6 LANDFILL GAS MONITORING

Landfill gas monitoring was undertaken during the summer and fall monitoring events at OW-18 in order to monitor the potential hazards associated with production of landfill gas within the capped waste deposits at the Site and is presented below in Table 6. The elevated concentrations of methane gas measured are an indication of the generation of landfill gas occurring within the capped landfill.

The presence of methane gas concentrations between 5% and 15% by volume, is known to be explosive in air, while concentrations greater than 15% in air are known to be flammable; thus, for safety reasons, workers should be informed of the explosive nature of methane accumulations and any work in this vicinity should be conducted with this knowledge.

Table 6 - 2023 Landfill Gas Measurements

DATE	METHANE (%CH4)	CARBON DIOXIDE (%CO ₂)	OXYGEN (%O2)	BALANCE GASES (%)
20 June 2023	65.2	34.7	0.0	0.0
18 August 2023	64.7	35.3	0.0	0.0
16 October 2023	64.0	35.9	0.0	0.0

5 ASSESSMENT, INTERPRETATION AND DISCUSSION

5.1 GROUNDWATER QUALITY

5.1.1 GROUNDWATER CHEMISTRY ANALYSIS

The groundwater major ion chemistry analysis for the 2023 monitoring events is presented in Tri-Linear Piper Plots on Figures 6A through 6D. Tables depicting the calculations used to quantify the geochemical data are presented in Appendix K. The Piper diagram plots the major ions as percentages of milli-equivalents (meq) in two base triangles. The total cations and the total anions are set equal to 100% and the data points in the two triangles are projected onto an adjacent grid.

Tri-Linear Piper Plots for the on-Site monitoring wells are presented on Figures 6A through 6C for the spring, summer and fall 2023 monitoring events, respectively. The positioning of the downgradient property boundary wells in comparison to background wells and source wells indicates varying groundwater types and varying degrees of groundwater impact, depending on well nest location and installation depth. All wells plotted vary in placement, with no wells indicating an identical water type with respect to either source or background. The deep bedrock background well (i.e., OW-10-III) indicates a water type dissimilar to that of the two shallower background installations (i.e., OW-10-I and OW-10-II) and actually indicates a water type similar to that of the source water quality, as opposed to the shallow and moderate depth background water quality. These generally noisy data are attributed to the variation in chemistry between the limestone aquifer, the deeper bedrock aquifer, and the upper silty sand aquifer, which makes characterization of leachate effects difficult.

Shallow downgradient monitoring wells OW-16-III (historically), OW-24-III, and OW-17-III demonstrate a strong shift away from source water quality, indicating a substantial improvement in groundwater quality compared to source wells. Negligible landfill derived impacts are interpreted. Similarly, OW-25-III is situated in even closer proximity to background wells OW-10-I and OW-10-II, indicating a slightly different water type as compared to other shallow downgradient wells, but evidently no landfill-derived impact at this location. Results for OW-31-I indicate independent placement on the diagram, indicating a slightly different water type than source, background or other downgradient wells.

Moderate depth wells (i.e., OW-30-II, OW-31-II, OW-25-II, OW-16-II, OW-24-II and OW-17-II) in downgradient CAZ boundary well nests are placed sporadically on the Piper diagram, with no wells placed in immediate proximity to background. OW-17-II is placed near the source wells on the diagram; however, it is noted that there is no interpreted landfill-derived impact at this location. OW-25-II, OW-30-I, and OW-31-II indicate a similar water type, dissimilar to that of both source and background.

The deep wells, including deep background well OW-10-III, indicate widely varying water types depending on well nest location. Deep wells OW-24-I, OW-17-I, and OW-30-III well nests indicate a similar shift away from source water quality as the shallow wells discussed above, as well as moderate depth well OW-24-II, and therefore indicate no apparent landfill-derived impact. The positions of OW-25-I, OW-25-IV, and OW-16-I, however, are

inconclusive, and appear to indicate a variable water type at depth. Additional data are required before the water type, or types, of the deep overburden and bedrock aquifers can be confirmed.

Figure 6D presents the Tri-Linear Piper Plot for the residential supply well locations, as compared to the background and source monitoring wells at the Site. Residential supply wells are situated away from both the shallow and moderate depth background wells and the source wells on the Piper diagram, indicating that these wells are characterized by a dissimilar water type when compared to both the shallow to moderate depth background water quality and the leachate-impacted groundwater quality in the immediate vicinity of the waste deposits. As indicated above, deep bedrock background monitoring well OW-10-III demonstrates a water type that plots close to source on the Piper diagram; however, this is not indicative of an impact to groundwater quality, but rather is characteristic of the deep bedrock aquifer in the vicinity of the Site with a balance of mineralization that appears to resemble leachate impacted water. That the residential supply wells are positioned at a distance from the source wells, and in closer proximity to background wells, illustrates a lack of landfill-derived impact at these downgradient wells. Based on the six residential locations from which samples were obtained in 2023, it is likely that residential supply wells are similar in water type to that of the unimpacted deep bedrock aquifer.

5.1.2 GROUNDWATER TREND ANALYSIS

The current and previous groundwater elevation and water quality data were reviewed with the objective of identifying any apparent trends or inconsistencies in the present monitoring record. With respect to groundwater elevations, the data available indicate that the seasonal water table fluctuation has been relatively consistent since 2000 (Appendix H).

A series of time-concentration graphs were developed for several select landfill indicator parameters (including alkalinity, barium, boron, chloride, DOC, hardness and TDS) for each monitoring well location from 2007 to 2023. These time-concentration graphs are presented in Appendix H. Historical groundwater quality data generally indicate consistent concentrations of most parameters over time. Source wells OW-1R-I and OW-1R-III indicate high concentrations of all parameters graphed throughout the monitoring record, as well as high ranges of fluctuation, as compared to other monitoring wells. Concentrations of alkalinity and barium within both the shallow and deep source wells indicate an increasing trend over the monitoring record. Trends in boron concentrations within both the shallow and deep installations appear to be stabilizing over the 2023 monitoring event after exhibiting an increasing trend since 2009 and 2015 respectively. Hardness and TDS concentrations appear to be stabilizing over recent years since exhibiting a decreasing trend from 2009 and 2007, respectively. This is not surprising, given their source location immediately downgradient of the fill area. Hardness concentrations within both the shallow and deep source well installations recorded during the summer 2021 event are interpreted to be anomalous as concentration have returned within the historical range during subsequent events.

All other monitoring wells demonstrate consistent concentrations of parameters over time, with little fluctuation observed, with the exception of OW-16-III, which indicates relatively high concentrations of alkalinity, barium and DOC, as well as high ranges of fluctuation for all three parameters. Concentrations of indicator parameters at this location indicated an increase between 2011 and 2015, but appear to have stabilized since 2016. These trends in alkalinity, DOC and barium are unexpected for this downgradient location, and trends in this well should continue to be observed as additional sampling efforts are undertaken. Concentrations of barium exhibit an increasing trend within shallow installation OW-25-III, as well as moderate depth installations OW-24-II and OW-17-II over the monitoring record. Barium concentrations within the CAZ boundary well locations generally exceed concentrations

recorded within the mid-Site well locations (i.e., well nest OW-11 and OW-12) over recent years, particularly OW-12-I. Moderate depth installation OW-17-II has been exhibiting an increasing concentration in barium since 2014. Shallow installation OW-12-II exhibits an increasing trend in boron concentrations over the monitoring record.

Other downgradient wells are behaving as anticipated, with low and stable concentrations of all parameters recorded throughout the monitoring record. Various anomalous concentrations are apparent in recently installed monitoring wells (i.e., 2014 and 2017 installations) during the initial sampling round at each location (i.e., the fall 2014 or fall 2017 monitoring event, depending on installation date). These initial concentrations are interpreted to be the result of residual impacts of drilling, and do not appear to be representative of actual water quality conditions at these locations, as compared to concentrations quantified during subsequent events. As discussed previously, parameters such as hardness demonstrate what are interpreted to be anomalous concentrations in MW-25-IV during the fall 2019 monitoring event. It is noted that all wells quantified slightly elevated boron concentrations during the summer 2020, as well as the spring 2022 event in both the shallow and deep aquifers. Concentrations of boron, throughout the monitoring network, have returned within the historical range over the 2023 monitoring period.

A series of graphs were also developed for select indicator parameters (including alkalinity, barium, boron, chloride, copper and zinc) for each residential supply well location from 2002 to 2023. Groundwater quality data are stable throughout the monitoring record at all locations, with the exception of various anomalous results that have been reported for some parameters, as well as the relatively recent changes in water quality observed at WS-9, discussed previously.

Alkalinity is relatively stable at all locations from 2002 to 2022, with a slight increasing trend at WS-7, WS-8, and WS-13. Boron is also stable, with the exception of one anomalous concentration reported at WS-13 during 2002; boron concentrations have been low and stable at this location since that time. Boron concentrations are elevated at WS-9 and WS-15, in comparison to remaining residential monitoring locations, but are stable and indicate a slight decreasing trend since 2009 despite elevated concentration in 2021. Chloride is stable at all locations, with the exception of WS-7 and WS-8 which are elevated compared to the remaining residential monitoring locations and exhibit fluctuating concentrations over the monitoring record. An anomalous result was quantified at WS-7 during 2008.

Various anomalous results for barium have been reported, however all are atypically low, as compared to the remainder of the monitoring record at each location; no atypically high barium concentrations have been quantified. Low barium concentrations were reported at WS-14 during 2003, at WS-7 from 2003 to 2004 and also from 2007 through 2009, at WS-9 during 2014 and from 2017 through 2021, and at WS-16 during 2019. The low barium concentrations reported at WS-9 appear to be indicative of a new trend at this location. Lower barium concentrations were recorded in 2021 throughout the residential monitoring locations, with the exception of WS-9 and WS-13; concentrations have since returned within the historical range of fluctuation.

Copper is generally low and stable at all locations, however anomalous values were reported at WS-7, WS-13, WS-14 and WS-15 in 2010, 2002, 2009 and 2007, respectively. Copper concentrations at WS-15 in 2022 are potentially anomalous, however additional data is required in order to confirm these results. Copper concentrations appear to have been slightly elevated at WS-13 prior to 2007 but have since stabilized at a low level. Zinc concentrations were elevated at all locations during 2003 but are generally stable with the exception of anomalies quantified at WS-15 and WS-9 during 2007 and 2013, respectively. High zinc concentrations were reported consistently at WS-16 between 2015 and 2018, as well as 2022, but a low zinc concentration, at a level similar to historical results, were quantified at this location during 2019 and 2023.

Fluoride concentrations are variable with a high range of fluctuation across the well network, however the trend for each well is stable throughout the monitoring period (2007 to 2023). There is some noise in the data, however the stable trend is apparent for both the deep groundwater and the shallow groundwater. No pattern of concentration with respect to well position in the flow system was identified, suggesting that the quantification of fluoride is not related to landfill impacts.

5.1.3 GUIDELINE B-7 CALCULATIONS

In September 1986, a policy was introduced by the MECP to assist in the evaluation of groundwater impacts, especially for the case of landfill and/or lagoon operations. The policy was entitled "The Incorporation of the Reasonable Use Concept into MECP Groundwater Management Activities" and is referred to now as Guideline B-7 (formerly Policy 15-08) or the "Reasonable Use" policy. Simply stated, the policy sets groundwater contaminant discharge criteria for landfills and/or lagoons that may impair local water quality; the criteria are based on maintaining the protection of groundwater resources on the adjacent lands or properties.

The contaminant discharge criteria, which represent the maximum acceptable levels of contaminants that should not be exceeded, are established using a simple mathematical relationship that incorporates background (existing) water quality and the highest provincial water quality standards for the adjacent land use. Under Guideline B-7, water quality impacts will not be allowed to exceed the maximum calculated discharge criteria at the landfill (or Site) property boundaries.

In order to apply Guideline B-7, the appropriate resource use of the adjacent properties must be selected. At the New Liskeard Landfill Site, the highest end use for groundwater on the adjacent properties is for drinking water purposes, for which the ODWS – Table 1 through Table 4 have been established. The purpose of the ODWS is to protect public health through the provision of safe drinking water. Water intended for human consumption shall not contain unsafe concentrations of toxic chemicals (health related parameters). Health related standards are established for parameters that, when present above a certain concentration, have known or suspected adverse health effects. At the same time, water should also be aesthetically acceptable. Colour, odour and turbidity are parameters that, when controlled, result in water that is clear, colourless and without objectionable or unpleasant taste or odour (non-health related parameters). In addition, operational guidelines have been established for non-health related parameters that need to be controlled to ensure efficient and effective treatment and distribution of the water. As well, Guideline B-7 requires the identification of background water quality conditions in the underlying aquifer.

The background geochemical profile (based on the geometric mean of all results from OW-10-I, OW-10-II and OW-III) and the resultant values were applied along with the ODWS, to complete a Guideline B-7 analysis for all of the downgradient groundwater monitoring wells for select landfill indicator parameters. Appendix L presents the Guideline B-7 calculations for the 2023 monitoring results that have been developed using ten years of valid background analytical data observed in the shallow, moderate depth and deep aquifers, in OW-10-II, OW-10-I and OW-10-III, respectively. The initial sampling event at OW-10-III is not considered valid and has therefore not been included in the Guideline B-7 analysis for the deep aquifer.

It should be noted that these Guideline B-7 values are much lower (i.e., more stringent) than the ODWS, and a well-by-well comparison of the performance of each of the parameters at the downgradient groundwater monitoring wells is also presented in Appendix L for the 2023 monitoring events; exceedances are indicated by bold and shaded entries. In the event that the background concentration of a parameter exceeds the ODWS, the

background level is considered the maximum allowable concentration not to be exceeded. This is the case for hardness during all three monitoring events in the shallow, moderate and deep aguifers.

Several parameters were added to the list of Guideline B-7 calculations in 2023 as a result of the application of the trigger level monitoring program. These parameters include fluoride, alkalinity (high), hardness (high), and manganese, as well as organic nitrogen for the deep aquifer wells. Comparing concentrations observed in the downgradient groundwater monitoring wells during the 2023 sampling events to the maximum allowable concentration at the contaminant attenuation zone boundary (Appendix L), seven non-health related (alkalinity, hardness, DOC, manganese, organic nitrogen, sodium and TDS) and one health related (fluoride) parameter exceedances are noted.

The following non-health related exceedances of the Guideline B-7 were noted during the 2023 monitoring period:

- Alkalinity was detected at concentrations exceeding the maximum concentration in the shallow and deep aquifer during the summer sampling event;
- Hardness was detected at concentrations exceeding the maximum concentration in the shallow and deep aquifer during one or more sampling events;
- DOC was detected at concentrations exceeding the maximum concentration in the moderate aquifer during the summer sampling event, and in the deep aquifer during all three sampling events;
- Manganese was detected at concentrations exceeding the maximum concentration in all three aquifers in 2023 during one or more sampling events;
- Organic nitrogen was detected at concentrations exceeding the maximum concentration in the deep aquifer during all three sampling events;
- Sodium was detected at concentrations exceeding the maximum concentration in the moderate depth aquifer during the spring and fall sampling events; and,
- TDS quantified Guideline B-7 exceedances in the shallow, moderate depth and deep aguifers.

Fluoride exceedances were quantified in the shallow, moderate depth and deep aquifers during the 2023 monitoring period. Fluoride concentrations are elevated within the background water quality, and concentrations observed within the downgradient monitoring wells exceed source water quality concentrations therefore, elevated fluoride concentration are not interpreted to be landfill-derived.

Exceedances of the Guideline B-7 maximum allowable concentrations have been recorded during the present monitoring review in all downgradient CAZ boundary well nests. Two exceedances were quantified at the sentinel well nest OW-23, for organic nitrogen, during the summer and fall 2023 monitoring events. Fluoride exceedances were also quantified during all three monitoring events, at OW-23-II. Guideline B-7 exceedances cannot necessarily be attributed to a landfill-derived impact to groundwater quality at this time, in the absence of additional data. Given the current interpretation previously discussed, that variable water types exist downgradient of the Site depending on aquifer depth, it is possible that some of the Guideline B-7 exceedances quantified during the present review represent unimpacted groundwater quality at depth within the overburden, or at an increased depth within the underlying bedrock. Although an effort has been made during the current review to compare downgradient wells of similar installation depths to a background monitoring well installed at a similar depth and within a similar stratigraphic unit, the variation in stratigraphy across the Site results in a variety of water types which appear to be dissimilar as a result of differing residence time within the aquifer.

It is WSP's opinion that the 2023 Guideline B-7 results are potentially misleading with respect to an assessment of Site compliance, given a number of factors. Many of the Guideline B-7 exceedances quantified were only marginally above the maximum concentration. There is a notable reduction in the number of Guideline B-7 exceedances with distance downgradient.

It was noted that DOC concentrations are elevated near the toe of the landfill, with concentrations gradually decreasing with distance. Trend graphs for this parameter, however, illustrate significant data noise with downgradient wells indicating concentrations similar to background concentrations. Attenuation to near background levels appears to be occurring on average, with noisy data spikes for some locations exceeding the narrow B-7 compliance band for this parameter. As such, DOC is not a reliable indicator of annual compliance and the stable trend of DOC concentrations at the downgradient limits suggest that the status for this parameter is unlikely to change in the near future.

5.1.4 TRIGGER LEVEL MONITORING PROGRAM

A three-tiered trigger level monitoring program was developed for the Site, as outlined in the Surface and Groundwater Monitoring Program, New Liskeard Waste Disposal Site (Wood, 2020b). The program consists of routine monitoring (Tier I), confirmation monitoring (Tier II), and compliance monitoring (Tier III). Tier II (confirmation monitoring) is triggered if observed concentrations for one or more parameters exceed the Tier I trigger concentrations during two consecutive monitoring events at a single CAZ boundary well.

The trigger parameters for the Site include boron, alkalinity, chloride, hardness, TDS, manganese, sodium, and fluoride, as well as organic nitrogen for the deep aquifer. Fluoride has been included at the request of the MECP, however, fluoride was previously determined to be elevated at well nest OW-10 (i.e., background) and a poor leachate indicator parameter, so it has limited use as a diagnostic parameter. The trigger monitoring program is evaluated at downgradient CAZ boundary monitoring well nests OW-16, OW-17, OW-24, OW-25, OW-30 and OW-31.

Trigger concentrations are set at 80 percent of the Guideline B-7 Maximum Concentration (formerly known as Reasonable Use Concept (RUC), when background concentrations do not exceed 80 percent of the RUC. Where background concentrations exceed 80 percent of the RUC, the highest background concentration recorded during any monitoring event is used as the trigger concentration. The trigger concentrations and related exceedances are presented in Appendix L.

By the present assessment, trigger level exceedances were quantified for alkalinity, hardness, TDS, manganese, sodium, fluoride and organic nitrogen at one or more trigger locations during one or more monitoring events in 2023. No trigger level exceedances were quantified at OW-25-I during the 2023 monitoring period. No trigger level exceedances were quantified for boron or chloride during the 2023 monitoring period.

Alkalinity exceedances were quantified at monitoring wells OW-25-III and OW-24-II in the shallow and moderate depth aquifers, respectively, during all three monitoring events in 2023. Alkalinity concentrations consistently exceeded at OW-16-I throughout the 2023 monitoring period, in the deep aquifer. Concentrations of alkalinity have been stable throughout the monitoring record at all above noted locations.

Hardness exceedances were quantified in the deep aquifer monitoring wells OW-24-I and OW-17-I during one or more sampling events, as well as at OW-25-III during the fall event in 2023. Concentrations of harness are stable over the monitoring record and are similar to background water quality. Fall 2023 hardness concentrations at

OW-25-III is the highest since 2007, however, source water quality concentrations have been stable since 2015, after exhibiting a decreasing trend.

Alkalinity and hardness concentrations are slightly elevated compared to background water quality, however, as discussed in Section 5.1.1, the placement of the above noted wells on the tri-linear piper plots suggests dissimilar water quality from both source and background water quality, which might be more indicative of dissimilar water type as opposed to landfill leachate impacts.

TDS exceedances were only quantified in the deep aquifer monitoring wells at OW-16-I, OW-23-II, OW-30-I, OW-30-III, and OW-31-II during one or more monitoring events in 2023. TDS concentration for OW-30-III during the summer event is elevated compared to the locations natural range and fall concentrations have returned within the monitoring wells' natural range of fluctuation, therefore this concentration is likely anomalous. TDS appears to be stable throughout the monitoring network since 2017, following a decreasing trend. Concentrations of TDS within the downgradient CAZ monitoring wells are similar or lower than background concentrations, therefore an exceedance of this parameter might not necessarily indicative of landfill derived impacts.

Manganese exceedances were only quantified within the shallow downgradient CAZ well OW-25-III during the fall monitoring event in 2023. Manganese concentrations exhibit an increasing trend over the monitoring record in OW-1R-III. Concentrations of manganese recorded within OW-25-III have been elevated compared to mid-Site well nests OW-11 and OW-12 over recent year, which could be indicative of the leachate plume migration and a shift in redox conditions with distance from the landfill. A time-concentration graph is provided in Appendix H.

Sodium exceedances were quantified in both the moderate depth and deep aquifers during the 2023 monitoring period. Moderate depth monitoring well OW-25-II exceeded the trigger concentration during all three monitoring events, while monitoring wells OW-16-I, OW-30-I, and OW-31-II, representative of the deep downgradient water quality exceeded during one or more events in 2023. Sodium concentrations are stable in the source water quality over the monitoring record. Elevated concentrations sodium within the downgradient monitoring wells are potentially attributable to landfill leachate but may also result from variation between the aquifers and increased residence times.

Fluoride concentrations recorded within the downgradient monitoring wells exceeded the maximum concentrations recorded in the source water quality. Fluoride concentrations are also elevated in the background water quality, therefore, exceedances of this parameter at the downgradient locations are not interpreted to be landfill derived. A time-concentration graph is provided in Appendix H.

Organic nitrogen quantified exceedances for the deep aquifer monitoring wells OW-16-I during the summer and fall events, and OW-23-II in the fall of 2023. Organic nitrogen has consistently been elevated at OW-16-I throughout the monitoring record and 2023 concentrations remain within the well historical range. Organic nitrogen exhibits a large range of fluctuation in the source water quality and with no apparent trends. However, similar to DOC, this parameter is generally attenuated to near background concentrations with increasing distance from Site but exhibits significant data noise. As such, organic nitrogen might not be a reliable indicator of annual compliance. A time-concentration graph is provided in Appendix H.

Given the variation in chemistry between the limestone aquifer, the deeper bedrock aquifer, and the upper silty sand aquifer, certain trigger parameters might not be suitable for the assessment of landfill leachate impacts to groundwater quality, namely alkalinity, hardness, and sodium.

The compliance of the Site with respect to groundwater quality as determined by the trigger level monitoring program is currently misleading. As discussed previously, a number of parameters are potentially indicative of a

difference in water type, as opposed to landfill derived impacts. The monitoring plan also indicates that the current background monitoring well nest (i.e., OW-10) is not considered representative of background water quality conditions as it is located hydrologically cross-gradient to the landfill area. Therefore, the trigger level monitoring program should be reviewed following the addition of the proposed background monitoring well nest (Wood, 2020b).

5.2 SURFACE WATER QUALITY

5.2.1 SURFACE WATER TREND ANALYSIS

The 2023 surface water quality data were reviewed with the objective of identifying any apparent seasonal trends or inconsistencies in the present monitoring record. A series of time-concentration graphs were developed for several select landfill indicator parameters (including alkalinity, chloride, conductivity, pH, sulphate and TDS) for each surface water monitoring location for the 2017 through 2023 sampling periods. These time-concentration graphs are presented in Appendix H.

The 2017-2023 surface water data indicate no apparent trends. Concentrations of the select parameters are stable throughout the monitoring period at all stations, with the exception of anomalous chloride, conductivity, sulphate and TDS results quantified at SW-2 during the July 2017 event. These results are interpreted to be anomalous as compared to the remainder of the available monitoring record. Stations SW-5 and SW-6 indicate almost identical trends, indicating no change in water quality downstream of the input of the unnamed tributary to the Wabi River, despite consistently elevated concentrations of all parameters quantified at SW-4. Sulphate concentrations at SW-4 have returned within the historical range of fluctuation in 2023, after exhibiting peak concentrations over the 2022 monitoring period. It is noted that that elevated sulphate concentrations were also recorded at SW-2 in September 2022, however no flow was recorded between these stations in August, September, and October 2022. Peak TDS concentrations were recorded at SW-4 in June 2023, while upstream concentrations remain stable. Given that dissimilar trends are apparent for SW-4 and SW-2, the water quality conditions at SW-4 are interpreted to be the result of a source downstream of SW-2, confirming a lack of landfill-derived impact to surface water downstream of the CAZ boundary.

5.2.2 TRIGGER I EVEL MONITORING PROGRAM

The trigger parameters for the Site, as indicated in the Surface and Groundwater Monitoring Program, New Liskeard Waste Disposal Site (Wood, 2020b) include chloride and boron, to be evaluated at downstream surface water station SW-2. Trigger concentrations are set at 80 percent of the CWQG of each parameter. If the background concentration for a select trigger parameter exceeds CWQG during the particular period, the trigger concentration will be set at the maximum background concentration (Wood, 2020b). As per the trigger level monitoring program, any single exceedance of the surface water trigger concentration at a single trigger location will trigger confirmation monitoring. The trigger concentrations are 96 mg/L for chloride and 1.2 mg/L for boron.

By the present assessment, no trigger level exceedances for chloride or boron were quantified at SW-2 during the 2023 monitoring period. The Site is therefore in compliance with respect to surface water quality, as determined by the trigger level monitoring program.

The monitoring plan also indicates that the current upstream station SW-1 is not considered representative of background surface water quality conditions given the difference in catchment size, stream order, and landcover, from that of the downstream exposure area. Therefore, the trigger level monitoring program should be reviewed following the addition of the proposed control surface water monitoring station (Wood, 2020b).

5.3 ADEOUACY OF THE MONITORING PROGRAM

It is WSP's opinion that the current groundwater and surface water monitoring programs are adequate with respect to the characterization of Site conditions, the evaluation of Site performance and the assessment of Site compliance; however, additional groundwater data are required in order to better characterize water quality conditions at depth within the various stratigraphic units encountered across the Site. At the request of the City, the 2023 monitoring program was conducted in accordance with the former C of A requirements and the monitoring program be updated as per the Site's new ECA (issued December 2021), with implementation for the 2024 monitoring period. In accordance with the Condition H(6) of the ECA, a letter to the District Manager proposing this deviation from the monitoring program is provided in Appendix A. The Monitoring and Screening Checklist is provided in Appendix M.

6 CONCLUSION

Based on the results of the current (2023) monitoring program, the following conclusions have been made:

- The landfill became fully operation on 17 October 2023, with an estimated 1,761.48 tonnes of uncompacted waste was landfilled at the Site in 2023, equating to a waste volume of approximately 2,970 m³. A remaining total landfill capacity of 363,875 m³ and remaining Site life of approximately 21 years has been estimated based on the available data.
- Groundwater movement at the Site, as determined by water table elevations recorded at each of the monitoring wells, was determined as being directed away from the fill area to the northeast in both the shallow and deep aquifers. Well nest OW-10 is situated (hydraulically) in a position considered to be representative of background conditions since it is located north of (i.e., crossgradient to) the Site. This monitoring well configuration allows a detailed evaluation of the New Liskeard Landfill Site to be undertaken with respect to MECP Guideline B-7.
- 3 Groundwater quality suggests impacts (when compared to background) are occurring due to landfill-derived leachate in source and mid-Site wells, but a noticeable improvement in water quality is apparent with increased distance downgradient. There appear to be a number of dissimilar water types representative of unimpacted groundwater quality, which differ depending on aquifer depth and stratigraphic unit. The unimpacted deep bedrock aquifer presents a water type similar to that of source wells, confirming that the interpretation of downgradient water quality results must take into consideration well installation depth and stratigraphic unit, as deep background conditions could potentially be misinterpreted as impacts to water quality.
- 4 Based on a review of the 2023 residential supply well geochemical data, a landfill-derived impact to groundwater quality at these downgradient locations is not interpreted.
- Surface water quality results compiled to date indicate no landfill-derived impact to surface water downstream of the CAZ. No trigger level exceedances were quantified at the surface water compliance station SW-2 during the 2023 monitoring program. Therefore, the Site is therefore in compliance with respect to surface water quality.
- The current (2023) groundwater monitoring record indicates that the Site is continuing to operate as designed, as a natural attenuation type facility. There is an interpreted improvement in water quality with increased distance downgradient, even between the well nests situated along the downgradient CAZ. The current water quality results indicate minor exceedances of Guideline B-7 in addition to the trigger level monitoring program in the shallow, moderate depth and deep downgradient aquifers; however, these results are not interpreted to be indicative of groundwater impacts at depth, but rather differing water types in the deep aquifers, associated with increased residence time, and the varying stratigraphic units encountered across the Site.
- As per Condition 10 of the ECA, the requirement for an extension of the CAZ is not recommended at this time as the Site is continuing to operate as designed.

7 RECOMMENDATIONS

The following recommendations should be considered for inclusion in next year's monitoring program:

- 1 It is recommended that the monitoring program be updated as per the Site's new ECA (issued December 2021), with implementation for the 2024 monitoring period, as the Site is operational as of 17 October 2023.
- 2 The City should continue to monitor groundwater and surface water so that seasonal variations for certain parameters could be documented and understood. This would also facilitate the continuation of Guideline B-7 calculations and trigger level monitoring program for certain groundwater parameters.
- 3 Groundwater elevations should be measured during each groundwater sampling round to further confirm groundwater flow directions and establish seasonal fluctuations.
- 4 It is recommended that landfill gas monitoring be continued at OW-18 concurrently with the three regularly scheduled annual groundwater monitoring events during all future monitoring programs, in order to measure any potential landfill gas production within the waste deposits.
- Monitoring well OW-16-III, which was reported to be damaged during the 2022 monitoring period, monitoring well OW-23-I was reported to be destroyed in spring 2023 and OW-24-III was reported to be damaged below ground surface in spring 2023. All three monitoring wells should be repaired or abandoned in accordance with O.Reg. 903. A replacement should be installed if the well cannot be repaired.
- 6 A topographical survey should be undertaken in 2024 in order to facilitate an accurate calculation of the remaining capacity and Site life.
- 7 Landfill gas monitoring should be performed at the newly established Site facilities (i.e., weigh scale, scale house and equipment building) to monitor for the potential subsurface migration of landfill gas.

8 CLOSURE

This report has been prepared for the exclusive use of the City for specific application to this Site. The annual monitoring report was prepared in accordance with the verbal and written requests from the City and generally accepted assessment practices, restricting the investigations to the assessment of the environmental compliance associated with the Site. No other warranty, expressed or implied is made.

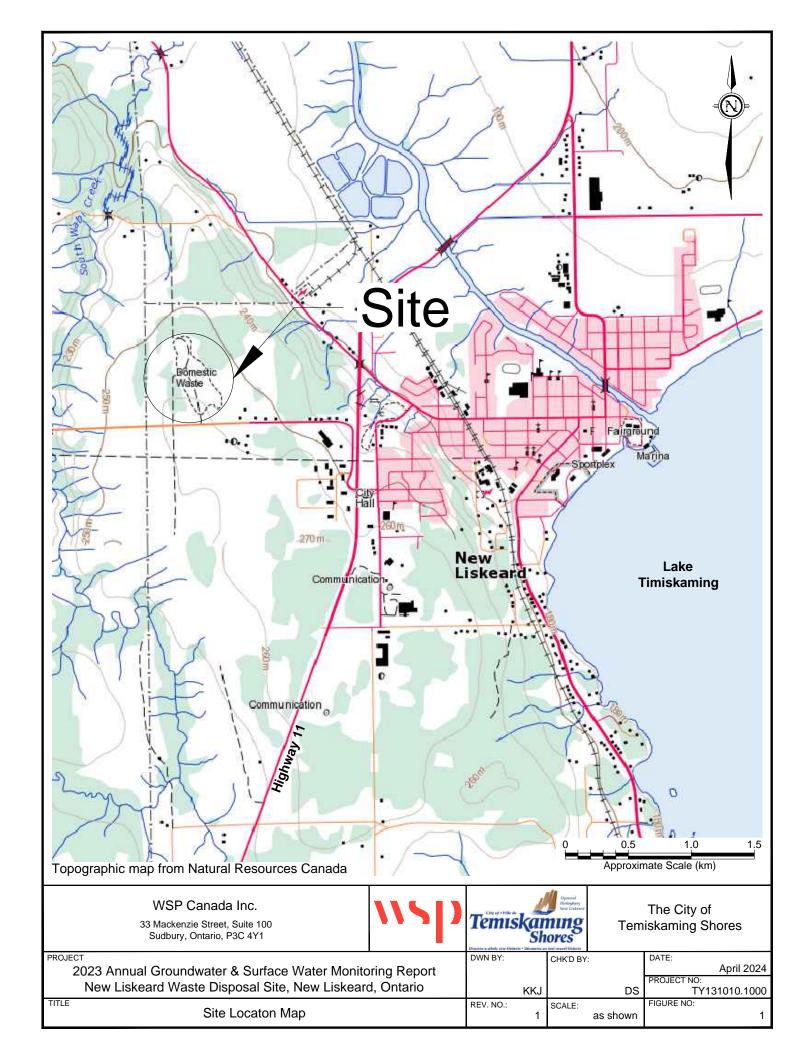
Respectfully Submitted,

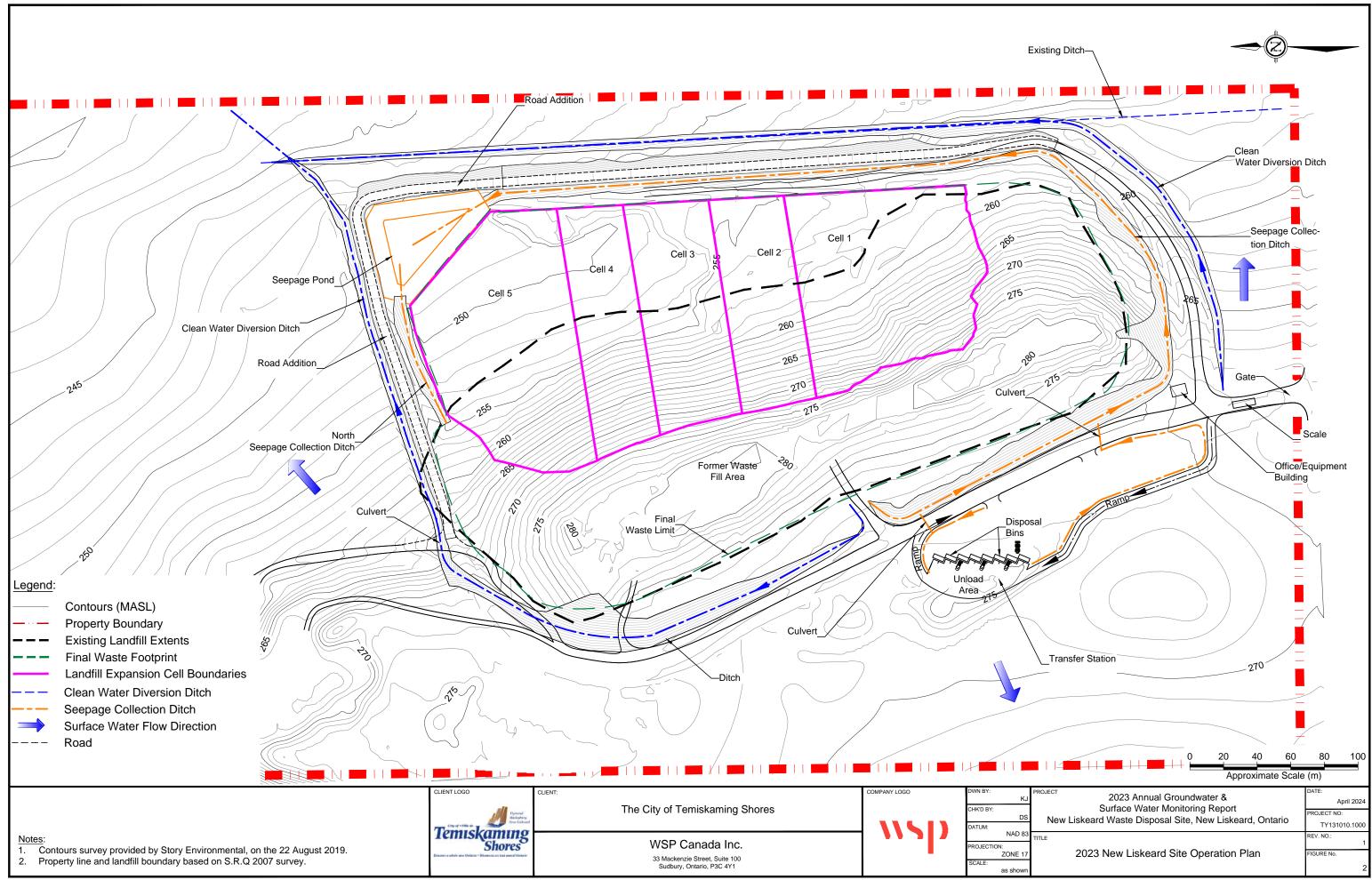
WSP Canada Inc.,

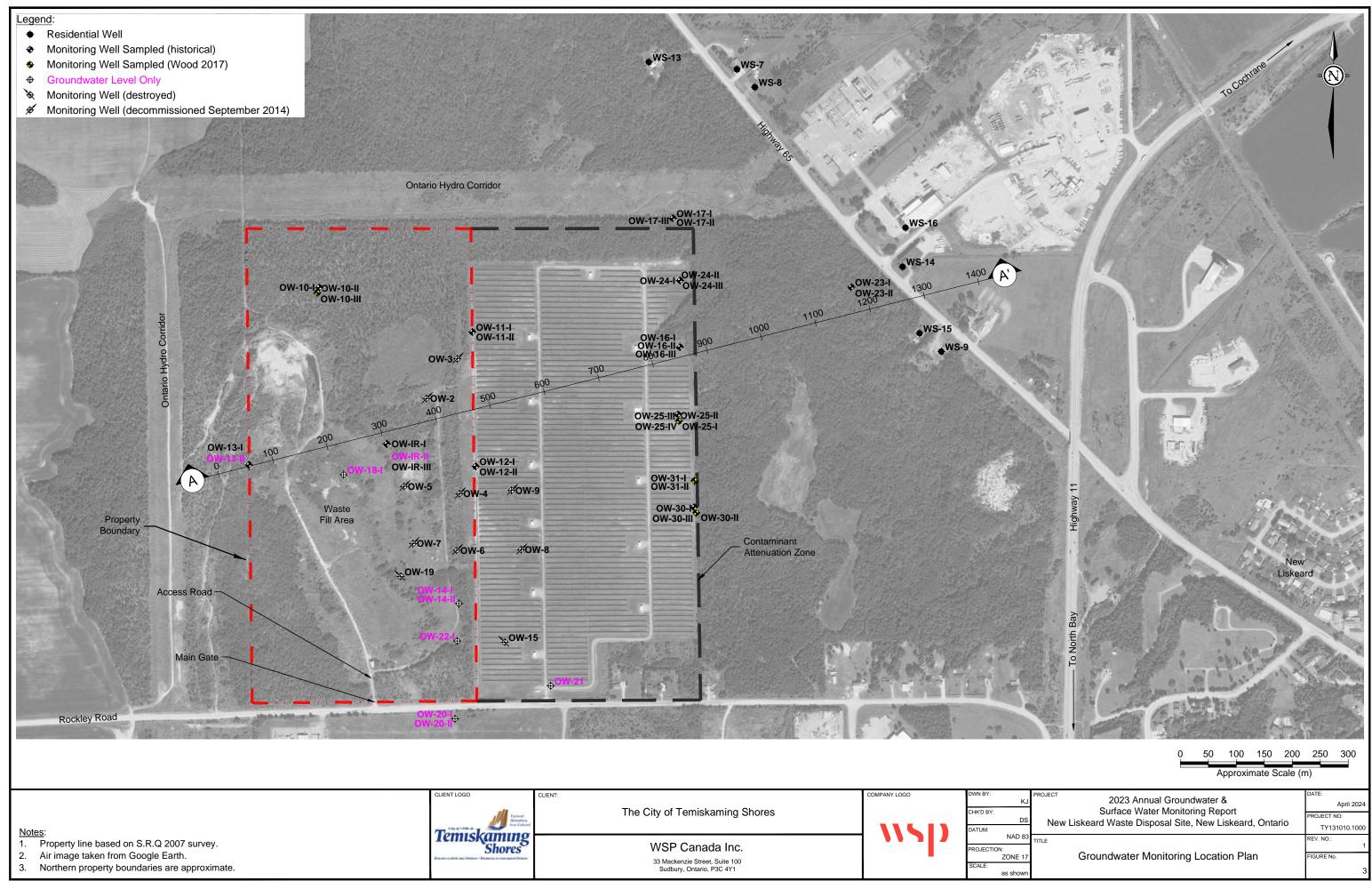
Prepared by:

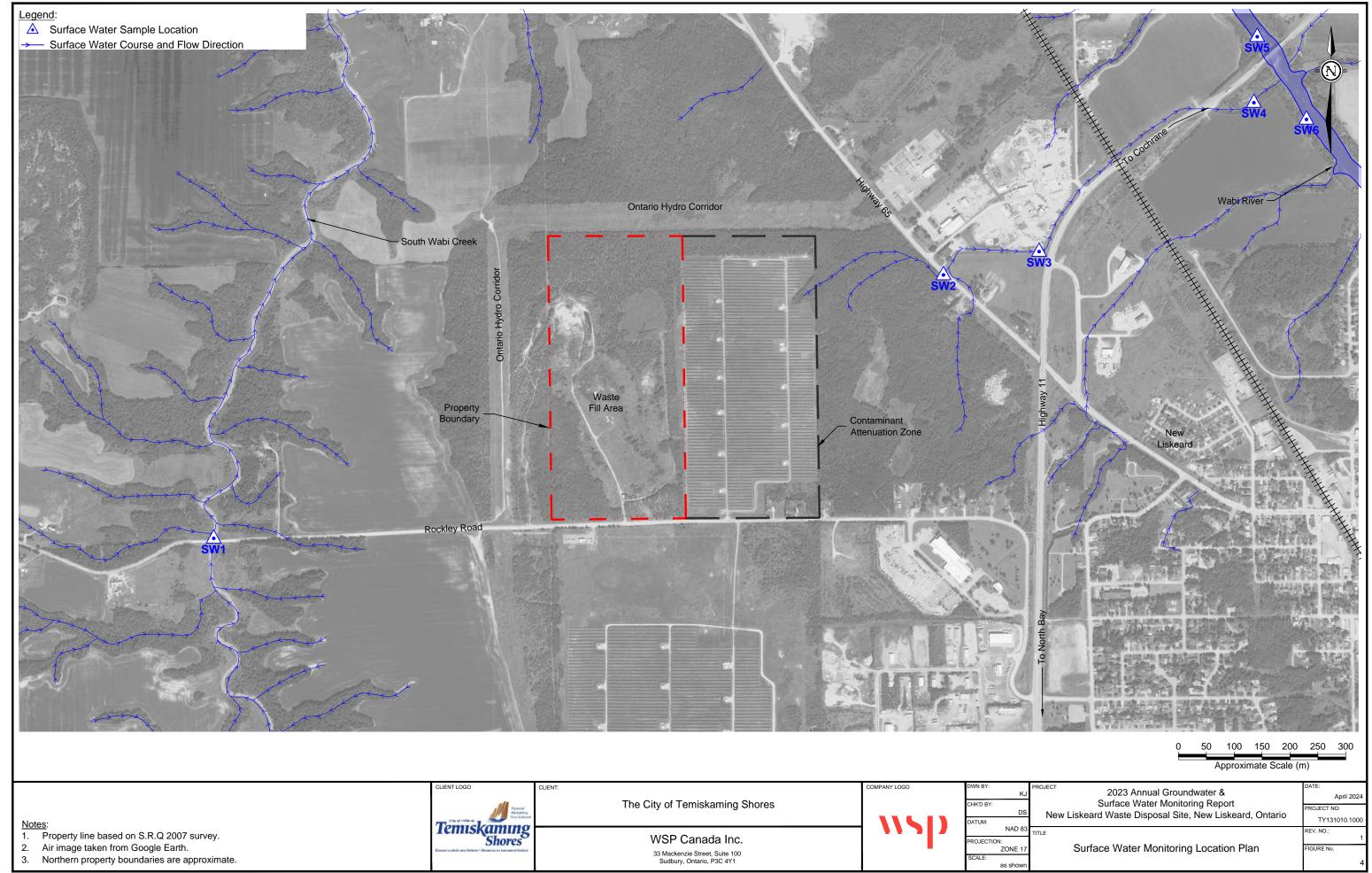
Dominique Gagnon, B.Sc. Environmental Scientist

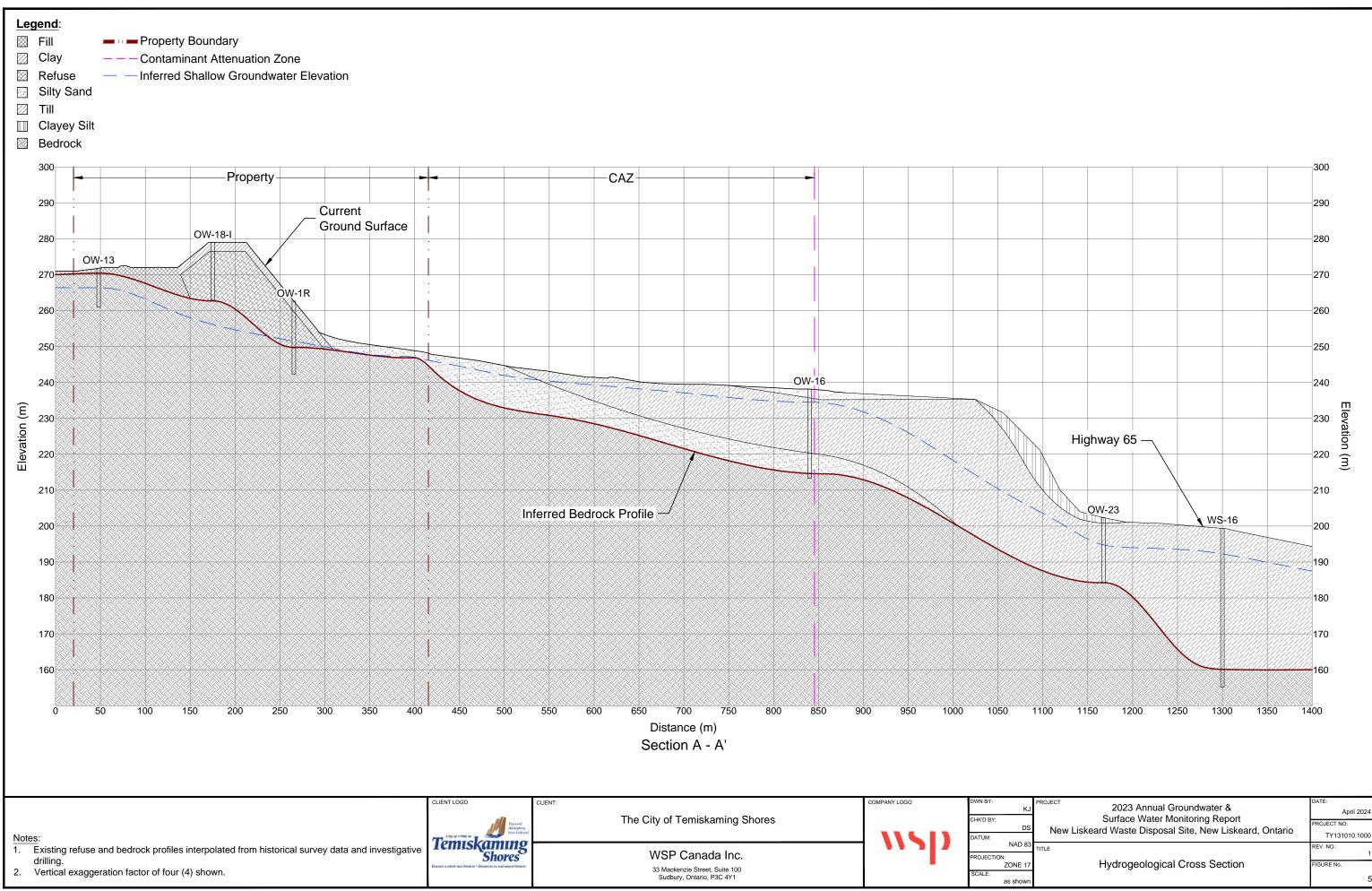
I Magnaon

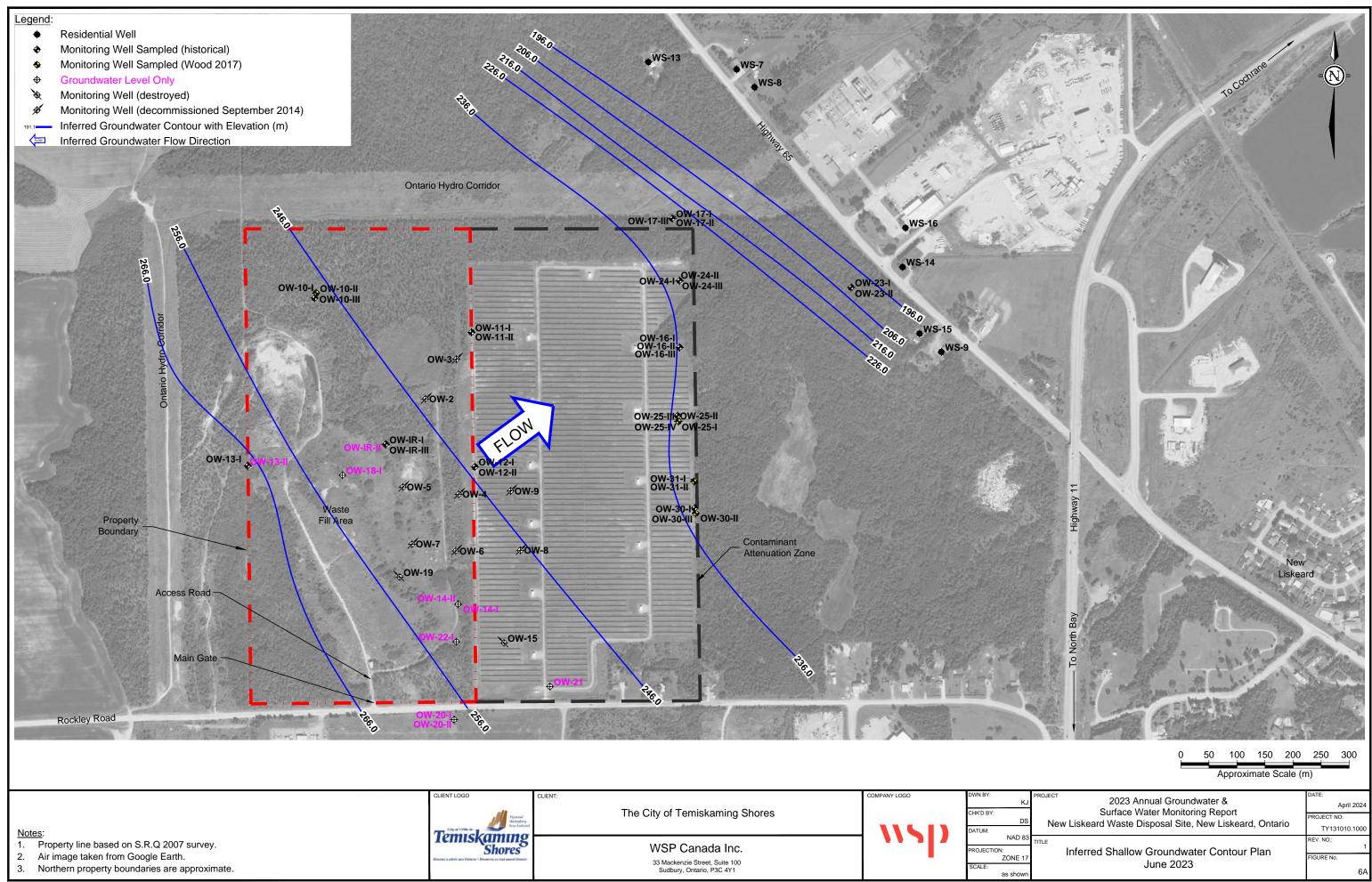

Reviewed by:

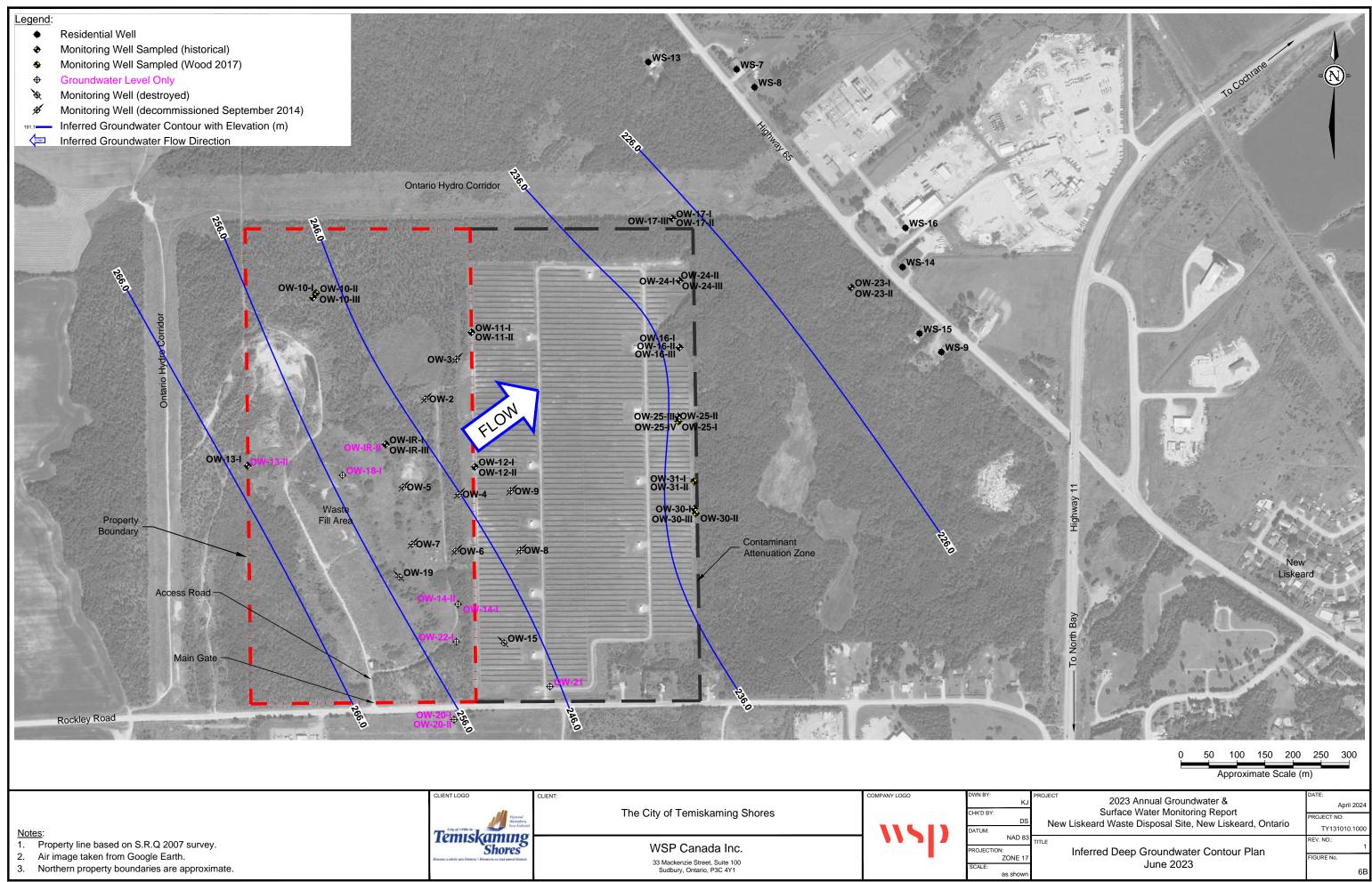

Larry Rodricks, P.Eng. Senior Principal Engineer Dirk Scheurlen, C. Tech Senior Technical Consultant

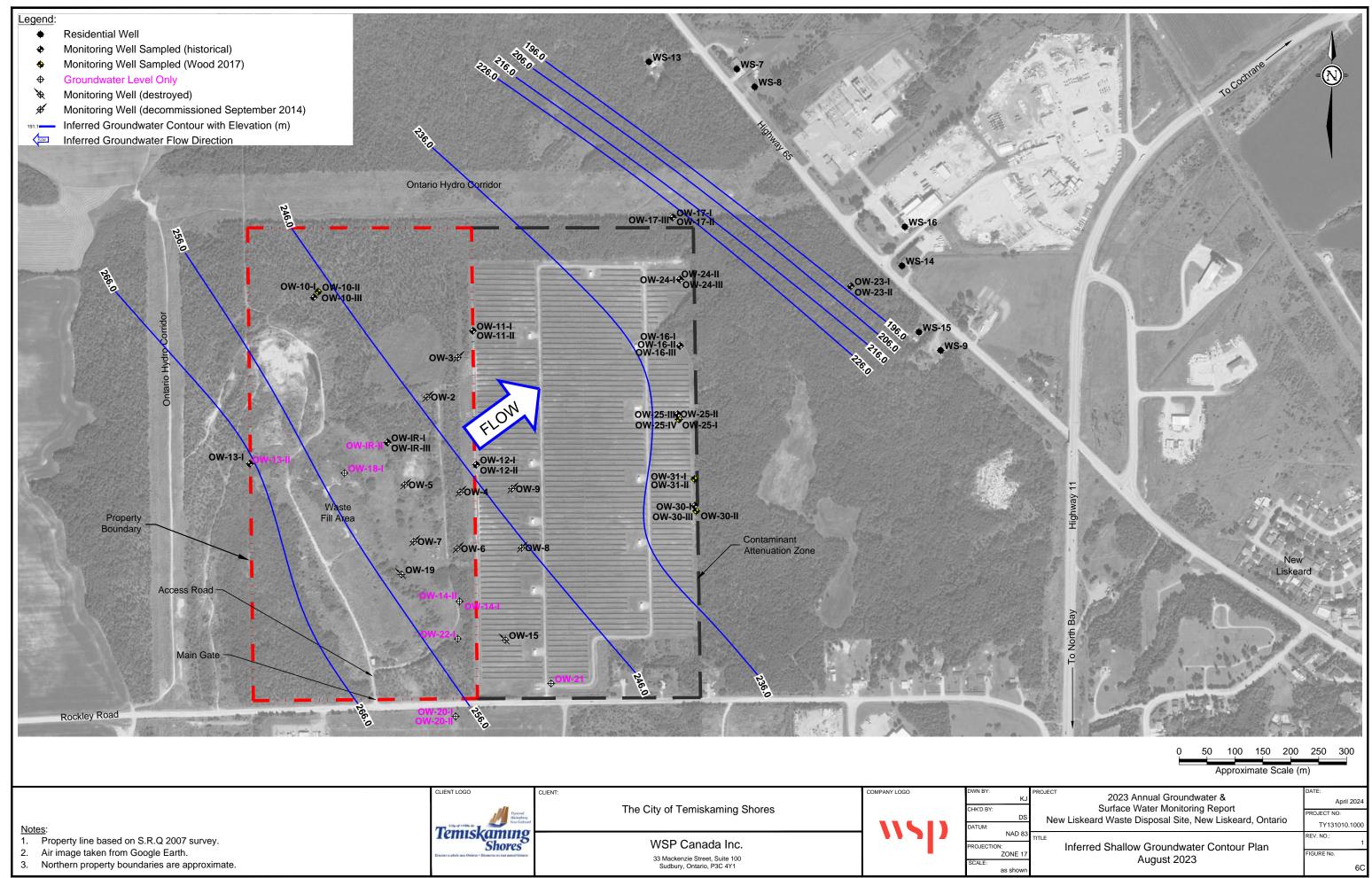

9 REFERENCES

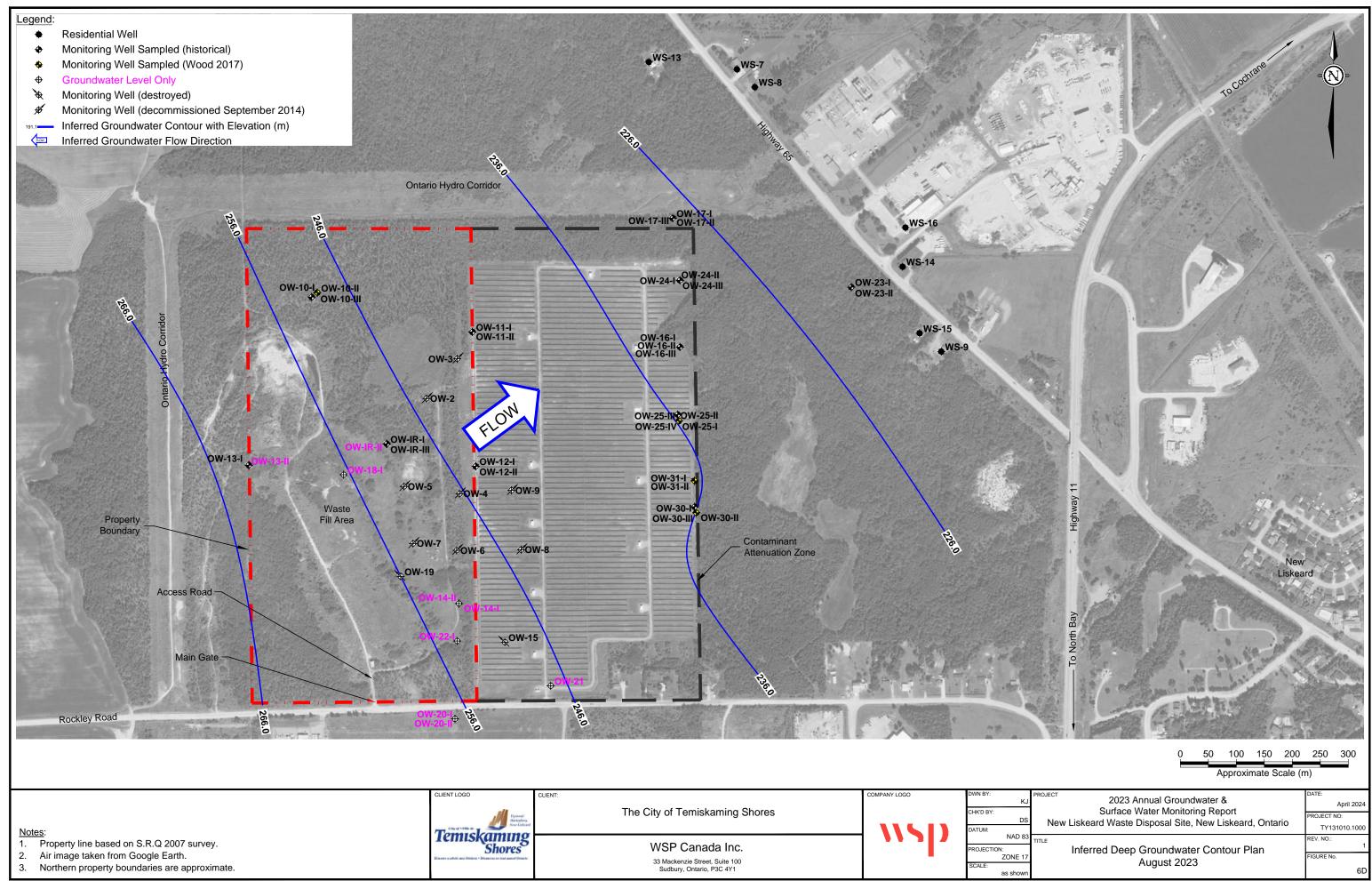

- Story Environmental Inc., 2013, 2012 Annual Monitoring Report, New Liskeard Landfill Site, Corporation of the City of Temiskaming Shores, June 2013.
- Wood Environment and Infrastructure Solutions, 2020a, Design & Operations Plan and Closure Plan, New Liskeard Waste Disposal Site, New Liskeard, Ontario, The City of Temiskaming Shores, February 2020.
- Wood Environment and Infrastructure Solutions, 2020b, Surface and Groundwater Monitoring Program, New Liskeard Waste Disposal Site, New Liskeard, Ontario, The City of Temiskaming Shores, November 2020.

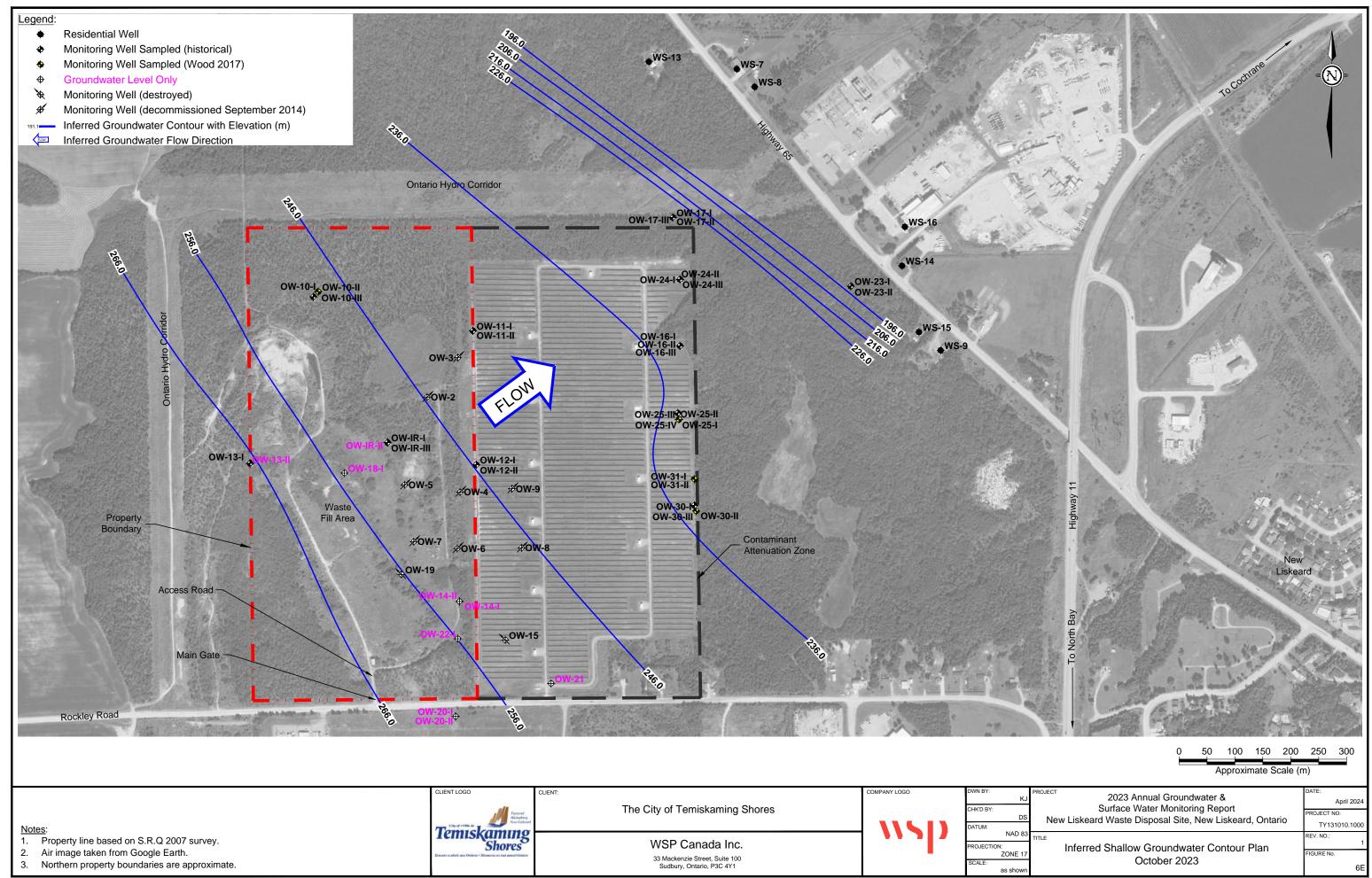

Figures

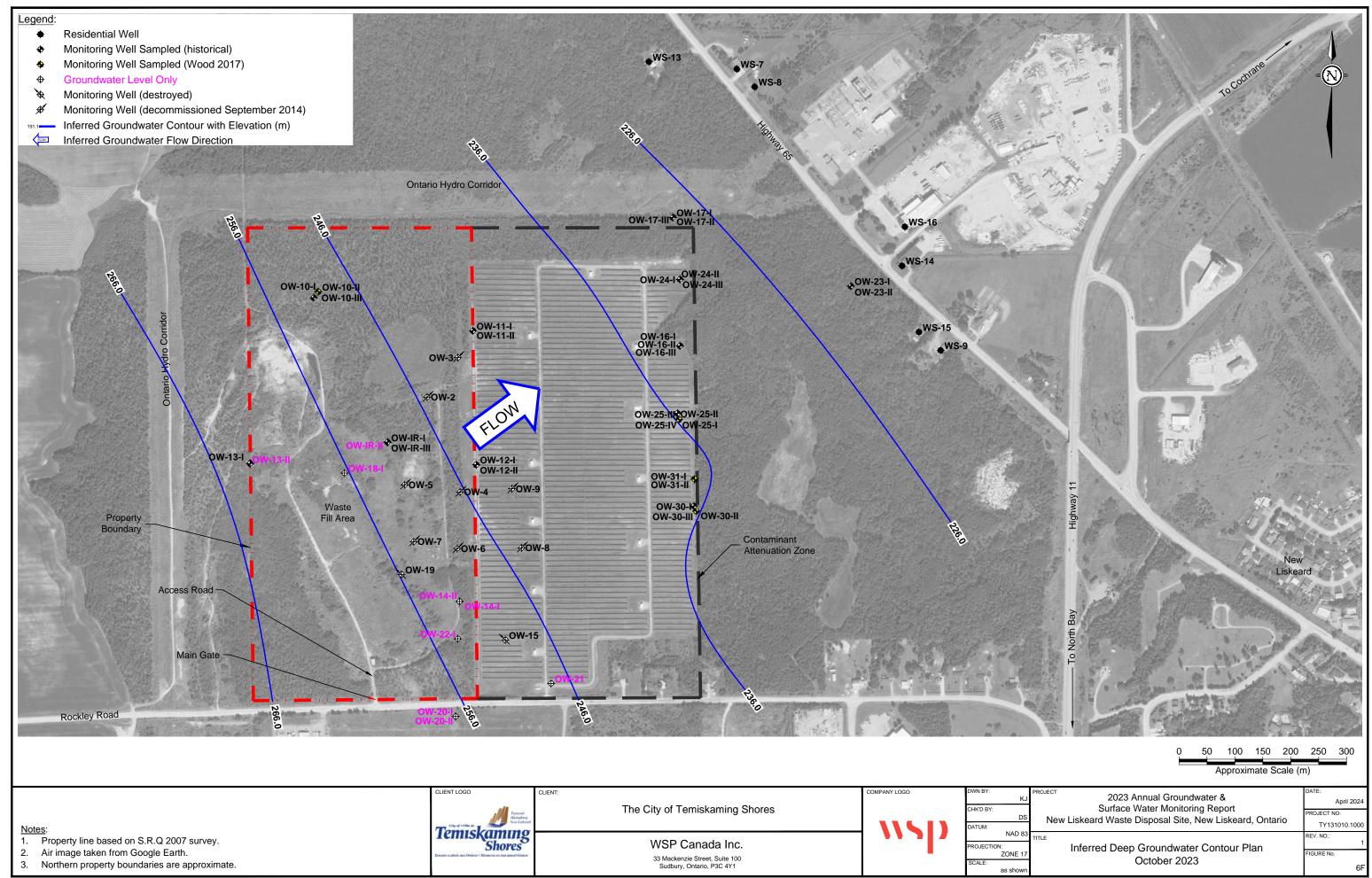


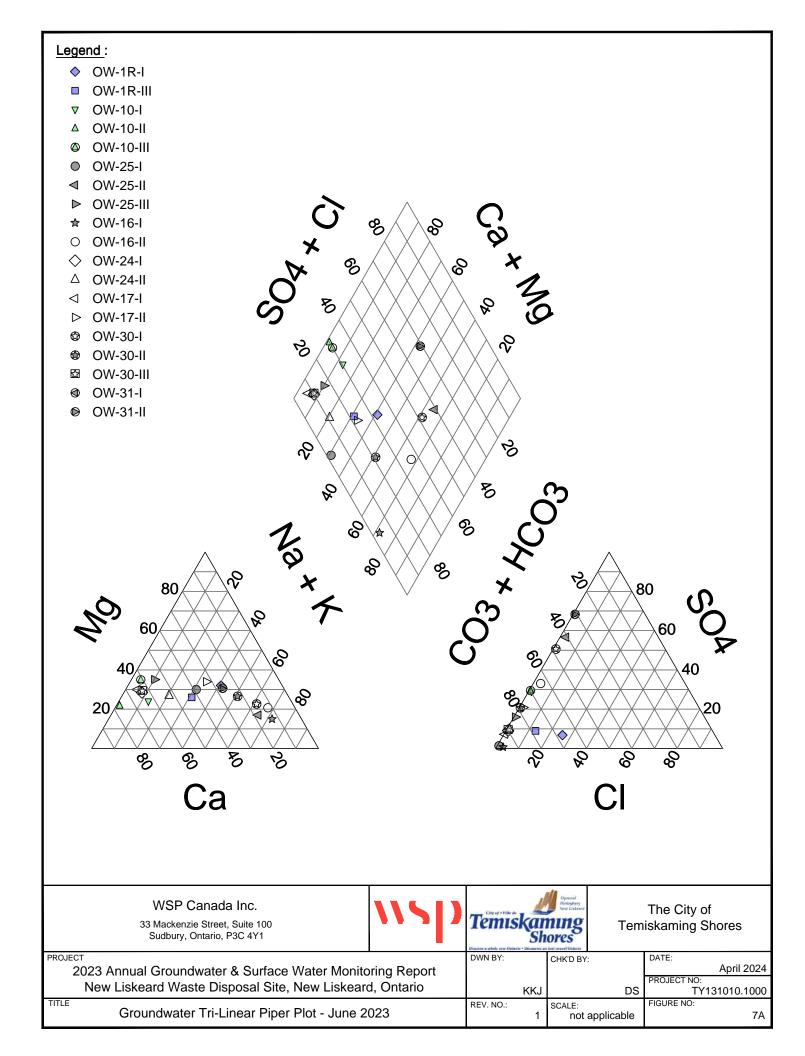


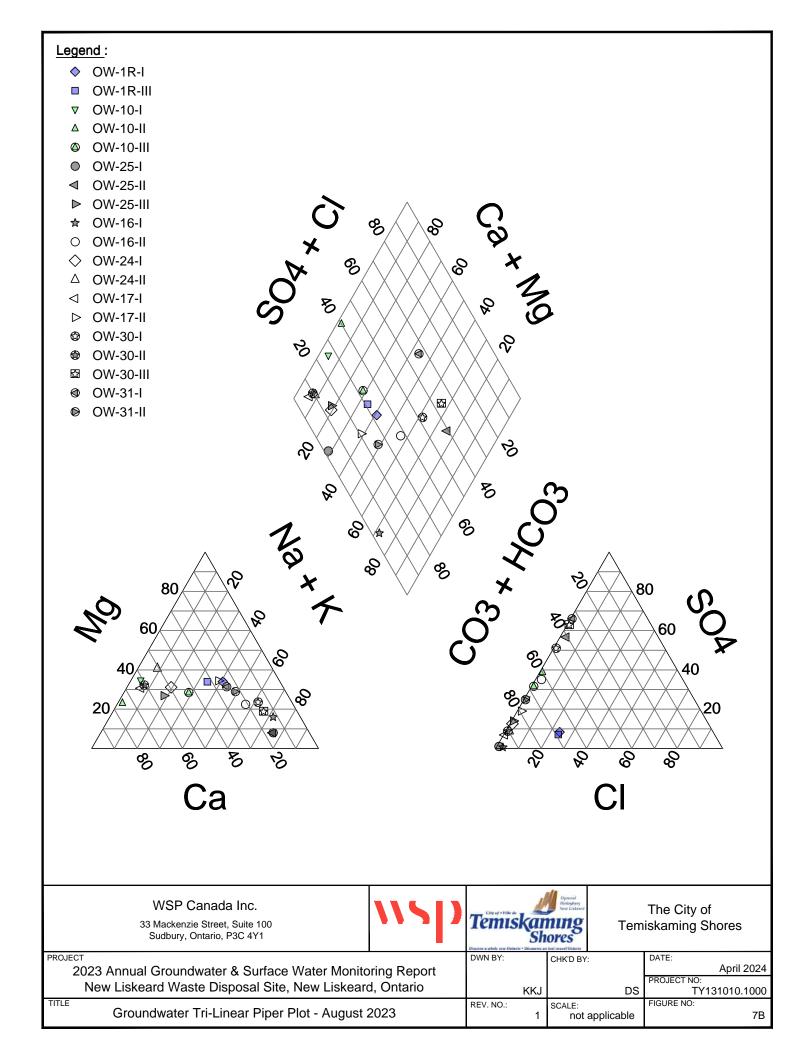


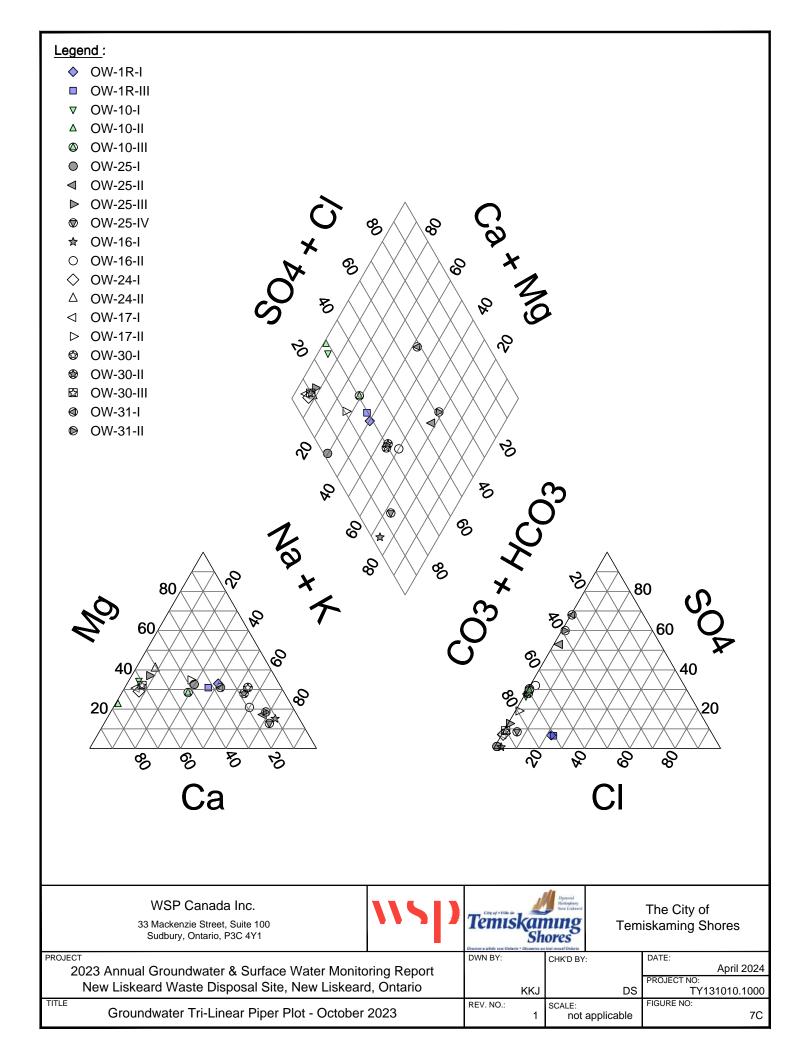












Legend: OW-1R-I OW-1R-III OW-10-I OW-10-II OW-10-III WS-7 ∇ WS-8 \triangleleft WS-9 တ္တ WS-13 0 WS-14 WS-16 P 80 80 8 60 60 S) 40 40 g 20 20 တ္တ Ca WSP Canada Inc. The City of Temiskamıng Shores 33 Mackenzie Street, Suite 100 **Temiskaming Shores** Sudbury, Ontario, P3C 4Y1 CHK'D BY: DATE: April 2024 2023 Annual Groundwater & Surface Water Monitoring Report PROJECT NO: New Liskeard Waste Disposal Site, New Liskeard, Ontario KKJ TY131010.1000 DS FIGURE NO: REV. NO.: SCALE: not applicable Residential Groundwater Tri-Linear Piper Plot - June 2023 7D

Appendix A

Environmental Compliance Approval No. A-500-1115044194 and MECP Correspondence

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A-500-1115044194

Version: 1.0

Issue Date: December 2, 2021

Pursuant to section 20.3 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 and subject to all other applicable Acts or regulations this Environmental Compliance Approval is issued to:

THE CORPORATION OF THE CITY OF TEMISKAMING SHORES.

325 FARR DRIVE HAILEYBURY ONTARIO P0J1K0

For the following site:

325 Farr Drive, Temsikaming, TEMISKAMING SHORES, ONTARIO, CANADA, P0J 1K0

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s) A571505, issued on May 9, 2000.

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

for the use and operation of 7.7 hectares (ha) within a total site area of 32 hectares for disposal of domestic, commercial and industrial solid non-hazardous waste.

DEFINITIONS

For the purpose of this environmental compliance approval, the following definitions apply:

- 1. "Adverse Effect" has the same meaning as defined in the EPA;
- 2. "Approval" means this entire Environmental Compliance Approval and any Schedules attached to it;
- 3. "Director" means a person appointed by the Minister pursuant to section 5 of the EPA for the purposes of Part II.1 of the EPA;
- 4. "District Manager" means the District Manager of the appropriate local district office of the Ministry, where the Site is geographically located;
- 5. "EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19;
- 6. "Ministry" means the ministry of the government of Ontario responsible for the EPA and OWRA and includes all officials, employees or other persons acting on its behalf;
- 7. "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40;

- 8. "Schedules" means the following schedules attached to this Approval and forming part of this Approval namely:
 - Schedule "1" Supporting Documentation
- 9. "Supporting Documentation" means the documents listed in Schedule "1" of this Approval;
- 10. "Contaminant Attenuation Zone" or "CAZ" means a three-dimensional zone that,
 - a. is located on land adjacent to a landfilling site,
 - b. is in the subsurface or extends into the subsurface, and
 - c. is used or is intended to be used for the attenuation of contaminants from the landfilling site to levels that will not have an unacceptable impact beyond the boundary of the zone;
- 11. "NMA" means the Nutrient Management Act, 2002, S.O. 2002, c. 4;
- 12. "Operator" means any person, other than the Owner's employees, authorized by the Owner as having the charge, management or control of any aspect of the Site and includes its successors or assigns;
- 13. "Owner" means any person that is responsible for the establishment or operation of the Site being approved by this *Approval*, and includes *Owner*'s Legal Name and its successors and assigns;
- 14. "PA" means the Pesticides Act, R.S.O. (1990), c. P.11;
- 15. "Provincial Officer" means any person designated in writing by the Minister as a provincial officer pursuant to Section 5 of the OWRA, Section 5 of the EPA, Section 17 of the PA, Section 4 of the NMA, or Section 8 of the SDWA;
- 16. "Reg. 347" means R.R.O. 1990, Reg. 347: (General Waste Management), made under the EPA;
- 17. "Reg. 903" means R.R.O. 1990, Reg. 903: (Wells), made under the OWRA;
- 18. "Regional Director" means the Regional Director of the local Regional Office of the Ministry in which the Site is located;
- 19. "SDWA" means the Safe Drinking Water Act, 2002, S.O. 2002, c. 32;
- 20. "Site" means the entire waste disposal site, including the buffer lands, and contaminant attenuation zone at Lot West 1/2 of Lot 5, Concession 2, Temiskaming Shores City, District of Temiskaming;
- 21. "Trained Personnel" means personnel knowledgeable in the following through instruction and/or practice:
 - a. relevant waste management legislation, regulations and guidelines;
 - b. major environmental concerns pertaining to the waste to be handled;
 - c. occupational health and safety concerns pertaining to the processes and wastes to be handled;
 - d. management procedures including the use and operation of equipment for the processes and wastes to be handled;
 - e. emergency response procedures;
 - f. specific written procedures for the control of nuisance conditions;
 - g. specific written procedures for refusal of unacceptable waste loads; and
 - h. the requirements of this Approval.

TERMS AND CONDITIONS

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

A. GENERAL

1. Compliance

- 1. The Owner shall ensure compliance with all the conditions of this Approval and shall ensure that any person authorized to carry out work on or operate any aspect of the Site is notified of this Approval and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- **2.** Any person authorized to carry out work on or operate any aspect of the Site shall comply with the conditions of this Approval.

2. In Accordance

1. Except as otherwise provided by this Approval, the Site shall be designed, developed, built, operated and maintained in accordance with the documentation listed in the attached Schedule 1.

3. Interpretation

- 1. Where there is a conflict between a provision of any document listed in Schedule 1 in this Approval, and the conditions of this Approval, the conditions in this Approval shall take precedence.
- 2. Where there is a conflict between the application and a provision in any document listed in Schedule 1, the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the Ministry approved the amendment.
- **3.** Where there is a conflict between any two documents listed in Schedule 1, the document bearing the most recent date shall take precedence.
- **4.** The conditions of this Approval are severable. If any condition of this Approval, or the application of any condition of this Approval to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this Approval shall not be affected thereby.

4. Other Legal Obligations

- 1. The issuance of, and compliance with, this Approval does not:
 - **a.** relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or
 - **b.** limit in any way the authority of the Ministry to require certain steps be taken or to require the Owner and Operator to furnish any further information related to compliance with this Approval.

5. Adverse Effect

- 1. The Owner and Operator shall take steps to minimize and ameliorate any adverse effect on the natural environment or impairment of water quality resulting from the Site, including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.
- **2.** Despite an Owner, operator or any other person fulfilling any obligations imposed by this Approval, the person remains responsible for any contravention of any other condition of

this Approval or any applicable statute, regulation, or other legal requirement resulting from any act or omission that caused the adverse effect to the natural environment or impairment of water quality.

6. Change of Owner

- 1. The Owner shall notify the Director, in writing, and forward a copy of the notification to the District Manager, within 30 days of the occurrence of any changes in the following information:
 - a. the ownership of the Site;
 - b. the Operator of the Site;
 - c. the address of the Owner or Operator; and
 - d. the partners, where the Owner or Operator is or at any time becomes a partnership and a copy of the most recent declaration filed under the Business Names Act, R. S. O. 1990, c. B.17, shall be included in the notification.
- 2. No portion of this Site shall be transferred or encumbered prior to or after closing of the Site unless the Director is notified in advance and sufficient financial assurance is deposited with the Ministry to ensure that these conditions will be carried out.
- 3. In the event of any change in ownership of the Site, other than change to a successor municipality, the Owner shall notify the successor of and provide the successor with a copy of this Approval, and the Owner shall provide a copy of the notification to the District Manager and the Director.

7. Registration on Title

- 1. Prior to dealing with the property in any way, the Owner shall provide a copy of this Approval and any amendments, to any person who will acquire an interest in the property as a result of the dealing.
- 2. Within 180 calendar days from the date of issuance of this Approval, the Owner shall submit to the Director a completed Certificate of Requirement which shall include:
 - a. a plan of survey prepared, signed and sealed by an Ontario Land Surveyor, which shows the area of the Site where waste has been or is to be deposited at the Site;
 - b. proof of ownership of the Site;
 - c. a letter signed by a member of the Law Society of Upper Canada or other qualified legal practitioner acceptable to the Director, verifying the legal description provided in the Certificate of Requirement;
 - d. the legal abstract of the property; and
 - e. any supporting documents including a registerable description of the Site.
- 3. Within fifteen (15) calendar days of receiving a Certificate of Requirement authorized by the Director, the Owner shall:
 - a. register the Certificate of Requirement in the appropriate Land Registry Office on the title to the property; and
 - b. submit to the Director and the District Manager, written verification that the Certificate of Requirement has been registered on title.

8. Inspections by the Ministry

- 1. No person shall hinder or obstruct a Provincial Officer from carrying out any and all inspections authorized by the OWRA, the EPA, the PA, the SDWA or the NMA, of any place to which this Approval relates, and without limiting the foregoing:
 - **a.** to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this Approval are kept;
 - **b.** to have access to, inspect, and copy any records required to be kept by the conditions of this Approval;
 - **c.** to inspect the Site, related equipment and appurtenances;
 - **d.** to inspect the practices, procedures, or operations required by the conditions of this Approval; and
 - **e.** to sample and monitor for the purposes of assessing compliance with the terms and conditions of this Approval or the EPA, the OWRA, the PA, the SDWA or the NMA.

9. Information and Record Retention

- 1. Except as authorized in writing by the Director, all records required by this Approval shall be retained at the Site for a minimum of two (2) years from their date of creation.
 - **a.** The Owner shall retain all documentation listed in Schedule 1 for as long as this Approval is valid.
 - **b.** The Owner shall retain employee training records as long as the employee is working at the Site.
 - **c.** The Owner shall make all of the above documents available for inspection upon request of Ministry staff.
- 2. The receipt of any information by the Ministry or the failure of the Ministry to prosecute any person or to require any person to take any action under this Approval or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:
 - **a.** an approval, waiver, or justification by the Ministry of any act or omission of any person that contravenes any term or condition of this Approval or any statute, regulation or other legal requirement; or
 - **b.** acceptance by the Ministry of the information's completeness or accuracy.
- 3. The Owner shall ensure that a copy of this Approval, in its entirety and including all its Notices of Amendment, and documentation listed in Schedule 1, are retained at the Site at all times.
- **4.** Any information related to this Approval and contained in Ministry files may be made available to the public in accordance with the provisions of the Freedom of Information and Protection of Privacy Act, RSO 1990, CF-31.

10. Registration on Title Requirement - Contaminant Attenuation Zone (CAZ)

- 1. Within four (4) years from the date of this Approval, the Owner shall complete acquiring the ground water easement to the proposed contaminant attenuation zone to the north /north east, and between CAZ eastern boundary and Highway 65.
- **2.** The Owner must continue to own the property rights to the Contaminant Attenuation Zone for all of the contaminating life span of the Site.

- 3. The ownership of the property rights must include the right to:
 - a. discharge contaminants from the operations at the Site into the Contaminant Attenuation Zone;
 - b. enter into the Contaminant Attenuation Zone and onto the surface above the Contaminant Attenuation Zone for purposes of testing, monitoring, intercepting contaminants and carrying out remedial work;
 - c. install, operate and maintain works, for the purposes mentioned in clause (b), in the Contaminant Attenuation Zone, including on the surface above the Contaminant Attenuation Zone; and
 - d. prevent the owner(s) of the land(s) in which the Contaminant Attenuation Zone is located from paving, erecting a structure or making any use of land(s) above or in the vicinity of the contaminant attenuation zone that would interfere with the functioning of the Contaminant Attenuation Zone or with the exercise of any of the rights mentioned in this subsection.
- 4. The Owner shall notify the Director in writing within thirty (30) days after any change in his, her or its ownership of the property rights in the Contaminant Attenuation Zone.
- 5. The Owner shall ensure that the written easement agreement, specified in Condition 10(3) includes an agreement of the property owner(s) of the land(s) required for the Contaminant Attenuation Zone, to register a Certificate of Requirement on title to the land (s) to be used as the Contaminant Attenuation Zone.
- 6. Within thirty (30) calendar days from the date of establishing a Contaminant Attenuation Zone (overburden and/or bedrock aquifers) in either fee simple or by way of a groundwater easement, the Owner shall submit to the Director a completed Certificate of Requirement which shall include:
 - a. If rights are obtained in fee simple, the Owner shall provide:
 - i. documentation evidencing ownership of the CAZ obtained in compliance with O. Reg. 232/98, as amended;
 - ii. a completed Certificate of Requirement and supporting documents containing a registerable description of the CAZ; and
 - iii. a letter signed by a member of the Law Society of Upper Canada; or other qualified legal practitioner acceptable to the Director, verifying the legal description of the CAZ.
 - b. Within fifteen (15) calendar days of receiving a Certificate of Requirement signed or authorized by the Director, the Owner shall:
 - i. register the Certificate of Requirement in the appropriate Land Registry Office on the title to the property; and
 - ii. submit to the Director and the District Manager, written verification that the Certificate of Requirement has been registered on title.
 - c. If rights are obtained by way of a groundwater easement, the Applicant shall:
 - i. provide a copy of the easement;
 - ii. provide a plan of survey signed and sealed by an Ontario Land Surveyor for the CAZ;
 - iii. submit proof of registration on title of the groundwater easement to the Director:

d. The Owner shall not amend or remove or consent to the removal of the easement or CAZ from title without the prior written consent of the Director.

B. SITE OPERATIONS

1. Operations

1. The Site shall be operated and maintained at all times including management and disposal of all waste, in accordance with the EPA, Reg. 347, and the conditions of this Approval. At no time shall the discharge of a contaminant that causes or is likely to cause an adverse effect be permitted.

2. Signs

- 1. The Owner shall install and maintain a sign at the entrance to the Site. The sign shall be visible and readable from the main road leading to the Site. The following information shall be included on the sign:
 - a. the name of the Site and Owner;
 - b. the number of the Approval;
 - c. the name of the Operator;
 - d. the normal hours of operation;
 - e. the allowable waste types;
 - f. the telephone number to which complaints may be directed;
 - g. a warning against unauthorized access;
 - h. a twenty-four (24) hour emergency telephone number (if different from above); and
 - i. a warning against dumping outside the Site.

3. Vermin, Vectors, Dust, Litter, Odour, Noise and Traffic

1. The Site shall be operated and maintained such that the vermin, vectors, dust, litter, odour, noise and traffic do not create a nuisance.

4. Burning

1. Burning of waste at the Site is prohibited.

5. Site Security

- 1. No waste shall be received, landfilled or removed from the Site unless a site supervisor or an attendant is present and supervises the operations during operating hours. The Site shall be closed when a site attendant is not present to supervise landfilling operations.
- 2. The Site shall be operated and maintained in a safe and secure manner. During nonoperating hours, the Site entrance and exit gates shall be locked and the Site shall be secured against access by unauthorized persons.
- 3. The Owner shall ensure that:
 - a. access to the Site is restricted by fencing; and
 - b. fencing and lockable gate are kept in good repair.

- 4. All wastes and recyclable materials (scrape metals, glass and plastic) stored in temporary bin shall be managed and disposed of in accordance with the Act and Reg. 347.
- 5. The Owner shall ensure that:
 - a. all bins and waste storage areas are clearly labelled;
 - b. all lids or doors on bins shall be kept closed during non-operating hours and during high wind events; an
 - c. if necessary to prevent litter, waste storage areas shall be covered during high winds events.
- 6. The Owner shall transfer recyclable materials from the Site once the storage bins are full.
- 7. The Owner shall maintain a log book which records the following information:
 - a. date of record;
 - b. quantities (m³) and destination of each type of waste, including recyclable material, shipped from the transfer station; and
 - c. complaints received, if any, including the nature of the complaint, time of complaint and action(s) taken to remediate the problem.

6. Hours of Operations

- 1. The normal operating hours of the Site shall be as follows:
 - a. The maximum waste disposal operating hours of the landfill are Monday Saturday 7:00 a.m. 7:00 p.m.;
 - b. The Site shall be closed on Sundays and statutory holidays;
- 2. On-site equipment used for daily site preparation and closing activities may be operated one (1) hour before and one (1) hour after the hours of operation approved by this *Approval*.
- 3. With the prior written approval from the District Manager, the time periods may be extended to accommodate seasonal or unusual quantities of waste.

7. Nuisances

1. The Site shall be operated and maintained such that the vermin, vectors, dust, litter, odour, noise and traffic do not create a nuisance.

C. EMPLOYEE TRAINING

1. A training plan for all employees that operate any aspect of the Site shall be developed and implemented by the Owner or the Operator. Only Trained Personnel shall operate any aspect of the Site or carry out any activity required under this Approval.

D. COMPLAINT RESPONSE PROCEDURE

- 1. If at any time the Owner receives complaints regarding the operation of the Site, the Owner shall respond to these complaints according to the following procedure:
 - a. The Owner shall record and number each complaint, either electronically or in a log book, and shall include the following information: the nature of the complaint, the name, address and the telephone number of the complainant if the complainant will provide this information and the time and date of the complaint;

- b. The Owner, upon notification of the complaint, shall initiate appropriate steps to determine possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and
- c. The Owner shall complete and retain on-site a report written within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the recurrence of similar incidents.

E. EMERGENCY RESPONSE

- 1. All equipment and materials required to handle the emergency situations shall be:
 - 2. All wastes resulting from an emergency situation shall be managed and disposed of in accordance with Reg. 347.
 - 3. In addition, the Owner shall submit, to the District Manager a written report within three (3) business days of the emergency situation, outlining the nature of the incident, remedial measures taken, handling of waste generated as a result of the emergency situation and the measures taken to prevent future occurrences at the Site.
 - 4. All Spills as defined in the EPA shall be immediately reported to the **Ministry's Spills Action Centre at 1-800-268-6060** and shall be recorded in the log book as to the nature of the emergency situation, and the action taken for clean-up, correction and prevention of future occurrences.
 - a. kept on hand at all times that waste landfilling and/or handling is undertaken at the Site; and
 - b. adequately maintained and kept in good repair.
 - 5. The Owner shall ensure that the emergency response personnel are familiar with the use of such equipment and its location(s).

F. INSPECTIONS, RECORD KEEPING AND REPORTING

1. Daily Log Book

- 1. A daily log shall be maintained in written or electronic format and shall include the following information:
 - a. the type, date and time of arrival, hauler, and quantity (tonnes) of all waste and cover material received at the Site;
 - b. the area of the Site in which waste disposal operations are taking place;
 - c. a record of litter collection activities and the application of any dust suppressants;
 - d. a record of the daily inspections; and
 - e. a description of any out-of-service period of any control, treatment, disposal or monitoring facilities, the reasons for the loss of service, and action taken to restore and maintain service.
- 2. Any information requested, by the Director or a Provincial Officer, concerning the Site and its operation under this Approval, including but not limited to any records required to be kept by this Approval shall be provided to the Ministry, upon request.

2. Daily Inspections and Log Book

- 1. An inspection of the entire Site and all equipment on the Site shall be conducted each day the Site is in operation to ensure that: the Site is secure; that the operation of the Site is not causing any nuisances; that the operation of the Site is not causing any adverse effects on the environment and that the Site is being operated in compliance with this Approval. Any deficiencies discovered as a result of the inspection shall be remedied immediately, including temporarily ceasing operations at the Site if needed.
- **2.** A record of the inspections shall be kept in a daily log book that includes:
 - 1. the name and signature of person that conducted the inspection;
 - **2.** the date and time of the inspection;
 - 3. the list of any deficiencies discovered;
 - 4. the recommendations for remedial action; and
 - **5.** the date, time and description of actions taken.
- **3.** A record shall be kept in the daily log book of all refusals of waste shipments, the reason (s) for refusal, and the origin of the waste, if known.

3. Annual Report

- 1. A written report on the development, operation and monitoring of the Site, shall be completed annually (the "Annual Report"). The Annual Report shall be submitted to the District Manager, by July 31st of the year following the period being reported upon.
- 2. The Annual Report shall include but not be limited to the following information:
 - **a.** the results and an interpretive analysis of the results of all leachate, groundwater surface water and landfill gas monitoring, including an assessment of the need to amend the monitoring programs;
 - **b.** an assessment of the operation and performance of all engineered facilities, the need to amend the design or operation of the Site, and the adequacy of and need to implement the contingency plans;
 - c. site plans showing the existing contours of the Site; areas of landfilling operation during the reporting period; areas of intended operation during the next reporting period; areas of excavation during the reporting period; the progress of final cover, vegetative cover, and any intermediate cover application; facilities existing, added or removed during the reporting period; and site preparations and facilities planned for installation during the next reporting period;
 - **d.** calculations of the volume of waste, weekly and intermediate cover, and final cover deposited or placed at the Site during the reporting period and a calculation of the total volume of Site capacity used during the reporting period;
 - **e.** a calculation of the remaining capacity of the Site and an estimate of the remaining Site life;
 - **f.** a summary of the weekly, maximum daily and total annual quantity (tonnes) of waste received at the Site;
 - g. a summary of any complaints received and the responses made;
 - **h.** a discussion of any operational problems encountered at the Site and corrective action taken;

- i. any changes to the Design and Operations Report and the Closure Plan that have been approved by the Director since the last Annual Report;
- j. a report on the status of all monitoring wells and a statement as to compliance with Ontario Regulation 903; and
- k. any other information with respect to the Site which the District Manager may require from time to time.

G. LANDFILL DESIGN AND DEVELOPMENT

1. Approved Waste Types

- 1. Only municipal waste as defined under Reg. 347 being solid non-hazardous shall be accepted at the Site for landfilling and a drop-off recyclable materials (scrape metals, glass and plastic) for temporary storage in bins for off-site disposal.
- 2. The Owner shall develop and implement a program to inspect waste to ensure that the waste received at the Site is of a type approved for acceptance under this Approval.
- 3. The Owner shall ensure that all loads of waste are properly inspected by Trained personnel prior to acceptance at the Site and that the waste vehicles are directed to the appropriate areas for disposal or transfer of the waste.
- 4. The Owner shall notify the District Manager, in writing, of load rejections at the Site within one (1) business day from their occurrence.

2. Capacity

- 1. The calculated theoretical maximum volumetric capacity of the Site, consisting of the waste, daily cover and intermediate cover, but excluding the final cover is **366,845** cubic metres. The total capacity of the site including historical waste, capacity expansion, daily cover and intermediate cover is 874,000 cubic meter.
- 2. Within 2 years from the date of issuance of the Approval, the waste deposited outside the waste footprint area shown on updated Figure 6 of the Design and Operations Plan, enclosed as Item 21 in Schedule "1", shall be excavated and deposited within the approved waste footprint area.

3. Service Area

1. Only waste that is generated within the geographical boundaries of the Haileybury, Dymond and New Liskeard and Town of Cobalt, and two First Nation Communities (Timiskaming First Nation and Kebaowk First Nation) shall be accepted at the Site.

4. Cover

- 1. Alternative materials to soil may be used as weekly and interim cover material, based on an application with supporting information and applicable fee for a trial use or permanent use, submitted by the Owner to the Director, copied to the District Manager and as approved by the Director via an amendment to this Approval. The alternative material shall be non-hazardous according to Reg. 347 and will be expected to perform at least as well as soil in relation to the following functions:
 - a. Control of blowing litter, odours, dust, landfill gas, gulls, vectors, vermin and fires;
 - b. Provision for an aesthetic condition of the landfill during the active life of the Site;
 - c. Provision for vehicle access to the active tipping face; and

d. Compatibility with the design of the Site for groundwater protection, leachate management and landfill gas management.

2. Cover material shall be applied as follows:

- Weekly Cover Weather permitting, deposited waste shall be covered every week
 in a manner acceptable to the District Manager so that no waste is exposed to the
 atmosphere;
- b. Intermediate Cover In areas where landfilling has been temporarily discontinued for six (6) months or more, a minimum thickness of 300 millimetre of soil cover or an approved thickness of alternative cover material shall be placed; and
- c. Final Cover In areas where landfilling has been completed to final contours, a minimum 600 millimetre thick layer of soil of medium permeability and 150 millimetres of top soil (vegetative cover) shall be placed. Fill areas shall be progressively completed and rehabilitated as landfill development reaches final contours.
- 3. Where existing cover material has eroded such that waste is exposed, the cover material shall be promptly replaced.

5. Solar Panels in CAZ

- 1. The Owner shall ensure that:
 - a. the proposed solar panel installations within the CAZ do not interfere or affect ongoing Site groundwater and surface water monitoring programs, or the functioning of the CAZ;
 - b. access is maintained to all existing Site CAZ monitoring wells;
 - c. the proposed solar panels do not prevent or impede any future monitoring well installations that may be required within the CAZ.

6. Storm Water and Erosion Control

1. Prior to the acceptance of waste at this Site, the storm water control structures (diversion ditches, soil berms and seepage pond) shall be constructed as per Design and Operations report, enclosed as Item 11 of Schedule "1".

H. LANDFILL MONITORING

1. Landfill Gas

- 1. The Owner shall ensure that any buildings or structures at the Site contain adequate ventilation systems to relieve any possible landfill gas accumulation to prevent methane concentration reaching the levels within its explosive range. Routine monitoring for explosive methane gas levels shall be conducted in all buildings or structures at the Site, especially enclosed structures which at times are occupied by people.
- 2. Within 2 year of the issuance of this Approval, the Owner shall construct at least two (2) dedicated landfill gas monitors at locations as shown on Figure 3 of the Proposed Surface and Groundwater Monitoring Program dated November 24, 2020 and the landfill gas monitoring shall occur concurrently with the groundwater monitoring plan outlined in Item 12 of Schedule "1".
- 3. The Owner shall ensure that all on-Site enclosed buildings are equipped with appropriate dedicated gas monitoring devices.

2. Leachate Monitoring

- 1. Within 1 year of closure of Cell 2, the Owner shall construct one (1) dedicated leachate monitoring well within Cell 2 at location acceptable to the District Manager.
- 2. The leachate level and sampling and chemical testing shall occur concurrently with the groundwater monitoring plan outlined in Item 12 of Schedule "1".

3. Surface Water and Groundwater

1. The Owner shall monitor surface water and ground water in accordance with the monitoring program outlined in "Surface and Groundwater Monitoring Program, New Liskeard Waste Disposal Site, dated November 24, 2020, and enclosed as Item 12 in Schedule "1".

4. Groundwater Wells and Monitors

- 1. The Owner shall ensure that all groundwater monitoring wells which form part of the monitoring program are properly capped, locked and protected from damage.
- 2. Where landfilling is to proceed around monitoring wells, suitable extensions shall be added to the wells and the wells shall be properly re-secured.
- 3. Any groundwater monitoring well included in the on-going monitoring program that is damaged shall be assessed, repaired, replaced or decommissioned by the Owner, as required.
 - a. The Owner shall repair or replace any monitoring well which is destroyed or in any way made to be inoperable for sampling such that no more than one regular sampling event is missed.
 - b. All monitoring wells which are no longer required as part of the groundwater monitoring program, and have been approved by the Director for abandonment, shall be decommissioned by the Owner, as required, in accordance with O. Reg. 903, to prevent contamination through the abandoned well. A report on the decommissioning of the well shall be included in the Annual Report for the period during which the well was decommissioned.

5. Trigger Mechanisms and Contingency Plans

- 1. The Trigger mechanism shall be implemented as noted below:
 - a. Trigger mechanisms shall be in accordance with Trigger Mechanisms Contingency Plan provided in "Surface and Groundwater Monitoring Program, New Liskeard Waste Disposal Site, dated November 24, 2020, and enclosed as Item 12 in Schedule "A".
 - b. Contingency plan in the event of a confirmed exceedance of a site-specific trigger level relating to leachate mounding or groundwater or surface water impacts due to leachate shall be in accordance with Item 12 of Schedule "1".
 - c. In addition to the trigger parameters listed in Table 4 of the "Surface and Groundwater Monitoring Program, New Liskeard Waste Disposal Site, dated November 24, 2020, fluoride shall be deemed a trigger parameter for which a trigger concentration shall be established. Moreover, the trigger concentration for groundwater parameters is set at 80% of the Reasonable Use Concentration (RUC).
- 2. In the event of a confirmed exceedance of a site-specific trigger level relating to leachate mounding or groundwater or surface water impacts due to leachate, the Owner shall immediately notify the District Manager, and an investigation into the cause and the need

for implementation of remedial or contingency actions shall be carried out by the Owner in accordance with the approved trigger mechanisms and associated contingency plans.

- 3. If monitoring results, investigative activities and/or trigger mechanisms indicate the need to implement contingency measures, the Owner shall ensure that the following steps are taken:
 - a. The Owner shall notify the District Manager, in writing of the need to implement contingency measures, no later than 30 days after confirmation of the exceedances;
 - b. Detailed plans, specifications and descriptions for the design, operation and maintenance of the contingency measures shall be prepared and submitted by the Owner to the Director for approval; and
 - c. The contingency measures shall be implemented by the Owner upon approval by the Director.
- 4. The Owner shall ensure that any proposed changes to the site-specific trigger levels for leachate impacts to the surface water or groundwater, are approved in advance by the Director via an amendment to this Approval.

6. Changes to the Monitoring Plan

- 1. The Owner may request to make changes to the monitoring program to the District Manager in accordance with the recommendations of the annual report. The Owner shall make clear reference to the proposed changes in a separate letter that shall accompany the annual report.
- 2. Within sixty (60) days of receiving the written correspondence from the District Manager confirming that the District Manager is in agreement with the proposed changes to the environmental monitoring program, the Owner shall forward a letter identifying the proposed changes and a copy of the correspondences from the District Manager and all other correspondences and responses related to the changes to the monitoring program, to the Director requesting the Approval be amended to approve the proposed changes to the environmental monitoring plan prior to implementation.
- 3. In the event any other changes to the environmental monitoring program are proposed outside of the recommendation of the annual report, the Owner shall follow current Ministry procedures for seeking approval for amending the Approval.

7. Compliance

- 1. The Site shall be operated in such a way as to ensure compliance with the following:
 - a. Reasonable Use Guideline B-7 for the protection of the groundwater at the Site; and
 - b. Provincial Water Quality Objectives included in the July 1994 publication entitled Water Management Policies, Guidelines, Provincial Water Quality Objectives, as amended from time to time or limits set by the Regional Director, for the protection of the surface water at and off the Site.

I. CLOSURE PLAN

1. Closure Plan

1. At least 3 years prior to the anticipated date of closure of this Site, the Owner shall submit to the Director for approval, with copies to the District Manager, a detailed Site closure plan pertaining to the termination of landfilling operations at this Site, post-closure inspection, maintenance and monitoring, and end use. The plan shall include but not be limited to the following information:

- a. a plan showing Site appearance after closure;
- b. a description of the proposed end use of the Site;
- c. a description of the procedures for closure of the Site, including:
 - i. advance notification of the public of the landfill closure;
 - ii. posting of a sign at the Site entrance indicating the landfill is closed and identifying any alternative waste disposal arrangements;
 - iii. completion, inspection and maintenance of the final cover and landscaping;
 - iv. Site security;
 - v. removal of unnecessary landfill-related structures, buildings and facilities;
 - vi. final construction of any control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and landfill gas; and
 - vii. a schedule indicating the time-period for implementing sub-conditions (i) to (vi) above;
- d. descriptions of the procedures for post-closure care of the Site, including:
 - i. operation, inspection and maintenance of the control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and landfill gas;
 - ii. record keeping and reporting; and
 - iii. complaint contact and response procedures;
- e. an assessment of the adequacy of and need to implement the contingency plans for leachate and methane gas; and
- f. an updated estimate of the contaminating life span of the Site, based on the results of the monitoring programs to date.

REASONS

The reasons for the imposition of these terms and conditions are as follows:

- 1. The reason for Conditions A1(1&2), A3 (1 to 4), A4(1), A5(1&2), A8(1) and A9(1-3) is to clarify the legal rights and responsibilities of the Owner and Operator under this Approval.
- 2. The reasons for Condition A2(1), B5(3), and G6(1) are to ensure that the Site is designed, operated, monitored and maintained in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.
- 3. The reasons for Condition A6(1) are to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval and to ensure that the Director is informed of any changes.
- 4. The reasons for Condition A6(2) are to restrict potential transfer or encumbrance of the Site without the approval of the Director and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this Approval.

- 5. The reason for Condition A6(3) is to ensure that the successor is aware of its legal responsibilities.
- 6. The reasons for Conditions A7(1-3) and A10 (1-6) are that the Part II.1 Director is an individual with authority pursuant to Section 197 of the Environmental Protection Act to require registration on title and provide any person with an interest in property before dealing with the property in any way to give a copy of the Approval to any person who will acquire an interest in the property as a result of the dealing.
- 7. The reason for Condition A8(1) is to ensure that appropriate Ministry staff has ready access to the Site for inspection of facilities, equipment, practices and operations required by the conditions in this Approval. This Condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the Act, the OWRA, the PA, the NMA and the SDWA.
- 8. The reason for Condition A9(1), A9(3) and B5(7) is to ensure that accurate waste records and approval documents are maintained to ensure compliance with the conditions in this Approval, the EPA and its regulations.
- 9. Condition A9(4) has been included to clarify what information may be subject to the Freedom of Information Act.
- 10. The reasons for Conditions B1(1), B3(1), B5(5&6), B7(1) and F2(1) are to ensure that the Site is operated, inspected and maintained in an environmentally acceptable manner and does not result in a hazard or nuisance to the natural environment or any person.
- 11. The reason for Conditions B2(1) is to ensure that users of the Site are fully aware of important information and restrictions related to Site operations and access under this Approval.
- 12. The reasons for Condition B4(1) are open burning of municipal waste is unacceptable because of concerns with air emissions, smoke and other nuisance effects, and the potential fire hazard and to make sure burning of brush and wood are carried out in accordance with Ministry guidelines.
- 13. The reason for Condition B5(4) is to ensure that waste is transported to and from the Site in accordance with Reg. 347.
- 14. The reasons for Condition B5(1&2) are to ensure that the Site is supervised by properly trained staff in a manner which does not result in a hazard or nuisance to the natural environment or any person and to ensure the controlled access and integrity of the Site by preventing unauthorized access when the Site is closed and no site attendant is on duty.
- 15. The reasons for Condition B6(1-3) are to specify the hours of operation for the landfill site and a mechanism for amendment of the hours of operation, as required.
- 16. The reason for Condition C1(1) is to ensure that the Site is supervised and operated by properly trained staff in a manner which does not result in a hazard or nuisance to the natural environment or any person.
- 17. The reason for Condition D1(1) is to ensure that any complaints regarding landfill operations at this Site are responded to in a timely and efficient manner.

- 18. Conditions E1(1-5) are included to ensure that emergency situations are handled in a manner to minimize the likelihood of an adverse effect and to ensure public health and safety and environmental protection.
- 19. The reason for Conditions F1(1&2) is to ensure that accurate waste records are maintained to ensure compliance with the conditions in this Approval (such as fill rate, site capacity, record keeping, annual reporting, and financial assurance requirements), the EPA and its regulations.
- 20. The reason for Conditions F2(2&3) is to ensure that detailed records of Site inspections are recorded and maintained for inspection and information purposes.
- 21. The reasons for Conditions F3(1&2) are to ensure that regular review of site development, operations and monitoring data is documented and any possible improvements to site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing site activities and for determining the effectiveness of site design.
- 22. The reason for Conditions G1(1-4) and G2(1&2) is to specify the approved areas from which waste may be accepted at the Site and the types and amounts of waste that may be accepted for disposal at the Site, based on the Owner's application and supporting documentation.
- 23. The reasons for Conditions G3(1) are to specify the approved areas from which waste may be accepted at the Site, based on the Owner's application and supporting documentation.
- 24. The reasons for Condition G4(1-3) are to ensure that weekly and intermediate cover are used to control potential nuisance effects, to facilitate vehicle access on the Site, and to ensure an acceptable site appearance is maintained. The proper closure of a landfill site requires the application of a final cover which is aesthetically pleasing, controls infiltration, and is suitable for the end use planned for the Site.
- 25. Condition G5(1) is included to ensure that the proposed installations do not impact ongoing environmental protection programs at the Site.
- 26. The reasons for Condition H1(1-3) are to ensure that off-site migration of landfill gas is monitored and all buildings at the Site are free of any landfill gas accumulation, which due to a methane gas component may be explosive and thus create a danger to any persons at the Site.
- 27. Conditions F2(1&2), H2(1&2), H3(1) and H7(1) are included to specify the leachate, groundwater and surface water monitoring requirements for monitoring leachate, groundwater and surface water quality and to require the Owner to demonstrate that the Site is performing as designed and the impacts on the natural environment are acceptable. Regular monitoring allows for the analysis of trends over time and ensures that there is an early warning of potential problems so that any necessary remedial/contingency action can be taken.
- 28. ConditionsH4(1-3) are included to ensure the integrity of the groundwater monitoring network so that accurate monitoring results are achieved and the natural environment is protected.
- 29. Conditions H5(1-4) are added to ensure the Owner has a plan with an organized set of procedures for identifying and responding to potential issues relating to groundwater and surface water contamination at the Site's compliance point.
- 30. The reasons for Conditions H6(1-3) are included to streamline the approval of the changes to the monitoring plan.

31. The reasons for Condition II(1) are to ensure that final closure of the Site is completed in an aesthetically pleasing manner, in accordance with Ministry standards, and to ensure the long-term protection of the health and safety of the public and the environment.

APPEAL PROVISIONS

In accordance with Section 139 of the *Environmental Protection Act*, you may by written notice served upon me and the Ontario Land Tribunal within 15 days after receipt of this notice, require a hearing by the Tribunal. Section 142 of the *Environmental Protection Act* provides that the notice requiring the hearing ("the Notice") shall state:

- *I.* The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- II. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- *I.* The name of the appellant;
- *II.* The address of the appellant;
- III. The environmental compliance approval number;
- IV. The date of the environmental compliance approval;
- V. The name of the Director, and;
- VI. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

Registrar*

Ontario Land Tribunal

655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

OLT.Registrar@ontario.ca

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act

Ministry of the Environment, Conservation and Parks
135 St. Clair Avenue West, 1st Floor
Toronto, Ontario
M4V 1P5

* Further information on the Ontario Land Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349 or 1 (866) 448-2248, or www.olt.gov.on.ca
The above noted activity is approved under s.20.3 of Part II.1 of the *Environmental Protection Act*.

Dated at Toronto this 3rd day of December, 2021

Mohsen Keyvani

Alst 1

Director

appointed for the purposes of Part II.1 of the Environmental Protection $\mbox{\sc Act}$

c: Maria Valcarcel, Wood PLC Steve Burnett

The following schedules are a part of this environmental compliance approval:

SCHEDULE "1"

- 1. The updated Application for a Certificate of Approval for a waste disposal site dated April 12, 2000.
- 2. Letters from Sutcliffe Rody Quesnel Inc. to the MOE dated February 4, 2000, March 14, 2000, and April 12, 2000.
- 3. Site Plan Approved Area (Sheet A) and Site Plan Final Contours (Sheet B) prepared by Sutcliffe Rody Quesnel Inc., and dated February 2000.
- 4. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated November 19, 2004, signed by Dan Harvey, Director of Public Works, City of Temiskaming Shores, including all supporting documentation.
- 5. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated November 14, 2005 and signed by Dave Treen, Manager of Environmental Services, City of Temiskaming Shores, including the attached drawing entitled "New Liskeard Landfill Site Figure 1" showing the attenuation zone.
- 6. Application for a Certificate of Approval, Waste Disposal Site, dated November 1, 2011 and signed by Christopher Oslund, City Manager, City of Temiskaming Shores,
- 7. Letter dated March 15, 2012, from Jeff Roy, Program Manager, Canadian Solar Solutions Inc., to Lynda Mulcahy, P.Eng, MOE, RE: New Liskeard Landfill Contaminant Attenuation Zone, with attached letter report dated March 7, 2012, by Anthony Story, Story Environmental Inc.
- 8. e-mail from David Treen, City of Temiskaming Shores, to Mark Feenstra, Canadian Solar Solutions Inc., dated October 2, 2012, 10:02am, copied to Lynda Mulcahy, MOE, RE: New Liskeard LF waste amendment
- 9. Letter dated November 19, 2013, from G. Douglas Walsh, CET, Director of Public Works, The City of Temiskaming Shores, to Dickson Odame-Osafo, MOE Waste Unit, Senior Waste Engineer, Re: Application for Approval of WDS Closure Plan-ECA A571, Notice No. 3 for the New Liskeard Landfill Site.
- 10. Environmental Compliance Approval Application dated January 26, 2021 and signed by Steve Burnett, including the attached supporting documentation.
- 11. Design & Operations Plan and Closure Plan, Wood Environment & Infrastructures Solutions, February 12, 2020.
- 12. Surface and Groundwater Monitoring Program, Wood Environment & Infrastructure Solutions, November 24, 2020.
- 13. Appendix A: ECA Pre-submission Review Email, dated December 1, 2020, enclosed with Environmental Compliance Approval Application dated January 26, 2021.
- 14. Appendix B: Site Plan and Scaled Area Location Plan, Figures 1 to 6, Wood Environment & Infrastructure Solutions, September 2020.
- 15. Appendix C: Location Plans, Figures 1 to 3, Wood Environment & Infrastructure Solutions, September 2020.
- 16. Appendix D: Proof of Compliance with EAA Notice of Approval, dated April 01, 2019, enclosed with Environmental Compliance Approval Application dated January 26, 2021.
- 17. Appendix E: Municipal Zoning Letter, dated January 20, 2021.

- 18. Appendix F: Zoning Map (Figure 5.21), February 2018, enclosed with Environmental Compliance Approval Application dated January 26, 2021.
- 19. Appendix I: New Waste Management Capacity Environmental Study Report, Technical Support Document: Hydrogeology, Amec Foster Wheeler Environment & Infrastructure, August 2016, provided with Environmental Compliance Approval Application dated January 26, 2021.
- 20. Appendix J. ECA: Open House Summary of First Nations Letters. AMEC Environment & Infrastructure, February 2013.enclosed with Environmental Compliance Approval Application dated January 26, 2021.
- 21. Email from Brain Grant to Abdul Quyum, P. Eng., dated November 26, 2021, including enclosed updated Figure 6 Proposed Top of Cap Contours for Landfill Expansion.

Ministère de l'Environnement PROVISIO. ... CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL/PROCESSING SITE NO. AS71505 Page 1 of 9

Under the Environmental Protection Act and the regulations and subject to the limitations thereof, this Provisional Certificate of Approval is issued to:

The Corporation of the Town of New Liskeard P.O. Box 730, 90 Whitewood Avenue New Liskeard, Ontario POJ 1PO

for the use and operation of a 2.02 hectare landfilling area within a 32 hectare total site area.

all in accordance with the following plans and specifications:

as listed in Schedule "A"

Located:

West 1/2 of Lot 5, Concession 2

Corporation of the Town of New Liskeard

which includes the use of the site only for the Processing and Disposal of the following categories of waste (Note: Use of the site or additional categories of wastes requires a new application and amendments to the Provisional Certificate of Approval) domestic, commercial and non-hazardous solid industrial waste

and subject to the following conditions:

For the purpose of this Provisional Certificate of Approval:

- (a) "Certificate" means this Provisional Certificate of Approval including its schedules, if any, issued in accordance with the Environmental Protection Act;
- (b) "Director" means a Director of the Environmental Assessment and Approvals Branch of the Ministry;
- (c) "Regoinal Director" means the Director, Thunder Bay Regional Office of the Northern Region of the Ministry;
- (d) "District Manager" means the District Manager of the Timmins District Office of the Northern Region of the Ministry;
- (d) "Ministry" means the Ontario Ministry of the Environment, unless specific reference is made to another Ministry;
- (e) "Town" means the Corporation of the Town of New Liskeard;
- (g) "Provincial Officer" means a person who is designated by the Ministry of Environment as a Provincial Officer for the purposes of the Environmental Protection Act, the Ontario Water Resources Act, the Pesticides Act, and their respective regulations;

Ministère de I'Environnement PROVISIO1..... CERTIFICATE OF APPROVAL
FOR A WASTE DISPOSAL/PROCESSING SITE
NO. A571505
Page 2 of 9

- (h) "Site" means the facility described in the application for this Provisional Certificate of Approval and in the supporting documentation referred to herein;
- (i) "ODWO" means the Ontario Drinking Water Objectives; and
- (j) "RUP" means the Ministry's Reasonable Use Policy (Policy 15-08).

GENERAL

- (1) Except as otherwise provided by these conditions, the Site shall be designed, developed, used, maintained and operated, and all facilities, equipment and fixtures shall be built and installed, in accordance with the Application for a Certificate Approval for a Waste Disposal Site dated April 12, 2000 and supporting documentation, and plans and specifications listed in Schedule "A".
- (2) The requirements specified in this Provisional Certificate of Approval are the requirements under the Environmental Protection Act, R.S.O. 1990. The issuance of this Provisional Certificate of Approval in no way abrogates the Town's legal obligations to take all reasonable steps to avoid violating other applicable provisions of this legislation and other legislation and regulations.
- (3) The requirements of this Provisional Certificate of Approval are severable. If any requirement of this Provisional Certificate of Approval, or the application of any requirement of this Provisional Certificate of Approval to any circumstance, is held invalid, the application of such requirement to other circumstances and the remainder of this Provisional Certificate of Approval shall not be affected in any way.
- (4) The Town shall ensure compliance with all the terms and conditions of this Provisional Certificate of Approval. Any non-compliance constitutes a violation of the <u>Environmental Protection Act</u>, R.S.O. 1990 and is grounds for enforcement.
- (5) (a) The Town shall, forthwith upon request of the Director, District Manager, or Provincial Officer (as defined in the Act), furnish any information requested by such persons with respect to compliance with this Provisional Certificate of Approval, including but not limited to, any records required to be kept under this Provisional Certificate of Approval; and
 - (b) In the event the Town provides the Ministry with information, records, documentation or notification in accordance with this Provisional Certificate of Approval (for the purposes of this condition referred to as "Information"),
 - (i) the receipt of Information by the Ministry;
 - (ii) the acceptance by the Ministry of the Information's completeness or accuracy, or
 - (iii) the failure of the Ministry to prosecute the Town, or to require the Town to take any action, under this Provisional Certificate of Approval or any statute or regulation in relation to the Information

Ministère de I'Environnement PROVISION...L CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL/PROCESSING SITE NO. A571505 Page 3 of 9

shall not be construed as an approval, excuse or justification by the Ministry of any act or omission of the Town relating to the Information, amounting to non-compliance with this Provisional Certificate of Approval or any statute or regulation.

- (6) The Town shall allow Ministry personnel, or a Ministry authorized representative(s), upon presentation of credentials, to:
 - (a) carry out any and all inspections authorized by Section 156, 157 or 158 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Section 15, 16 or 17 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, or Section 19 or 20 of the <u>Pesticides Act</u>, R.S.O. 1990, as amended from time to time, of any place to which this Provisional Certificate of Approval relates; and,

without restricting the generality of the foregoing, to:

- (b) (i) enter upon the premises where the records required by the conditions of this Provisional Certificate of Approval are kept;
 - (ii) have access to and copy, at reasonable times, any records required by the conditions of this Provisional Certificate of Approval;
 - (iii) inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations required by the conditions of this Provisional Certificate of Approval; and
 - (iv) sample and monitor at reasonable times for the purposes of assuring compliance with the conditions of this Provisional Certificate of Approval.
- (7) (a) Where there is a conflict between a provision of any document referred to in Schedule "A", and the conditions of this Provisional Certificate of Approval, the conditions in this Provisional Certificate of Approval shall take precedence; and
 - (b) Where there is a conflict between documents listed in Schedule "A", the document bearing the most recent date shall prevail.
- (8) The Town shall ensure that all communications/correspondence made pursuant to this Provisional Certificate of Approval includes reference to the Provisional Certificate of Approval No. A 571505.
- (9) The Town shall notify the Director in writing of any of the following changes within thirty (30) days of the change occurring:
 - (a) change of Town or Owner of the Site or both;
 - (b) change of address or address of the new Town;
 - change of partners where the Operator or Owner is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, 1991 shall be included in the notification to the Director;

Ministère de l'Environnement PROVISION L. CERTIFICATE OF APPROVAL
FOR A WASTE DISPOSAL/PROCESSING SITE
NO. A571505
Page 4 of 9

- (d) any change of name of the corporation where the Operator or Owner is or at any time becomes a corporation, and a copy of the most current "Initial Notice or Notice of Change" (form 1 or 2 of O. Reg. 182, Chapter C-39, R.R.O. 1990 as amended from time to time), filed under the Corporations Information Act shall be included in the notification to the Director; and
- change in directors or officers of the corporation where the Operator or Owner is or at any time becomes a corporation, and a copy of the most current "Initial Notice or Notice of Change" as referred to in 9(d), supra.
- (10) In the event of any change in ownership of the Site, the Town shall notify, in writing, the succeeding owner of the existence of this Provisional Certificate of Approval, and a copy of such notice shall be forwarded to the Director.
- (11) Any information relating to this Provisional Certificate of Approval and contained in Ministry files may be made available to the public in accordance with the provisions of the <u>Freedom of Information and Protection of Privacy Act</u>, R.S.O. 1990, C. F-31.
- (12) All records and monitoring data required by the conditions of this Provisional Certificate of Approval must be kept on the Town's premises for a minimum period of two (2) years from the date of their creation.

OPERATIONAL

- (13) This Certificate revokes all previously issued Certificates for this Site.
- The Town shall ensure that the Site is operated by trained personnel in a safe and secure manner, and that the wastes are properly handled, so as not to pose any threat to the general public, Site personnel or the environment, and that access to the Site is limited to the Town and his staff.
 - Within ninety (90) days of the issuance of this Certificate, the Town shall mark the Site boundaries, as identified in the site plan included with the application and supporting documents, with permanent markers, that shall be erected so as to be visible throughout the year for the life of the Site.
 - (16) The Town shall ensure that no burning of waste shall take place at the Site.
 - (17) All waste received at the Site under the authority of this Certificate shall be deposited within a 2.02 hectare landfilling area shown on Sheets A and B, provided with the Application for the Certificate.
 - (18) The Site shall be closed when final contours shown on Sheet B and reduced by 0.9m for final cover, have been reached.
- Liquid industrial waste or hazardous waste as defined in Ont. Reg. 347 shall not be received or deposited at the Site.

Ministère de I'Environnement PROVISION. _ CERTIFICATE OF APPROVAL
FOR A WASTE DISPOSAL/PROCESSING SITE
NO. A571505

Page 5 of 9

The Town shall operate a litter maintenance program, which will include the collection and proper disposal of any wind blown or vector borne litter, from off-site deposition locations and from those areas of the Site that are not being actively landfilled.

- (21) (a) The Town shall:
 - i) Within 60 days of the date of this Certificate, submit to the Director, for the Director's signature, two copies of a completed Certificate of Prohibition containing a registrable description of the Property, in accordance with Forms 4 & 5 of O. Reg. 14/92; and
 - ii) Within 10 calendar days of receiving the Certificates of Prohibition signed by the Director, register the Certificate of Prohibition in the appropriate Land Registry Office on title to the Property and submit to the Director the duplicate registered copy immediately following registration; and
 - (b) Pursuant to Section 197 of the <u>Environmental Protection Act</u>, neither the Owner nor any person having an interest in the Property shall deal with the Property in any way without first giving a copy of this Certificate to each person acquiring an interest in the Property as a result of the dealing.
- (22) Within 18 (eighteen) months of the issuance of this Certificate, the Town shall submit for the Director's approval a hydrogeological report. This report shall include but not limited to the following issues:

REPORT

- (a) groundwater regime evaluation (hydraulic gradients, direction of groundwater flow, groundwater flow velocity);
- (b) the extent of the existing groundwater contaminant plume;
- (c) monitoring requirements, and
- (d) contaminant attenuation zone requirements.
- (23) Within two years of the issuance of this Certificate, the Town shall submit for the Director's approval an Operation and Maintenance Plan. This Plan shall include but not be limited to the following issues:
 - (a) the Site capacity approved in accordance with the Ministry's protocol;

بهجراكا

- (b) total in situ waste volume;
- (c) the remaining life of the Site;
- (d) new final contours reflecting the capacity defined in (a);
- (e) the final cover installation in the Fill Beyond Approved Limit (FBAL) areas and its schedule;
- (f) Site operations including daily and final cover;
- (g) the groundwater monitoring program, and
- (h) the closure plan.
- (24) The Site shall be operated, maintained and monitored in accordance with the approved Operation & Maintenance Plan required by Condition 23.

Ministère de I'Environnement PROVISION CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL/PROCESSING SITE NO. A571505 Page 6 of 9

(25) Two years before the Site is expected to stop receiving waste, the Town shall submit for the Director's approval an updated Closure Plan. This Plan shall include, but not be limited to the following issues:

(a) the choice of final cover material;

(b) changes to the final contour plan that may be previously identified in the annual reports, or recommended in the Closure Plan;

(c) the sequence and schedule for final cover installation;

(d) post-closure and end-use plans which reflect an after-use of conservation and passive recreation;

(e) schedules for Site inspections;

(f) plans and schedules for post-closure groundwater and surface water monitoring programs; and

(g) plans and schedules for the routine monitoring and maintenance of the final cover.

(26) The Town shall prepare and submit an annual report to the Regional Director by June 1st of the year following the calendar year covered by the report which shall include as a minimum, the following:

(a) a summary of total annual quantities of waste received at the Site;

(b) a drawing(s) of the Site indicating all groundwater monitoring locations;

(c) tables outlining monitor locations, analytical parameters sampled, and frequency of sampling;

(d) an analysis and interpretation of groundwater monitoring data; a review of the adequacy of the monitoring program; conclusions of the monitoring data; and recommendations for any changes in monitoring program that may be necessary;

(e) an assessment of groundwater quality in relation to the RUP and ODWO;

(f) an assessment of the efficiency of the Contaminant Attenuation Zone established;

an update of changes in operations, equipment, or procedures made or produced at the Site, and any operating difficulties encountered;

(h) drawings showing areas of fill, buffer areas, current Site contours, maximum final Site contours, any recommended changes of the final contours of the Site, percentage of available space utilized, and an estimate of the remaining disposal capacity and Site life;

(i) a statement as to compliance with all Conditions and with the inspection and reporting requirements of the Conditions;

(j) summary of any complaints made regarding Site operation and the Town's response and action taken; and

(k) recommendations respecting any proposed changes in the operation of the Site.

COMPLAINT PROCEDURES

(27) If at any time, the Town receives complaints regarding the operation of the Site, the Town shall respond to these complaints according to the following procedures:

(a) The Town shall record each complaint on a formal complaint form entered in a sequentially numbered log book. The information recorded shall include the nature of the complaint, the name, address and the telephone number of the complainant and the time and date of the complaint;

Ministère de I'Environnement PROVISION CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL/PROCESSING SITE NO. AS71505 Page 7 of 9

- (b) The Town, upon notification of the complaint shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and
- (c) The Town shall retain on-site a report written within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the re-occurrence of similar incidents.

SCHEDULE "A"

This Schedule "A" forms part of this Provisional Certificate of Approval:

- 1. The updated Application for a Certificate of Approval for a Waste Disposal Site dated April 12, 2000.
- 2. Letters from Sutcliffe Rody Quesnel Inc. to the MOE dated February 4, 2000, March 14, 2000 and April 12, 2000.
- 3. Site Plan Approved Area (Sheet A) and Site Plan Final Contours (Sheet B) prepared by Sutcliffe Rody Quesnel Inc. and dated February 2000.

The reasons for the imposition of these Conditions are as follows:

- (1) The reason for Condition (1) is to ensure that the Site is operated in accordance with the application and supporting documentation submitted by the Town, and not in a manner which the Director has not been asked to consider.
- (2) The reason for Conditions (2), (3), (4), (5), (7), (8), (9), (10), (11) and (12) is to clarify the legal rights and responsibilities of the Town.
- (3) The reason for Condition (6) is to ensure that the appropriate Ministry staff have ready access to information and the operations of the Site which are approved under this Provisional Certificate of Approval. Condition (6) is supplementary to the powers of entry afforded a Provincial Officer pursuant to the Environmental Protection Act, the Ontario Water Resources Act, and the Pesticides Act, as amended.
- (4) The reason for Condition (13) is to ensure that this Certificate revokes all previously issued Certificates for this Site.
- (5) The reason for Conditions (14) and (20) is to ensure that the Site is operated in an environmentally safe manner.

Ministère de I'Environnement PROVISION. CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL/PROCESSING SITE NO. A571505 Page 8 of 9

- (6) The reason for Condition (15) is to allow a viable on-site inspection to realize the limits of the Site during any season.
- (7) The reason for Condition (16) is to reduce potential damage and environmental effects due to fire.
- (8) The reason for Conditions (17), (18), (19) and (24) is to ensure that this Site is operated in accordance with the application and submitted documentation listed in Schedule A.
- (9) The reason for Condition (21) requiring registration of the Provisional Certificate of Approval is that Section 46 of the Environmental Protection Act, R.S.O. 1990, prohibits any use being made of the lands after they cease to be used for waste disposal purposes within a period of twenty-five years from the year in which such land ceased to be used for waste disposal, unless the approval of the Minister for the proposed use has been given. The purpose of this prohibition is to protect future users of the Site and the environment from any hazards which might occur as a result of waste being disposed of on the Site. This prohibition and potential hazard should be drawn to the attention of future owners and users of the Site by the Provisional Certificate of Approval being registered on title.
- (10) Condition (22) is to ensure that the Town shall conduct and submit for the Director's approval a hydrogeological report.
- (11) The reason for Condition (23) is to ensure that the Town shall develop and submit for the Director's approval an Operation and Maintenance Plan.
- (12) The reason for Condition (25) is to ensure that two years before the Site is closed, the Town shall submit for the Director's approval an updated Closure Plan.
- (13) The reason for Condition (26) is to ensure that the Town shall prepare and submit an annual report to the Regional Director by June 1st of the year following the calendar year covered by the report.
- (14) The reason for Condition (27) is to ensure that the complaints are responded to in a systematic manner to protect the health and safety of the public and the environment.

You may by written notice served upon me and the Environmental Appeal Board within 15 days after receipt of this Notice, require a hearing by the Board. Section 142 of the Environmental Protection Act, R.S.O. 1990 c. E-19, as amended, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Ministère de I'Environnement PROVISION. CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL/PROCESSING SITE NO. A571505 Page 9 of 9

In addition to these legal requirements, the Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary,*
Environmental Appeal Board,
2300 Yonge St., 12th Floor,
P.O. Box 2382
Toronto, Ontario.

AND

The Director,
Section 39, Environmental Protection Act,
Ministry of the Environment,
250 Davisville Avenue, 3rd Floor,
Toronto, Ontario.
M4S 1H2

*Further information on the Environmental Appeal Board's requirements for an appeal can be obtained directly from the Board by: Tel: (416) 314-4600, Fax: (416) 314-4506 or e-mail: www.ert.gov.on.ca.

DATED AT TORONTO this 9th day of May, 2000.

A. Dominski, P. Eng.,

Director, Section 39,

Environmental Protection Act

EZ/nb c.:

3 M4P 1E4

District Manager, Timmins District Office

Location: W.L. LANDFILL

C of A #: A571505 Issue Date: APR 17/07

Revokes/Repeals: NOTICE

Ministry of the **Environment l'Environnement**

Ministère de

AMENDMENT TO PROVISIONAL CERTIFICATE OF APPROVAL

WASTE DISPOSAL SITE NUMBER A571505

Notice No. 2

Issue Date: April 17, 2007

MR 26 / 167

The Corporation of the City of Temiskaming Shores

PO Box 2050

Haileybury, Ontario

POJ 1KO

To Dave Treen.

April 30, 2007.

ş

Site Location: New Liskeard Landfill

West 1/2 of Lot 5, Concession 2, Dymond Twp Temiskaming Shores City, District of Temiskaming

You are hereby notified that I have amended Provisional Certificate of Approval No. A571505 issued May 9, 2000 and amended April 27, 2005 for a waste disposal site (landfill), as follows:

- This Certificate is hereby amended to recognize the addition of a contaminant attenuation zone. I.
- The following Item is hereby added to Schedule "A": II.
- Application for a Provisional Certificate of Approval for a Waste Disposal Site dated November 14. 4. 2005 and signed by Dave Treen, Manager of Environmental Services, City of Temiskaming Shores, including the attached drawing entitled "New Liskeard Landfill Site Figure 1" showing the attenuation zone.

The reason for this amendment to the Certificate of Approval is as follows:

To recognize the addition of the contaminant attenuation zone as required by Provincial Officer's Order 1. No. 7026-6GQLJY.

This Notice shall constitute part of the approval issued under Provisional Certificate of Approval No. A571505 dated May 9, 2000, as amended.

In accordance with Section 139 of the Environmental Protection Act, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act, provides that the Notice requiring the hearing shall state:

- The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and; 1.
- The grounds on which you intend to rely at the hearing in relation to each portion appealed. 2.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
2300 Yonge St., Suite 1700
P.O. Box 2382
Toronto, Ontario
M4P 1E4

AND

The Director
Section 39, Environmental Protection Act
Ministry of the Environment
2 St. Clair Avenue West, Floor 12A
Toronto, Ontario
M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 17th day of April, 2007

Tesfaye Gebrezghi, P.Eng.

Director

Section 39, Environmental Protection Act

AN/

c: District Manager, MOE North Bay
H. James Hawken, Sutcliffe Rody Quesnel Inc.

RECEIVED

NOV - 2 2012

Ministry of the Environment Ministère de l'Environnement

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A571505 Notice No. 3

Issue Date: October 24, 2012

The Corporation of the City of Temiskaming Shores

325 Farr Dr

Temiskaming Shores, Ontario

P0J 1K0

Site Location: New Liskeard Landfill

Lot West 1/2 of Lot 5, Concession 2

Temiskaming Shores City, District of Timiskaming

You are hereby notified that I have amended Approval No. A571505 issued on May 9, 2000 and amended on April 27, 2005 and April 17, 2007 for a waste disposal site (landfill), as follows:

This Notice of amendment authorizes installation of solar panels on the contaminant attenuation zone for the Site, and requires updated information for the Site.

The following definitions are added:

"Approval" means this Environmental Compliance Approval and any Schedules to it, including the application and supporting documentation listed in Schedule "A".

"CAZ" means the contaminant attenuation zone for the Site;

The following conditions are added to the Approval:

Closure Plan

- (28) Within ninety (90) days of the date of issue of this Approval, the Owner shall submit a closure plan for the Site to the Director and copied to the District Manger, including:
 - i. an as-constructed drawing of the Site, showing waste final contours, final slopes and final cap details:
 - ii. total volume of waste placed at the Site;
 - iii. information on post-closure Site layout and use.

Certificate of Requirement - Contaminant Attenuation Zone

CC: Dave Treen (Nova 112) for follow-ups

Page 1 - NUMBER A571505

(29) The Owner shall:

- (a) Within sixty (60) days of the date of the issuance of this Approval, submit to the Director for review, two copies of a completed Certificate of Requirement with a registerable description of the contaminant attenuation zone; and
- (b) Within 10 calendar days of receiving the Certificate of Requirement authorized by the Director, register the Certificate of Requirement in the appropriate Land Registry Office on title to the CAZ and submit to the Director the duplicate registered copy immediately following registration.

Solar Panels in CAZ

(30) The Owner shall ensure that:

- i. the proposed solar panel installations within the CAZ do not interfere or affect ongoing Site groundwater and surfacewater monitoring programs, or the functioning of the CAZ;
- ii. access is maintained to all existing Site CAZ monitoring wells;
- iii. the proposed solar panels do not prevent or impede any future monitoring well installations that may be required within the CAZ.

The following items are added to Schedule "A"

- 5. Application for a Certificate of Approval, Waste Disposal Site, dated November 1, 2011 and signed by Christopher Oslund, City Manager, City of Temiskaming Shores,
- Letter dated March 15, 2012, from Jeff Roy, Program Manager, Canadian Solar Solutions Inc., to Lynda Mulcahy, P.Eng, MOE, RE: New Liskeard Landfill Contaminant Attenuation Zone, with attached letter report dated March 7, 2012, by Anthony Story, Story Environmental Inc.
- 7. e-mail from David Treen, City of Temiskaming Shores, to Mark Feenstra, Canadian Solar Solutions Inc., dated October 2, 2012, 10:02am, copied to Lynda Mulcahy, MOE, RE: New Liskeard LF waste amendment

The reasons for this amendment to the Approval are as follows:

Condition 28 is included to ensure the Director has information on the post-closure Site condition.

Condition 29 is included to ensure that any persons with an interest in the lands used for contaminant attenuation are aware of this use.

Condition 30 is included to ensure that the proposed installations do not impact ongoing environmental protection programs at the Site

This Notice shall constitute part of the approval issued under Approval No. A571505 dated May 9, 2000

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant,
- 4. The address of the appellant;
- 5. The environmental compliance approval number,
- 6. The date of the environmental compliance approval,
- The name of the Director, and;
- 82. The municipality or municipalities within which the project is to be engaged in

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 24th day of October, 2012

Tesfaye Gebrezghi, P.Eng.

Director

appointed for the purposes of Part II.1 of the Environmental Protection Act

LM/

c: District Manager, MOE North Bay Jeff Roy, Canadian Solar

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A571505

Notice No. 4

Issue Date: December 11, 2013

The Corporation of the City of Temiskaming Shores

Post Office Box, No. 2050

Haileybury, Ontario

P0J 1K0

Site Location: New Liskeard Landfill

Lot West 1/2 of Lot 5, Concession 2

Temiskaming Shores City, District of Timiskaming

You are hereby notified that I have amended Approval No. A571505 issued on May 09, 2000 and amended as subsequently for the use and operation of a Waste Disposal Site (Landfill) of a 2.02 hectare landfilling area within a total area of 32 hectare, as follows:

Pursuant to the request in a letter dated November 19, 2013, for withdrawal of the submitted closure plan as required by Condition 28 in Notice No.3 dated October 24, 2012, Condition 28 is hereby revoked and replaced by this new condition as follows:

You are hereby notified that this Approval is issued to you subject to the Condition 28 that is hereby revoked and replaced as follows:

- 28. (1) The Owner/operator shall install a minimum of 300 mm thick Interim Cover soil over the waste, pending approval for the proposed vertical expansion of the Site. The Interim Cover soil shall be a low permeability cover soil that shall be placed and vegetated as required.
 - (2) In the event the Owner does not receive EAA and EPA approval for the proposed vertical expansion of the Site or the Owner withdrawals from the vertical expansion option/process, then within ninety (90) of that decision the Owner shall submit a closure plan for the Site to the Director and copied to the District Manger, including:
 - i. an as-constructed drawing of the *Site*, showing waste final contours, final slopes and final cap details;
 - ii. total volume of waste placed at the Site;
 - iii. information on post-closure Site layout and use.

SCHEDULE "A":

The following documentation is hereby added to Schedule "A" and forms part of the ECA No. A571505:

8. Letter dated November 19, 2013, from G. Douglas Walsh, CET, Director of Public Works, The City of Temiskaming Shores, to Dickson Odame-Osafo, MOE Waste Unit, Senior Engineer. Re: Application for Approval of WDS Closure Plan-ECA A571505, Notice No. 3 for the New Liskeard Landfill Site.

The reason for this amendment to the Approval is as follows:

1. The reason for this amendment to the Condition 28 is to provide for the potential vertical expansion of the Site as proposed, and ensure that the inactive Landfill is controlled and maintained in such a manner to address potential nuisances, achieve public interest and avoid hazards to health and safety of any person.

This Notice shall constitute part of the approval issued under Approval No. A571505 dated May 09, 2000

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant,
- 4. The address of the appellant;
- 5. The environmental compliance approval number,
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-3717 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 11th day of December, 2013

THIS NOTICE WAS MAILED

ON Doc 12, 2013

Sc (Signed)

Jak D. Gille

Dale Gable, P.Eng.

Director

appointed for the purposes of Part II.1 of the Environmental Protection Act

AC/

c: Area Manager, MOE North Bay

c: District Manager, MOE Sudbury

David B. Treen CET, The Corporation of the City of Temiskaming Shores

April 11, 2023

Greg Ault, Timmins District Manager, Northern Region Drinking Water and Environmental Compliance Division Ministry of the Environment, Conservation and Parks 191 Booth Road, Unit 16, North Bay, ON P1A 4K3

Dear Mr. Ault:

Subject: Proposed Changes to the Monitoring Program

2022 Annual Monitoring Report New Liskeard Waste Disposal Site

New Liskeard, Ontario

In accordance with Condition H.6 of the Environmental Compliance Approval No. A-500-1115044194, issued on December 2, 2021, The Corporation of the City of Temiskaming Shores (the "Owner") is requesting a change to New Liskeard Waste Disposal Site (the "Site") monitoring program.

The Site currently remains under a state of inactivity, and while construction activities have commenced during the 2022 monitoring period, the Site is not anticipated to accept waste until late fall 2023. Given the current status of the Site, it is proposed that the monitoring program be conducted in accordance with the former Compliance Approval No. A571505 for the 2023 monitoring period. It is recommended that the monitoring program be updated as per the Site's new ECA, with implementation for the 2024 monitoring period, once the Site becomes active.

It is important to note that the existing monitoring program currently exceeds the requirements of the C of A, with the implementation of landfill gas monitoring in 2015, as well as a surface water monitoring program in 2017.

Yours sincerely,

Dominique Gagnon, B.Sc.

P Magnon

Environmental Scientist

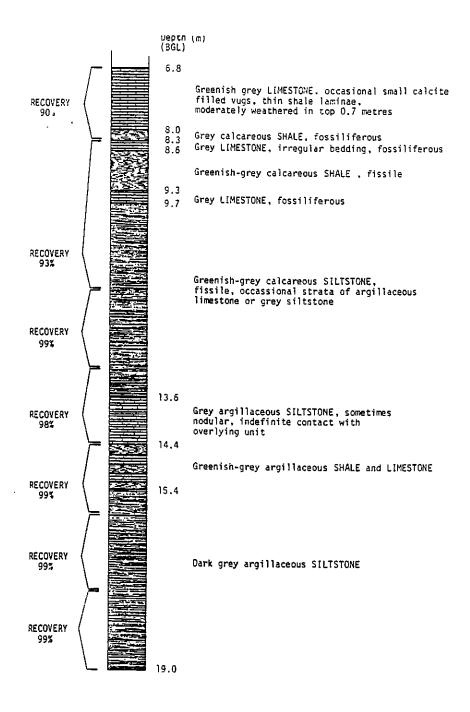
Larry Rodricks, P.Eng.

Senior Associate Engineer

Dirk Scheurlen, C. Tech

Senior Technical Consultant

WSP E&I Canada Limited 131 Fileding Road Lively, ON P3Y 1L7


T: +1 705-682-2632 F: +1 705-682-2260 wsp.com Appendix B

Borehole Logs

OW I

		New Liskeard Landfill				FILE NO. 147	-802
İ		<u>Hydrogeologic Impact Study</u>	, Pha	se II	·-		
٩.	GEO	DLOGIST/ENGINEERWDB/BWB	DA	TE COMPLE	TEDJun	ie 22-23, 1980	
DE	PTH	DESCRIPTION		SAMPLE	WELL		
пепе	s feet		n n	o, type "N			
ŀ		1					
						_	_
	ļ				∇A	B	C
	F	TILL, glacial					
	i -	silty sand and gravel medium brown					<u>7</u>
j-		med full by OWI	::				
Γ	<u> </u>				, ,		
	L .	4.5					
_	-	LIMESTONE BEDROCK					
-5	-	grey, with interbeds of calcareous shale)	
_	- 20	 				, 6 36	
	_ 20	see next page for detailed bedrock				°A¯a	
ļ	-	core log					
	_		<u> </u>				
	.		茔				
<u> </u>	 30						
	-				ļ		
•	_						
,	-					•	
	40		3				
ŀ	-	•					
·	-						
<u>"</u> -15 [_		T				
	- -50						
	- 7						
<u>.</u>	-						
 	-						
<u> </u>			#				
	-60		3				>၅ီႏို
-20			7				,
, L	.	End Hole					
-	- [ł		Water le	evels taken Aug	just 28/80
	<u>-70 </u>						
GS	-GRAE	SAMPLE SS-SPLIT SPOON ST	·SHEL	BY TUBE	"N" BLOWS F	PER FOOT WATER	R LEVEL V

OW2

New Liskeard Landfill FILE NO. 147-802 <u>Hydrogeologic Impact Study, Phase II</u> <u>June 24/26, 1980</u> GEOLOGIST/ENGINEER WDB / BWB DATE COMPLETED____ DEPTH SAMPLE N" DESCRIPTION WELL DETAIL metres feet no. В C TILL, glacial silty sand and gravel medium brown 10 LIMESTONE BEDROCK grey, with interbeds of calcareous shale 20 End Hole Water levels taken August 28/80 "N" BLOWS PER FOOT WATER LEVEL

	New Liskeard Landfill			<u></u>	_ FILE NO.	147-802	
	Hydrogeologic Impact Study.				0.05 10	200	
GEO	LOGIST/ENGINEERWDB./ BWB	DATE	COMPLETE	D Jun	e 24-25, 19	380	
DEPTH seites feet	DESCRIPTION	no.	AMPLE type "N"	WELL	DETAIL		
				∇ A	_∇ B	_∇ C	;
-520 -10 - 30 -10 - 40					30 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0		
-15 - -50 - -60							
-20 <u> </u>				Water	levels tak	en August 28	/80

FILE NO. 147-802 New Liskeard Landfill Hydrogeologic Impact Study, Phase II June 24-<u>25,</u>1980 GEOLOGIST/ENGINEER WDB / BWB DATE COMPLETED. SAMPLE, type 'N" WELL DETAIL DESCRIPTION **EPTH** no. res feet ∇ TILL, glacial silty sand and gravel medium brown 10 5 LIMESTONE BEDROCK grey, with interbeds of calcareous shale 20 -10 End Hole -15 Water levels taken August 28/80 WATER LEVEL V "N" BLOWS PER FOOT ST- SHELBY TUBE SS-SPLIT SPOON GS-GRAB SAMPLE

Hew Liskeard Landfill Hydrageologic Impact Study Phase II GEOLOGISTY ENGINEER NDB / BWR DATE COMPLETED June 24/26, 1980 DEPTH DESCRIPTION SAMPLE NO. 1990 WELL DETAIL TILL, glacial Silty sand and gravel medium brown LIMESTONE BEDROCK Grey, with interbeds of calcareous shale End Hole	New Lead			
GEOLOGIST/ENGINEER MDB / BMB DATE COMPLETED June 24/26, 1980 DEFTH DESCRIPTION SAMPLE, WELL DETAIL TILL, glacial silty sand and gravel medium brown medium brown LIMESTONE BEDROCK grey, with interbeds of calcareous shale End Hole End Hole Fig. 70 Water levels taken August 28/80	New Liskeard Landfill		FIL	E NO. 147-802
DESCRIPTION SAMPLE No. Type TILL, glacial silty sand and gravel medium brown	GEOLOGIST/SNOWED-1485	udy. Phase II		
DESCRIPTION SAMPLE No. Type TILL, glacial silty sand and gravel medium brown	DEBTU A	DATE COMP	LETED June 24,	/26, 1980
IIIL, glacial silty sand and gravel medium brown LIMESTONE BEDROCK grey, with interbeds of calcareous shale End Hole Fig. 60 -50 -60 -20 Water levels taken August 28/80				
GS-GRAB SAMPLE SC 2005	silty sand and gravel medium brown LIMESTONE BEDROCK grey, with interbeds of calcareous shale End Hole Find Hole			
	GS - GRAB SAMPLE SS - SPLIT SPOON S	T- SHELBY TUDE "		WATER LEVEL V

OW 7

	GEO	Hydrogeologic Impact				June	24-26 1980	
055	TH	LOGIST/ENGINEER WDB / I	3MR	DATE	COMPLETE			<u> </u>
PITES	feet	DESCRIPTION		no.	AMPLE N"	WELL DE	IAIL	
						_∀ A	-, B	С
	_	TILL, glacial				<u> </u>	<u> </u>	
	-	silty sand and grave medium brown	el litte					
	-	med rain brown						
	- 101							
	_							
-5						, S 0 0		
	_	LIMESTONE BEDROCK				•		
ŀ	-20	grey, with interbed of calcareous shale	s 📰				, , , ,	
	_	or carcareous share					ို ရ ၂၀	
	_						0 4 8	
-10	30 							20 0 0 0 0 0 0
	-							
ŀ	-							
	- 40							**************************************
ļ	_	End Hole						
. [-							
15	-							
-	 50							
	_							
	-							
}	- [
	- 60							
20[-							
}	-							
ŀ	- 70					 Water le	vels taken	August 28/80

8 WO

		New Liskeard Landfill					J L	_ FILE	NO. 14	7-802	
		Hydrogeologic Impact Stu	ıdv. F	hase	II						
	GEOL	OGIST/ENGINEER WDB / BWB				PLETE	Ď	Jun	e 24,	1980	
DEP		DESCRIPTION			AMPL type			DETAIL			
metres	feet			no.	type	่ "ห"					
						:					
Ì								_ A		D	
								_ _∇ A		∇B	
_	- [TILL, glacial silty sand and gravel									
_		medium brown			:						
_	-										
-	-10	LIMESTONE BEDROCK						•			
- [<u> </u>	grey, with interbeds of calcareous shale			ļ						
-5	-	End Hole								a of a	
_	-]			,							
_ [-20 -										
-	-				!						
- -	-				:						
-	- -30)					
-10	-										
- F	-					!					
_ [_								•		
_	-40										
ŀ	.										
[
15	-										
-	-50										
- [_]		1		1				
_	.				1	:					
<u> </u>											
- [-	-60										
 20[_										
- -	.										
-	-70						Water	levels	taken	August	28/80
GS		B SAMPLE SS-SPLIT SPOON	ST	SHELF	Y TUB	F "	N" BLOWS	PER FO	T W	ATER LEV	EL V

1								<u> </u>				<u>'</u>
			New Liskeard Landfill						FILE N	o. <u>147</u>	-802	- 1
			Hydrogeologic Impact St	udy. F	hase	П						-
		GEOL	OGIST/ENGINEER WDB / BWB	!				<u>June</u>	24, 198	30		
me	DEP	TH feet	DESCRIPTION		S.	AMPLE,	'n"	WELL D	ETAIL			
 								_				
İ												
									$_{\nabla}$ A		_B	
		_	TILL, glacial						Y S		Y	
上	-	-	silty sand and gravel									
+	-	-	medium brown				l					i
\vdash	ļ	- -10	LIMESTONE BEDROCK grey, with interbeds						• •1- -			
L	-	- '~	of calcareous shale								, a ;	
	.5	-										
	5	-	End Hole									
上	}-	-20										
	ŀ	-										
- 100000	Ī	- -					İ					
₹ L	-	-										
	-10	- 30										
		_		1								
Γ	-	-								•		
上	f	- 40					ł					
-		-4 0										
\vdash	. }	-					1					
	-15 L	-]						
L	. [- —50										
Γ	-	_ 🍑										
卜	ŀ	-					į					
 		_										
\vdash		-60										
L	-20	-										
	-	-										
Γ		- -						ممخدارا	lavale	takan	August	28/80
t		- 70	· · · · · · · · · · · · · · · · · · ·									
/	GS	-GRA	B SAMPLE SS-SPLIT SPOON	ST•	SHELE	Y TUBE	" N	" BLOWS	PER FOO	T WA	TER LEVE	┖┖

BOREHOLE NO. OW-1R

PROJEC	T NAME: NEW LISKEARD LA	NDF	ILL S	ITE						PROJ	ECT NO.:	001148.00
CLIENT:	SUTCLIFFE RODY QUESNEL I	NC.							_	DATE	SEPTE	MBER 24-25, 2000
BOREHO	LE TYPE: HQ / HW CORING									GEOL	_ogist: _	BDT
GROUND	ELEVATION: 253.07 mASL ((I), 2	53.21	mASL (I	I), 2	53.16	mA	SL (lli)	REVII	EWER:	
		οį	<u> </u>			9	AMPL	E		CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY		MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 SHEAR STRENGTH	10 20 30	REMARKS
	FILL/DISTURBED SOIL;			711	SS1	47		17		SIKENGIA		WATER LEVEL DEPTH (mbgl)
1.2	MEDIUM BROWN FINE SANDY SILT, TRACE CLAY, TRACE GRAVEL, DAMP			11/7	 SS2	78		100			区	II - 0.78 III - 0.75
2	SAND TILL: MEDIUM GREY SILTY FINE SAND TILL, SOME GRAVEL, OCCASIONAL COBBLES,				RC	78		46				MONITOR NEST COMPLETED IN SEPARATE ADJACENT BOREHOLES
	DAMP											INTER-FRACTURE SPACING (m);
3,3	LIMESTONE; GREY TO GREENISH GREY, CLASTIC.			工事	RC RC			78 100	0 63			0.08
4	CLASTS ARE SUBROUNDED TO ROUNDED. MASSIVE TO THICK BEDDED. SEVERAL SHALEY PARTINGS, 3 CM THICK, SOFT TO MEDIUM SOFT, SLIGHT				RC			100	78			0.31
*******	TO FRESH WEATHERING, HIGHLY BROKEN WHITE CALCITE NODULES UP		1		RC			99				0.31
6	TO 3 CM ACROSS, ROUNDED TO ELONGATED. SHARP CONTACT WITH NEXT UNIT.											
					RC			97	83			0.37
				. .								
8 7.9	SILTSTONE—SHALE: GREY, WITH THIN LIMESTONE			<u>1</u>	RC			93	40			0.18
8.5	INTERBEDS. APHANITIC, LAMINATED, SOFT, VERY BROKEN.				RC			100	96			0.45
9.6	LIMESTONE; GREENISH GREY, MASSIVE, CLASTIC. CLASTS ARE SUBROUNDED TO	\vdash			1		ļ					
10.7	ROUNDED. MEDIUM SOFT TO SOFT. SLIGHT TO FRESH WEATHERING, BROKEN, WHITE CALCITE NODULES				RC			100	100			0.28
	UP TO 1 CM ACROSS. ROUNDED TO ELONGATED.											
12	SILTSTONE-SHALE: MEDIUM GREY, MICRO LAMINATED TO				RC			100	94			
	LAMINATED. SOFT, SLIGHT TO FRESH WEATHERING, BROKEN TO VERY BROKEN.						,					FRACTURE AT 12.68 m
•••••	LIMESTONE: GREENISH GREY, CLASTIC. CLASTS				RC		ļ	100				
14 14.2	UP TO 1 CM ACROSS, ROUNDED TO ELONGATED. THICK BEDDED TO											FRACTURE AT 13.71 m
	MASSIVE, MEDIUM SOFT. SLIGHT TO FRESH WEATHERING. BLOCKY TO MASSIVE FRACTURING. BLACK				RC			95	94			
	SILTSTONE PARTING.						ļ					
16	GREY, MASSIVE WITH THIN BEDS OF SHALE AND CLASTIC LIMESTONE.				RC			100	86			0.74
	MEDIUM SOFT TO SOFT, MASSIVE TO BLOCKY FRACTURING. FRESH WEATHERING, OCCASIONAL CALCITE							·				
	NODULE, OCCASIONAL SHALEY PARTINGS.		4		4117*****		<u> </u>	<u> </u>				
18			[建]		RC		<u> </u>	99	100			
			王宝宝									FRACTURE AT 18.80 m
******	DODELLOIS TECHNIATED AT AG 7		1				ļ					

JACOBE HOS LIMITED

	T NAME: NEW LISKEARD LA SUTCLIFFE RODY QUESNEL II		ILL SIIE						-				001148.00 MBER 21, 2000
	DLE TYPE: HQ / HW CORING								=		GIST		
	ELEVATION: 250.76 mASL								-		VER:		
		<u>v</u>				AMPL	E		CONE PENETRATION	4	WATER	R	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD	"N" VALUE	:	10 20		REMARKS
0		Ť	1 11		<u> </u>	뜻		(%)	SHEAR STRENGTH	\rightarrow	W _P	₩.	
1.2	SILT: GREY BROWN SILT, TRACE SAND TO FINE SANDY, TRACE TO SOME CLAY, TRACE GRAVEL, DAMP			S\$1 S\$2 S\$3	9 >50		45 43 0			Ž	7 II 7 I		WATER LEVEL DEPTH (mb I = 0.94 II = 0.49 INTER-FRACTURE SPACING
2	SILT TILL: GREY BROWN, TRACE FINE SAND, TRACE CLAY, DAMP			RC			97	100					
2.4	BEDROCK: LIMESTONE WITH SHALE AND SILTSTONE INTERBEDS. SEE BOREHOLE			RC			75	93					0.36
	OW-1R FOR DETAIL.		<u> </u>	RC			100	94					0.58
				RC			85	49					0.23
5.8	BOREHOLE TERMINATED AT 5.8 m			-									MONITOR NEST COMPLETI
				}									SEPARATE ADJACENT BOREHOLES
3						-	-	-					
								ļ					<u> </u>
								1					
2								 					
						ł							ļ
													
 2													
						ļ	ļ			•			
					ļ	ł							
•													
						ļ							
				.,		 							
 6	•												
					ļ								
						·····							
••••			I	1	1		• • • • • • • • • • • • • • • • • • •	1	1 1 1	: !	4 }	•	

ROJEC	T NAME: NEW LISKEARD LA	NDF	ILL SITE						_ PROJ	JECT NO	.: 001148.00
LIENT:	SUTCLIFFE RODY QUESNEL II	NC.		·			···	<u> </u>	DATE	E: SEPT	EMBER 20, 2000
OREHO	DLE TYPE: HQ / HW CORING								GEO	LOGIST:	BDT
ROUNI	D ELEVATION: 242.12 mASL								REVI	EWER: _	
		ST			,	SAMPL	.Ε		CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30	10 20 30	REMARKS
	SILT TILL: LIGHT BROWN SILT TILL, TRACE SAND			SS1	5		50		STRENGTH	W _P V	WATER LEVEL DEPTH (mbol)
	TO FINE SANDY, TRACE TO SOME CLAY BOULDER 0.9 m-1.3 m, MOIST			SS2	43		72			⊻ '	I - 0.89 II - 0.52 INTER-FRACTURE SPACING I
1.3	BEDROCK; LIMESTONE WITH SHALE AND	<u> </u>		RC			97	48			0.14
	SILTSTONE INTERBEDS. SEE BOREHOLE OW-1R FOR DETAIL.		<u> </u>	RC			100	79			0.16
				RC			100	87			0.34
					 	ļ	,,				
			<u></u>	RC			100	85			0.24
5.8	BOREHOLE TERMINATED AT 5.8 m					 	ł				LIGHTON NEXT COMPLETE
											MONITOR NEST COMPLETER SEPARATE ADJACENT BOREHOLES
-				*********							
-											
 				·•••							
-								<u> </u>			
				•••••							
_											
						ļ	ļ	ļ			
				•••••	ļ						
		;		**********		ļ	ļ				
en Hous I	AMETER .				<u>!</u>		1	1			<u> </u>

	-		DDY QUESNEL I								_	LOGIS		MBER 19, 2000
		LE TYPE: HQ			40.45 402.79						_			BUI
RO	מאט	ELEVATION:	248.00 mASL (1), 2	48.15 MASL (II)					_ REV	IEWEF	\ <u></u>	
				ST			s	AMPLE	<u>.</u>		CONE PENETRATION		TER	
DĘ	PŢH	STRATIGRA	PHIC DESCRIPTION	RATIG	MONITOR	 4	zį.	%!	% RE	ม	"N" VALUE		PENT % 20 30	REMARKS
(r	n)			STRATIGRAPHY	DETAILS	ТүрЕ	VALUE	% WATER	RECOVERY	RQD (%)	SHEAR			
<u> </u>		SILT :		 		S\$1	4		3 3		STRENGTH	W _P	WĻ	WATER LEVEL DEPTH 1 - 0.28
		SILT, TRACE TO SO TRACE TO SOME O	DING TO DARK GREY DME FINE SAND, NAY WET MOIST		7/////////////////////////////////////	SS2	6		43					II - 0.20 INTER-FRACTURE SPACING
		TRACE TO SOME C	JENI, HEI, MOISI			ss3	22		45					integrations of north
	2.0	-				SS4	>50		33					0.10
		BEDROCK: LIMESTONE WITH S	HALE AND			RC			99	32				0.10
		OW-1R FOR DETAIL	DS. SEE BOREHOLE L.											<u> </u>
						RC			100	100				0.20
\dashv														
					[]重测				100	55				0.12
	5.5				Å .	RC			100	55		\perp		-
		BOREHOLE TERMINA	ATED AT 5.5 m											MONITOR NEST COMPLETED SEPARATE ADJACENT
														BOREHOLES
							ļ <u>.</u>			ļ				
						*******				ļ				
							·····							
0							ļ		ļ <u>.</u>	<u> </u>				
									ļ	 				
									ļ		1			
}									ļ					
										ļ				
4						<u> </u>	ļ	-	<u> </u>	-	-			
								······	ļ		1			
								ļ	·	- 	1			
]			
											1			
									·	·				
B									1	1				
								ļ <u>.</u>			1			
										1				
				1	}	1		1	1	ļ	1 1 1 1			1

PROJECT NAME: NEW LISKEARD LANDFILL SITE	PROJECT NO.: 001148.00
CLIENT: SUTCLIFFE RODY QUESNEL INC.	DATE: SEPTEMBER 22-23, 2000
BOREHOLE TYPE: HQ / HW CORING	GEOLOGIST: BDT
GROUND ELEVATION: 272.83 mASL (I), 272.77 mASL (II)	REVIEWER:

	T NAME: NEW LISKEARD LA		ILL SITE									001148.00
	SUTCLIFFE RODY QUESNEL DIE TYPE: HQ / HW CORING	INC.	-		_		<u> </u>		-			MBER 26-27, 2000
	DELEVATION: 257.93 mASL						<u>.</u>		_ GEU! REVI		IST: _ R:	ועם
		1 ,,		1		SAMPL	.E		CONE	1		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	ROD	"N" VALUE 10 20 30	CON	ATER ITENT %	REMARKS
0		₹		SSI	10	罗	ERY 39	(%)	SHEAR STRENGTH	WP	WL	WATER LEVEL DEPTH (mbgl)
	GREY SILTY FINE SAND FILL WITH BOULDERS					•••••				<u>"</u>		I - 1.91 II - 1.16 INTER-FRACTURE SPACING (n
2	:			SS2 SS3	6 20		0			<u>_</u>		
				RC			0					DRILLER REPORTS LOSS OF CIRCULATION
				RC		· • • • • • • • • • • • • • • • • • • •	0					2.9-4.0 mbgi
4.3	SANDY SILT TILL;			SS4	>50		30					
5.0	GREY FINE SANDY SILT TILL, SOME GRAVEL TO FINE TO COARSE GRAVELY, OCCASIONAL COBBLE			RC			97	50				0.10
6	BEDROCK: LIMESTONE WITH SHALE AND SILTSTONE INTERBEDS. SEE BOREHOLE			<u> </u>								
	OW-1R FOR DEIAIL.			RC			100	8				0.05
8			1									
				RC			85	85				FRACTURE ZONE
9.5			***									8.1-8.5 mbgl
	BOREHOLE TERMINATED AT 9.5 m (I) AND 5.5 m (II)					,,.						MONITOR NEST COMPLETED SEPARATE ADJACENT BOREHOLES
			}									
4												
												į
6												
								†				
8		:										
						,,,, <u>,,,,</u>						
o Hae L	The Property		· · · · · · · · · · · · · · · · · · ·									

PROJECT NAME: NEW LISKEARD LANDFILL SITE

PROJECT NO.: 001148.02

CLIENT: TOWN OF NEW LISKEARD / SUTCLIFFE RODY QUESNEL INC.

DATE: OCTOBER 16, 2002

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

SUPERVISOR: WDN

GROUND ELEVATION: 253.7 mASL

		DELEVATION: 253.7 MASL								- KEVII	EWER: B	<u> </u>
			STI				AMPL	E	,	CONE PENETRATION		
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR	_	ż	%	% 22	_	"N" VALUE 10 20 30	CONTENT %	REMARKS
	(***)		RAP	DETAILS	ЭЧҮТ	VALUE	% WATER	RECOVERY	RQD	1 1	10 20 30	
0	<u>. </u>	TODGOU	₹	ПТ	<u> </u>	<u> </u>			(%)	SHEAR STRENGTH	W _P W _L	
	0.15	TOPSOIL CLAYEY SILT:	\bigcap	1	155	5	16.5	67			•	MONITORS ARE INSTALLED WITHIN SEPARATE
	 	MOTTLED YELLOWISH—ORANGE BEIGE AND LIGHT GREY CLAYEY SILT, APL—WTPL, FIRM TO HARD, OCCASIONAL MEDIUM TO FINE		計	255	24	14.3	42		50 FOR	+	BOREHOLES.
2	Į	GRAVEL.			3SS		14.5	36		76 mm		
	2.3	CLAYEY SILT TO SILTY CLAY:			45\$		_	75		100 FOR 102 mm		
		LIGHT GREY CALCAREOUS CLAYEY SILT TO SILTY CLAY, MOIST TO DRY, MDTPL, HARD, OCCASIONAL LIMESTONE BOULDERS,								75 FOR 102 mm		
4		WEATHERED.			555		-	25		100 FOR 102 mm		
ĺ					655		-	100		125 FOR 178 mm		
			<u> </u>		7 S \$		_	69		178 11117		
6		•								100 FOR		
					855		-	100		102 mm		
				<u> </u>								
8			} 		955		_ [100		100 FOR 76 mm		
				<u>+</u>								
İ	9.4				10\$\$		_	100		50 FOR 76 mm		
10	9.4	BOREHOLE TERMINATED AT 9.4 m IN HARD CLAYEY SILT TO SILTY CLAY.										
		CONTET SILT TO SILTT CLAT.		!								
ļ												
12										:		
<u></u>												
14												
]
ĺ			:									
16												
					}			;				
					ĺ							<u> </u>
18												
												! !
20	Has La	<u> </u>		ļ						;	İ	
₩.		Marian										

PROJECT NAME: NEW LISKEARD LANDFILL SITE

PROJECT NO.: 001148.02

CLIENT: TOWN OF NEW LISKEARD / SUTCLIFFE RODY QUESNEL INC.

DATE: OCTOBER 19, 2002

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

SUPERVISOR: WDN

GROUND ELEVATION: 238.0 mASL

REVIEWER: BDT

CONE PENETRATION SAMPLE WATER CONTENT % "N" VALUE REMARKS MONITOR DEPTH STRATIGRAPHIC DESCRIPTION % WATER RECOVERY 10 20 30 10 20 30 RQD DETAILS (m) VALUE SHEAR 8 STRENGTH W. и п ш We MONITORS ARE INSTALLED WITHIN SEPARATE TOPSOIL 0.15 SILTY FINE TO MEDIUM SAND TO FINE BOREHOLES. 155 30 5.3 25 LIGHT BROWN TO MOTTLED, SILTY FINE TO MEDIUM SAND TO FINE SANDY SILT, TRACE COBBLES, MOIST, DENSE TO VERY DENSE. 100 FOR 127 mm 255 5.9 61 SPOON SAMPLER 2.3 50 FOR 128 mm SILT TILL:
BROWNISH-GREY BECOMING DARK GREY
BELOW 3.0 m, SILT TILL, TRACE TO SOME
SAND, TRACE TO SOME CLAY, OCCASIONAL
FINE TO MEDIUM GRAVEL AND COBBLES
THROUGHOUT, APL TO DTPL, VERY STIFF
TO HARD BOUNCING 7.6 50 355 4SS 39 8.4 92 44 TO HARD. 555 44 9.6 100 100 655 29 9.7 6 75**5** 36 8.6 58 141 888 141 8.4 67 8 955 37 8.8 100 10 1055 36 8.9 96 12 86 1155 86 8.2 71 60 1255 60 8.4 100 105 1388 105 10.3 67 16 130 FOR 230 mm 1455 8.9 100 18 SILTY MEDIUM TO FINE SAND TO MEDIUM TO FINE SANDY SILT;
GREY SILTY MEDIUM TO FINE SAND TO MEDIUM TO FINE SANDY SILT, SATURATED, OCCASIONAL MEDIUM TO FINE GRAVEL, DENSE TO VERY DENSE. 177 15**S**S 177 8.2 72

PROJECT NAME: NEW LISKEARD LANDFILL SITE

CLIENT: TOWN OF NEW LISKEARD / SUTCLIFFE RODY QUESNEL INC.

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

GROUND ELEVATION: 238.0 mASL

PROJECT NO.: 001148.02

DATE: OCTOBER 19, 2002

SUPERVISOR: WDN

		83			5	AMPLI	E		CONE PENETRATION	WATER	
DEFTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 SHEAR STRENGTH	10 20 30	remarks
	SILTY MEDIUM TO FINE SAND TO MEDIUM TO FINE SANDY SILT CONTINUED			1655	43	10.7	100		43		
2	- BOULDER AT 22.9 - 23.1 m			1755		12.2	100		125 FOR 127; mm		
23.3	IGNEOUS BEDROCK: BLACK WITH GREY TO WHITE SPECKLING, PHANERITIC, GRANODIORITE TO GABBRO,			19RC 20SS 21RC			80 0 100	100 100 92	5 mm: 125 FOR 25 mm		
24.8	HARD, SLIGHTLY WEATHERED. BOREHOLE TERMINATED AT 24.8 m IN MAFIC IGNEOUS BEDROCK.				• ••••••						
i							t.				
					******		-				
					•••••		•				
					:						

										:	
										:	
										:	
a Has L					: : :						

PROJECT NAME: NEW LISKEARD LANDFILL SITE

PROJECT NO.: 001148.02

CLIENT: TOWN OF NEW LISKEARD / SUTCLIFFE RODY QUESNEL INC.

DATE: OCTOBER 20, 2002

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

SUPERVISOR: WDN

GROUND ELEVATION: 229.3 mASL

Jacon Has Lauren

			ı	1						-	<u> </u>	1
			STI				AMPL	Ε	<u>,</u>	CONE PENETRATION	WATER	
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 SHEAR STRENGTH	10 20 30 W _P W _L	REMARKS
۲	0.15	TOPSOIL	 	TON								MONITORS ARE INSTALLED
	1.5	SILTY CLAY TO CLAYEY SILT: MOTTLED GREY BROWN SILTY CLAY TO CLAYEY SILT, TRACE FINE SAND, APL TO WTPL. STIFF.			1\$\$	12	34.0	100		Ţ	,	WITHIN SEPARATE BOREHOLES.
2	3.0	FINE SAND, TRACE TO SOME SILT; BROWN FINE SAND, TRACE SILT, INTERBEDDED CLAYEY SILT, WET, DENSE.			2SS 3SS	11 39	21.3 15.4	75 88				
4	<u> </u>	SANDY SILT TO SILT TILL: BROWN BECOMES GREY BELOW 3.4 m SANDY SILT TILL, TRACE TO SOME CLAY,			455	29	7.8	75			<i>*</i>	
		TRACE MEDIUM TO FINE GRAVEL, OCCASIONAL COBBLES, APL TO DTPL, VERY STIFF TO HARD.			55\$	47	6.5	71		47	•	
6		- CLAYEY			6SS	21	8.4	79				
						•	•					
8					788		5.6	100		114 FOR 152 mm	1	
	8.8	SILTY FINE SAND:	-								\	
10		GREY SILTY FINE SAND, TRACE COARSE SAND, TRACE MEDIUM TO FINE GRAVEL FRAGMENTS, SATURATED, VERY DENSE.			8SS	81	13.7	100		81		
					955	132	14.2	100		132		1 ROCK CHIP WAS
12	11.9			=	1055		_	2		200 FOR 0 mm		RECOVERED FROM THE SPOON SAMPLER.
12		BOREHOLE TERMINATED ON ASSUMED MAFIC IGNEOUS BEDROCK.										
14			:									
16												
18												
20								<u></u>				<u>}</u>

PROJECT NAME: NEW LISKEARD LANDFILL SITE

PROJECT NO.: 001148.02

CLIENT: TOWN OF NEW LISKEARD / SUTCLIFFE RODY QUESNEL INC.

DATE: OCTOBER 21, 2002

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

SUPERVISOR: WDN

GROUND ELEVATION: 278.8 mASL

			ST	ļ		8	AMPL	Ε		CONE PENETRATION	WATER	
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR STRENGTH	10 20 30	REMARKS
	0.6	COVER SOIL FILL; BLACK TO MEDIUM BROWN SILT, SOME SAND, TRACE GRAVEL. STIFF.	_		155	10	13.8	42		•	•	
2	1.5	CLAYEY SILT FILL: BLACK TO BROWN TO GREY CLAYEY SILT, SOME SAND, WET, VERY STIFF.	_		2SS 3SS	28 54	20.7	20.8		54	•	
		REFUSE: HOUSEHOLD REFUSE CONSISTING OF PLASTIC BAGS, PAPER, WOOD DEBRIS, PIECES OF METAL AND GLASS AT DEPTH, MOIST TO DRY, STRONG ODOUR.										
3						:						
0												
2			:									
4					455	:	-	100		50 FOR 150 mm		
	15.2				555		-	100		50 FOR 100 mm		
<u></u>	16.1	SANDY CLAYEY SILT: LIGHT BROWN, DARK STAINED TO 15.4 m SANDY CLAYEY SILT, WET, ODOUROUS, HARD.			6SS	34	8.1	50			•	
		BOREHOLE TERMINATED AT 16.1 m DUE TO REFUSAL ON ASSUMED LIMESTONE BEDROCK.										
								:				
_		Otres			ĺ							

PROJECT NAME: NEW LISKEARD LANDFILL SITE

PROJECT NO.: 001148.02

CLIENT: TOWN OF NEW LISKEARD / SUTCLIFFE RODY QUESNEL INC.

DATE: OCTOBER 22, 2002

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

SUPERVISOR: WDN

GROUND ELEVATION: 258.7 mASL

	-			,						_		
			STI			. :	SAMPL	E		CONE PENETRATION	WATER	
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	%WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 SHEAR STRENGTH	10 20 30	REMARKS
		MEDIUM TO FINE SAND FILL: BROWN, ORANGY-BROWN AND BLACK MEDIUM TO FINE SAND, TRACE SILT, OCCASIONAL PIECES OF SLAG, MOIST TO DRY, LOOSE.		111111111111111111111111111111111111111	1SS 2SS	10	3.7 5.2	50 42		1		MONITORS ARE INSTALLS WITHIN SEPARATE BOREHOLES.
2	2.7	- TRACE FINE GRAVEL, SOME SILT, GLASS, SLIGHTLY ODOUROUS.			3\$\$ 4\$\$	17	10.8	42 79		99		
.	3.6	FINE SANDY SILT: LIGHT BROWN FINE SANDY SILT, MOIST, VERY DENSE, SOME ROCK FRAGMENTS. CLAYEY SILT TO SILT. SOME CLAY:		1	58\$		-	o		126 FOR 101 mm	•	- COBBLE AT 3.0 m
		MOTTLED GREENSH-GREY THEN MEDIUM BROWN CLAYEY SILT, GRADING TO SILT SOME CLAY WITH DEPTH, TRACE SAND, FINE GRAVEL, APL, FIRM TO STIFF.		=	6S/S 7S/S	7	23.3	83 71				
-	5.5 6.1	SANDY SILT TILL: BROWN SANDY SILT, TRACE TO SOME CLAY TILL, OCCASIONAL MEDIUM TO FINE GRAVEL,			8SS	22	12.6	83		\		
		APL, VERY STIFF. BOREHOLE TERMINATED AT 6.1 m IN SANDY SILT TILL.										
3											l	
							-		· · · ·			
<u>.</u>												
	į											
-												
_												
Ī			:									
	Hom L											

PAGE 1 OF 1

PROJECT NAME: NEW LISKEARD LANDFILL SITE PROJECT NO.: 001148.04

CLIENT: CITY OF TEMISKAMING SHORES

BOREHOLE TYPE: HOLLOW STEM AUGERS 203 mm (8") O.D.

SUPERVISOR: DJW

REVIEWER: BDT 258.52 mASL GROUND ELEVATION: CONE PENETRATION SAMPLE WATER STRATIGRAPHY **CONTENT %** "N" VALUE REMARKS MONITOR 10 20 30 10 20 30 % WATER RECOVERY STRATIGRAPHIC DESCRIPTION ROD DEPTH TYPE DETAILS VALUE (m) 8 SHEAR STRENGTH $W_{\boldsymbol{L}}$ Wp STATIC WATER LEVELS AT I = 0.82 mBGL II = 0.91 mBGL ON DECEMBER 7, 2004 0.2 TOPSOIL. CLAYEY SILT: CLAYEY SILT:
LIGHT BROWN TO LIGHT GREY BROWN WITH
MOTTLED BROWN CLAYEY SILT, NONE TO
TRACE FINE GRAVEL, NONE TO TRACE SAND,
DTPL TO APL, FIRM TO STIFF. 79 551 8 552 15 100 2_ 100 - GREYISH BROWN AT 3.0 m. 7 SS3 50 SS4 10 SAND: MEDIUM BROWN FINE TO MEDIUM SAND, TRACE TO SOME SILT, TRACE FINE GRAVEL, MOIST, VERY DENSE. 50/50 mm \$55 37 50+ 83 37 556 SILT TILL:
GREY SILT TILL, SOME FINE SAND, TRACE TO
SOME CLAY, TRACE TO SOME FINE TO
MEDIUM GRAVEL, MOIST, COMPACT TO VERY
DENSE. 48 42 557 48 6 \$88 25 100 - WET AT 7.6 m. 100 SS9 27 8 9.1 80/25 mm BOREHOLE TERMINATED AT 9.1 m AT AUGER 0 SS10 804 REFUSAL (PROBABLE BEDROCK). 10 12 14 16 18 2003

2/ Aug

RECORD OF MONITORING WELL No. OW-21 Co-Ord. 17T 0597146 E, 5262516 N Project Number: TY131010.6000 Drilling Location: East of Solar Farm Gate Logged by: JS Project Client: **City of Temiskaming Shores** Drilling Method: 200 mm Hollow Stem Augers Compiled by: MAT Monitoring Well Installation Project - New Liskeard Landfill Site Project Name: Drilling Machine: Track Mounted Drill Reviewed by: TIM Project Location: New Liskeard, Ontario Date Started: 9 Sep 14 Date Completed: 9 Sep 14 Revision No.: 0, 21/11/14 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 1 riser pipe in bentonite TRUMENTATION TALLATION PenetrationTesting 1 riser pipe in sand Ξ Soil Vapour Reading SPT DCPT 1 slotted pipe in sand Sample Number Value △ parts per million (ppm) 100 200 300 400 DESCRIPTION Recovery (%) ithology Plot Sample Type MTO Vane* ELEVATION Nilcon Vane Ξ ♦ Intact♦ Remould △ Intact ▲ Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) SPT 'N' \ DEPTH * Undrained Shear Strength (kPa) ZS LS ocal Ground Surface Elevation: 20 40 60 20 40 60 light brown CLAYEY SILT STICK-UP HEIGHT: 0.95 m trace gravel mottled, soft 0.4 SILT trace sand, gravel and clay loose to very dense 2 ΑU 3 END OF BOREHOLE DUE TO REFUSAL ON PROBABLE BEDROCK OR BOULDERS AMEC Environment & Infrastructure AMICO Environment a immastructure A vivision of AMEC Americas Limited 131 Fielding Road Lively, Ontario Canada P3Y 1L7 Scale: 1:30 Tel +1(705) 682-2632 Fax +1(705) 682-2260 Page: 1 of 1 www.amec.com

PAGE 1 OF 1

PRO.	JECT	NAME: NEW LISKEARD LANDFIL	L SI	ITE						_ PROJ	ECT NO.:	001148.04
		CITY OF TEMISKAMING SHORES								DATE	: NOVE	MBER 11. 2004
	_	E TYPE: HOLLOW STEM AUGER	RS 21	03 mm (8"	0.0) <u>. </u>				SUPE	RVISOR:	DJW
		ELEVATION: 257.99 mASL								_ REVI	EWER:!	BDT
<u> </u>			G			s	AMPLE			CONE PENETRATION	WATER	
	PTH n)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 	10 20 30	REMARKS
		CLAYEY SILT FILL: LIGHT GREY BROWN GRADING TO LIGHT		(4(SS1	5		13		7		STATIC WATER LEVEL AT 1.99 m BGL ON DECEMBER 7, 2004
		BROWN CLAYEY SILT TO CLAY AND SILT FILL, APL, SOFT TO FIRM.			582	5		33				
					\$83	4		21		1411		
2	2,1 2,3	CLAYEY SILT AND BUREID TOPSOIL; CLAYEY SILT AND BURIED TOPSOIL, APL.						21				
		THE THE PARTY OF T			SS4 SS5	18 50+		4		50/127 mn		
		SANDY SILT IIL.: LIGHT BROWN SANDY SILT TILL, TRACE TO SOME CLAY, TRACE FINE GRAVEL, DTPL TO APL, VERY STIFF TO HARD.			556	37	. <u></u>	38	<u> </u>	-	$\left\{ \left\{ \left\{ \right\} \right\} \right\} \right\}$	
-	4,3	- CLAYEY SILT ZONE AT 3.0 m		<u> </u>				4		56/102 m		
		BOREHOLE TERMINATED AT 4.3 m AT AUGER REFUSAL (PROBABLE BEDROCK).			_SS7	66+			<u> </u>			
						-		-		-		
6												
								<u> </u>				
						-	<u> </u>	<u> </u>	 			
8								_	-			
									1	-		
10					-		-	<u> </u>	-			
10				ļ			-		-			
							 					
							-					
12							_			-		
							-			7 1		
						+	-	-				
14									_			
-		:										
				ļ, 	-	-	+	+				
16					_							
							士					
		<u> </u> 			_	4-				_		
18 2	}						1					
on 2/ Aug 2003					-	_		-	-			
25												

JACCER HIMS LIMITED

PAGE 1 OF 1

PROJECT NAME: NEW LISKEARD LANDFILL SITE PROJECT NO.: 001148.04

CLIENT: CITY OF TEMISKAMING SHORES

BOREHOLE TYPE: HOLLOW STEM AUGERS 203 mm (8") O.D.

GROUND ELEVATION: 202.33 mASL

PROJECT NO.: 001148.04

DATE: NOVEMBER 12-13. 2004

SUPERVISOR: DJW

REVIEWER: BDT

		l S			s	AMPL	E		PENETR	E ATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VA 10 20 1 1 SHEAR STRENG	30	10 20 30 WP WL	REMARKS
0,6	TOPSOIL: DARK BROWN TOPSOIL WITH CLAYEY SILT		(144	SS1	10		29		•			STATIC WATER LEVEL AT = 6.29 m BGL = DRY
- 0,8	AND ORGANIC SILT, BRANCHES, APL, STIFF.			552	14		79					ON DECEMBER 7, 2004
1.4	MEDIUM BROWN CLAYEY SILT, TRACE FINE SAND, DTPL, STIFF.			553	- 10		25]			
-	SANDY SILT TILL: LIGHT TO MEDIUM BROWN SANDY TO SOME SILT TILL, TRACE CLAY TO CLAYEY, TRACE			555	19		25			$\sqrt{}$		
	FINE GRAVEL, DTPL, VERY STIFF TO HARD.			554	36		100			-		
	- COBBLES AT 3.1 m			SS5	58		38			58 		
				-								1
1	GREY TO DARK GREY BELOW 4.6 m.			SS6	52		50			52	4	
_				\ <u> </u>		-	-		1			
	- COBBLES BELOW 6.1 m.					<u> </u>	ļ.	[_	50/	25 ஹா		
_	- COBBLES BELOW O.T III		7//	SS7	50+	ļ	4	-]			
								ļ	-			
		1		558	79		46	<u> </u>	56/	10 <u>2 m</u>	<u> </u>	
				}	-	-	├—		-			
9.1		ļ		559	63		100		1	63	-	
	CLAYEY SILT TILL: GREY CLAYEY SILT TILL, SOME FINE SAND, TRACE FINE GRAVEL, DTPL, HARD.]	\vdash	╂		 -	-			
<u>-</u>	TRACE FINE GRAVEL, DIFL, FAND.								_			
				SS10	53	-	58		-	53	_	
							_		_}			
12.2		<u> </u>		SS1	1 83-	+	38		B3,	/292	2	
	SANDY SILT TO CLAYEY SILT TILL: MEDIUM GREY TO DARK GREY SANDY SILT TO CLAYEY SILT TILL, TRACE FINE TO		N/#					-	-			
	MEDIUM GRAVEL, TRACE CLAY, DTPL TO APL, VERY STIFF TO HARD.											
4				\$\$1	2 56	╂	92	-	_ 56	+	-	
_									_			
	WET BELOW 15.2 m.		 連集 	664	3 37		96		_			
6			[達]	SS1	3/		- 30				/	
			主		-						/	
			建	SS1	4 28	+-	79	1				
			運					Ţ				
8 18.1	BOREHOLE TERMINATED AT 18.1 m AT	+		SS1	5 -	+	+-					
	AUGER REFUSAL (PROBABLE BEDROCK).							1	_			
	•	l	1			-		-	-			
20		ĺ		-	_							

JACCER HIM LIMITED

RECORD OF MONITORING WELL No. OW-24-I Co-Ord. 17T 0597379 E, 5263237 N Project Number: TY131010.6000 Drilling Location: NE Corner of Solar Farm Logged by: Project Client: **City of Temiskaming Shores** Drilling Method: 200 mm Hollow Stem Augers Compiled by: MAT Monitoring Well Installation Project - New Liskeard Landfill Site Project Name: Drilling Machine: Track Mounted Drill Reviewed by: TIM Date Started: 3 Sep 14 Date Completed: 3 Sep 14 Revision No.: 0, 21/11/14 Project Location: New Liskeard, Ontario LITHOLOGY PROFILE **SOIL SAMPLING FIELD TESTING COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 INSTRUMENTATION INSTALLATION 1 riser pipe in bentonite PenetrationTesting 1 riser pipe in grout Ξ SPT DCPT Soil Vapour Reading 1 riser pipe in sand 1 slotted pipe in sand Sample Number Value △ parts per million (ppm) 100 200 300 400 DESCRIPTION Recovery (%) ithology Plot Sample Type MTO Vane* ELEVATION Nilcon Vane* Ξ ♦ Intact♦ Remould △ Intact ▲ Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) SPT 'N' \ DEPTH * Undrained Shear Strength (kPa) ocal Ground Surface Elevation: 20 40 60 20 40 60 brown SILTY SAND STICK-UP HEIGHT: 0.93 m some organics, roots moist, compact light brown / grey SILTY CLAY 0.8 some sand, trace cobbles very stiff to stiff 2 3 AMEC Environment & Infrastructure A division of AMEC Americas Limited 131 Fielding Road Lively, Ontario Canada P3Y 1L7 Scale: 1:30 Tel +1(705) 682-2632 Fax +1(705) 682-2260 Page: 1 of 3 www.amec.com Continued on Next Page

RECORD OF MONITORING WELL No. <u>OW-24-I</u> Co-Ord. <u>17T 0597379 E, 5263237 N</u>

amec Logged by: Js

Project Number: TY131010.6000 Drilling Location: NE Corner of Solar Farm

	LITHOLOGY PROFILE	so	IL SA	MPLI	NG			FIELD T			COMMENTS
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DЕРТН (m)	ELEVATION (m)	PenetrationTesting ○ SPT	★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading △ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit ⊁ Passing 75 um (%) ○ Moisture Content (%) 20 40 60 80	INSTRUMENTATION INSTALLATION	1 riser pipe in bentonite 1 riser pipe in grout 1 riser pipe in sand 1 slotted pipe in sand
	light brown / grey SILTY CLAY some sand, trace cobbles very stiff to stiff	8	53	н	05		ш				
	grey / brown 7.3 SANDY SILT some gravel, some to trace clay moist very dense					- - - - - - 8 - -					
		AU				- - - 9 - - - - -				ילים בין בין בין בין בין בין בין בין בין בין	
						- 10 - - - - - - - - - - - -					1
						- - - - - - 12 - - -				בור לבור לבור לבור לבור לבור לבור לבור ל	

RECORD OF MONITORING WELL No. <u>OW-24-I</u> Co-Ord. <u>17T 0597379 E, 5263237 N</u>

Logged by:

Project Number: TY131010.6000 Drilling Location: NE Corner of Solar Farm

	LITHOLOGY PROFILE	SO	IL SA	MPLII	NG							FIEL	D T								COMMENTS
							_					esting		* 1 2	Rinse p	H Valu 6 8	es 10 12		NO	INSTALLATION	1 riser pipe in bentonite
Į.	DESCRIPTION		ber	_	ө		Ξ		SPT			DCPT		Sc	il Vap	our R	eading			NO	
P P	DESCRIPTION	Lybe	MnN	%) /	/alu	Œ)	<u>N</u>	M	TO Va	ane*	Nilo	on Va Intact Remo	ane*	1	00 2	:00 3	on (ppm) 300 40	00_	MEN	AT	1 riser pipe in sand 1 slotted pipe in sand
logy		ble -	ple !	over	ž	표	ΥAΤ							▲ *	Lower E	Explosive 75 um	ve Limit n (%) ent (%)			AL	
Lithology Plot		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DЕРТН (m)	ELEVATION	* L	Indraine 20	ed She 40	ear Str 60	ength (0	Moistur 0 4	e Conte 40	ent (%) 60 8	0	SN	NS	
	grey / brown SANDY SILT														l I	i I					
	some gravel, some to trace clay moist very dense					13									 				=	1	
1111						-			İ	- 1	İ	İ					!!!			שול הליו להן להן להן להן להן להן להן להן להן להן	
	SAND					-			-	-	1				 	 			-		
	trace silt and gravel moist to wet, fine to medium, very dense								i	i	i	i					ii		壴		
						_			İ	- 1	Ì	İ					[]				
						-			-						 	 			=	1	
						Ė			i	i	i	i			 	 	i		-		
						_			İ	- 1	ĺ	İ					[]		-		
						— 14				ļ					ļ	ļ	ļ !		5	<u></u>	
						-			i	i	1					 	i		▩	\bowtie	
									İ	İ	İ	İ							₩	\bowtie	
						-			-	-					 	 			₩	\bowtie	
						-			i		i								▩		
						-			Ţ	Ţ	į	į							^{XX}	X	
						-			1		-				 	 					
						-			i	i	i	i				i	i i				
						— 15		1				1			ļ	1	1				
									1	1					 	 					
						_			i	i	i	i				İ	i i				
						-			- [1	- !						!!!				
									-	1					 	 					
						-			i	i	i	i				İ	i i				
						-			Ţ	- [!										
						- 16			l	l	[l			l I] 				
						- 16			i	Ī	i	i					1				
						-			ļ	- !	!										
						-			1	1					 	 	1 1				
									i	i	i	i			İ	İ	i i				
						-			Ţ	- [1										
						-			-	l I	 	l I			 	 				≣∷!	
						Ė			i	i	i	İ			İ	ĺ	i i			≣ :	
						— 17			إ	ļ.					ļ 	ļ	<u> </u>				
						-			1	1	1				 						
						Ė			i	i	i	İ			ĺ	Ì	į į				
									ļ		1				 						
						F					1	 									
						-			į	į	į	į			ļ	ļ	Ļij				
						-			1		1				 	l I				∃	
						ŀ			i	i	i	i			İ	i					
						— 18 _					• • •				 	· · · · ·					
						ļ.					-	1									
	END OF BOREHOLE 18.3							+	+	÷	-i	ij			<u> </u>	<u> </u>				#24	
	(no refusal)								I		-				l I	l I					
									i		i	i			İ	i					
									ļ		-										
									1		 	 			 	 					
									į	İ	i	i				ļ	į i				
									ļ		-				 	 					
									i			 									
									ļ	Ţ	ij	į									
									I		-] 					
										_			_	_					_		

RECORD OF MONITORING WELL No. OW-24-II Co-Ord. 17T 0597379 E, 5263237 N Project Number: TY131010.6000 Drilling Location: NE Corner of Solar Farm Logged by: Project Client: **City of Temiskaming Shores** Drilling Method: 200 mm Hollow Stem Augers Compiled by: MAT Monitoring Well Installation Project - New Liskeard Landfill Site Project Name: Drilling Machine: Track Mounted Drill Reviewed by: TIM Date Started: 4 Sep 14 Date Completed: 4 Sep 14 Revision No.: 0, 21/11/14 Project Location: New Liskeard, Ontario LITHOLOGY PROFILE **SOIL SAMPLING FIELD TESTING COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 1 riser pipe in bentonite TRUMENTATION TALLATION PenetrationTesting 1 riser pipe in sand Ξ SPT DCPT Soil Vapour Reading 1 slotted pipe in sand Sample Number Value △ parts per million (ppm) 100 200 300 400 DESCRIPTION ithology Plot Recovery (%) Sample Type MTO Vane* ELEVATION Nilcon Vane* Ξ ♦ IntactRemould △ Intact ▲ Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) SPT 'N' \ DEPTH * Undrained Shear Strength (kPa) ZS LS ocal Ground Surface Elevation: 20 40 60 20 40 60 brown SILTY SAND STICK-UP HEIGHT: 0.93 m some organics, roots moist, compact light brown / grey SILTY CLAY 0.8 some sand, trace cobbles very stiff to stiff 2 3 ΑU AMEC Environment & Infrastructure A division of AMEC Americas Limited 131 Fielding Road Lively, Ontario Canada P3Y 1L7 Scale: 1:30 Tel +1(705) 682-2632 Fax +1(705) 682-2260 Page: 1 of 2 www.amec.com Continued on Next Page

RECORD OF MONITORING WELL No. OW-24-II Co-Ord. 17T 0597379 E, 5263237 N

63237 N amec

Project Number: TY131010.6000 Drilling Location: NE Corner of Solar Farm Logged by: JS

LITHOLOGY PROFILE	so	OIL SA	MPLI	NG			FIELD ⁻	TESTING	COMMENTS
-						_	PenetrationTesting	★ Rinse pH Values 2 4 6 8 10 12	A 1 riser pipe in bentonite L V U U V V V V V V V V V V V V V V V V
DESCRIPTION		per		Φ		ELEVATION (m)	O SPT • DCPT	Soil Vapour Reading	1 riser pipe in sand
DESCRIPTION	Į ž	Nema	у (%	Valu	(m)	<u>8</u>	MTO Vane* Nilcon Vane* △ Intact ◇ Intact ▲ Remould ◆ Remould	△ parts per million (ppm) 100 200 300 400	LATEN
DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DЕРТН (m)	-VAT			TALL
	San	San	Rec	SPI	DEF	E	* Undrained Shear Strength (kPa) 20 40 60 80	O Moisture Content (%) 20 40 60 80	<u>ZZ</u>
light brown / grey SILTY CLAY some sand, trace cobbles					-				
some sand, trace cobbles very stiff to stiff					_				
					_		l i i i i	l i i i i	
					-				
					-				
					7 -				
					-				
grey / brown SANDY SILT	7.3				-				
SANDY SILT some gravel, some to trace clay moist very dense							i i i i	i i i i	
moist very dense					ŀ				
					F				
					[
					 8		I		数量数
					_				
					-				
					-			i i i i	
					_				
					-				
					-				
					– – 9				
END OF BOREHOLE	9.1				_				
(no refusal)	9.1								
								i i i i	
							i i i i		
							i i i i	l i i i i	
							i i i i		
							i i i i	i i i i	
	- 1	1		l	l		1 ! ! ! !		1 1

BOREHOLE NO. OW 24-I

PAGE 1 of 1

PROJECT NAME: 2007 MONITORING WELL NEST INSTALLATION PROJECT NO.: 4-001148.08

CLIENT: CITY OF TEMISKAMING SHORES DATE COMPLETED: Oct 24, 2007

BOREHOLE TYPE: 110 mm HOLLOW STEM AUGER SUPERVISOR: SLW

GROUND ELEVATION: 235.9 mASL REVIEWER: AGH

		STF					SAMPLI			CONE PENETRATION		VATE		UTM CO-ORDINATES UTM Zone: 17 NAD: 27
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MON DET	ITOR AILS	ТҮРЕ	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30		20 		Easting: <u>597359</u> Northing: <u>5263019</u>
0.0	TOPSOIL;	~				14*	کت	₽		SHEAR STRENGTH	W _F	. ,	WL	REMARKS
0.8	DARK BROWN SILTY SAND, ROOTS AND ORGANIC MATERIAL, MOIST.		H		SS1	27	23	53		1	Ì	•	1	OW24-1 STICKUP = 0.76 m OW24-1 STICKUP = 0.81 m
<u></u>	SANDY SILT: DARK GREY FINE SANDY SILT, MOIST, COMPACT.				SS2	18	23	94					İ	OW24-III STICKUP = 0,81 m
0	SILTY CLAY/CLAYEY SILT: LIGHT BROWN/GREY MOTTLED SILTY				SS3	16	36	100		 				
	CLAY/CLAYEY SILT, APL TO WPL, VERY STIFF TO STIFF.				\$54	12	38	100				-		
Q 					\$\$ 5	10	38	100				-		
0_					5S6	8	48	100				.	•	
			N										>>1	
.0 5.3	SILTY CLAY/CLAYEY SILT:				SS7	11	36	100					1	OW24-III MONITOR INSTALLED A 4.9 m
	MOTTLED GREY/LIGHT SROWN SILTY CLAY/CLAYEYSILT, SOME FINE TO MEDIUM SAND,		N									dente de la constitución de la c		
	TRACE COBBLES, MOIST, HARD/VERY DENSE.				SS8	64	24	42		64		1	/	
7.3 —	ŢILL;											Λ		
0	GRAY/BROWN TILL - SANDY SILT/SILTY SAND, SOME TO TRACE CLAY, SOME FINE TO MEDIUM GRAVEL, MOIST, VERY DENSE.											/		
· .	The state of the s				£89	50	8	53		i . :	1			GW24-II MONIFOR INSTALLED A 8.4 m
					SS10			0						
-	,													•
 i.o´					SS11	140	8	72		144				
	,													
3.0					5S12			455						
3.0					0012	130	9	100		131	֓֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			
	SAND: GRAY FINE TO MEDIUM SAND, TRACE SILT, TRACE FINE TO COARSE GRAVEL, MOIST TO WET, VERY									!				
	DENSE.				5513	46	8	100		1.4				1
لقفا										: .	'			-
 					SS14	186	10	100		18	€			
ioti.			1	1	1					1 :				
20					SS15	169	9	100		16	9			FLOWING SANDS
.0				=	1					1 :	'			
					8816	89	16	89		, ,	9			
18.7 —	BOREHOLE TEMINATED AT 18.7 m DUE TO AUGER REFUSAL ON ASSUMED BEDROCK	ļ <u></u>	النفنة									•		OW24-I MONITOR INSTALLED A
	THE CONT ON ASSOCIATION BEDICOOK								1					

BOREHOLE NO. OW 25-I

PAGE 1 of 2

PROJECT NAME: 2007 MONITORING WELL NEST INSTALLATION PROJECT NO.: 4-001148.08

CLIENT: CITY OF TEMISKAMING SHORES DATE COMPLETED: Oct 25, 2007

BOREHOLE TYPE: 110 mm HOLLOW STEM AUGER SUPERVISOR: SLW

GROUND ELEVATION: 239.5 mASL REVIEWER: AGH

	ELEVATION: 239.5 MASL									- REVII	_ **.			
		r _S			,	ş	AMPLE			CONE PENETRATION	v	VATE	R	UTM CO-ORDINATES
DEPTH	CTDATICDADUIC DECEMENTAL	STRATIGRAPHY	MON	ITOR		Z		% R	20	"N" VALUE	COì	NTEN	IT %	UTM Zone: <u>17</u> NAD: <u>27</u> Easting: <u>597357</u> Northing: <u>5262765</u>
(m)	STRATIGRAPHIC DESCRIPTION	GRAF	DET	AILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	10 20 30	10	20	30	113.11.11.11.11.11.11.11.11.11.11.11.11.
0.0		¥			"	m	罗	'ERY	.	SHEAR STRENGTH	ŀ- Wp		₩.	REMARKS
	TOPSOIL: DARK BROWN SILTY SAND, ROOTS AND ORGANIC		=		\$\$1	14	8	47			1			MO€ WELL TAG # A059653
1.0	MATERIAL, MOIST. SILTY SAND/SANDY SILT:	75		61				OW25-I STICKUP = 0.81 m OW25-II STICKUP = 0.82 m OW25-III STICKUP = 0.82 m						
2.0_	LIGHT/DARK BROWN MOTTLED SILTY SAND/SANDY SILT, SOME FINE TO MEDIUM GRAVEL, SOME TO TRACE SILT, TRACE COBBLES,				S\$3	67	9	61						OVZZ-III ONOKOF – 0.62 III
2.3 —	MOIST, COMPACT TO DENSE, TO VERY DENSE TO COMPACT.	111			884	38	6	81						
3.0	TILL: GREY SILT TILL, SOME TO TRACE FINE SAND, SOME TO TRACE CLAY, OCCASIONAL FINE TO										•			
	MEDIUM GRAVEL, O'CCASIONAL COBBLES, MOIST, HARD.		N		555	190	6	78		; ; ;190	•			
4.0					\$86	192	7	72		1192	3			OW25-III MONITOR INSTALLED AT
5.0					SS7	85	ģ	100		85				
								i						
6.0					5\$8	90	8	89		j , i	,			
7.0_			N											
					\$89	52	8	100		5.				
<u>8,0</u>					303	32					1			
9.0							Į Į	ļ		! : :				anns a Holbton Motal and A
10.0					\$610	67	Đ	67		. 16	73			OW25-II MONITOR INSTALLED AT 9.1 m
10.1	CLAYEY SILT/SILTY CLAY: DARK GREY CLAYEY SILT/SILTY CLAY, TRACE FINE						}							
11.0	SAND, TRACE FINE TO MEDIUM GRAVEL, OCCASIONAL COBBLE, MOIST, HARD TO VERY HARD.				5511	53	9	100		: ' ! 5	3	1		
12.0	TIANU.													
12.0					6612	56	11	100			i6i			
13.0												1		
14.0										i .				
					\$\$13	58	10	100			589	0		
.15.0														
					5514			100						
16.0														
17.0					8515	111	11	72	ŀ		113			
18.0														
18.0														
 					8516	100	10	94				é	.	
								Ì						
_{20.0} Jagger Hin	no Limited	120	<u> </u>	777	SS17	50	12	72	1			-		

BOREHOLE NO. OW 25-I

PAGE 2 of 2

PROJECT NAME: 2007 MONITORING WELL NEST INSTALLATION	PROJECT NO.: 4-901148.08
CLIENT: CITY OF TEMISKAMING SHORES	DATE COMPLETED: Oct 25, 2007
BOREHOLE TYPE: 110 mm HOLLOW STEM AUGER	SUPERVISOR: SLW
GROUND ELEVATION: 239.5 mASL	REVIEWER: AGH

511001115	ELEVATION: 239.5 mASL			_					_ '_v''	EWER: A	
-		TTS			8	AMPL	E	·	CONE PENETRATION	WATER	UTM CO-ORDINATES
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	T	N	% v	% RE	R _O	"N" VALUE	10 20 30	UTM Zone: <u>17</u> NAD: <u>27</u> Easting: <u>597357</u> Northing: <u>5262765</u>
(117)		RAPH	DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)			0514214
20.0		<u> </u>	<u> </u>	<u>.</u>			~		SHEAR STRENGTH	W _P W	REMARKS
	SILT: DARK GREY SILT, SOME FINE SAND, SOME CLAY, SOME TO TRACE FINE GRAVEL, OCCASIONAL		<i></i>				:				
21.0	COBBLE, MOIST, HARD.										
22.0				SS18	92	11	100		; 92	1 1	
					:				! ! !		
23.0				\$\$19	99	14	100		; ; ; 99		OW25-I MONITOR INSTALLED AT 22.8 m
24.0	BOREHOLE TERMINATED AT 23.3 m DUE TO AUGER REFUSAL ON ASSUMED BEDROCK.		<u> </u>						,		
									1		
25,0											
26.0							}				
27.0							ļ				
28,0											
	•										
29.0											
30.0									; !		
									1 : 1		
31.0							Į			-	
32.0						İ					
			}								
33,0									1 . ;		ļ
34.0									· · · · · · · · · · · · · · · · · · ·		
								}	î		
35.0											
36.0									1		
37,0									;		
38 0									: .		
• •									,		·
39.0											
30.0 31.0 32.0 33.0 34.0 35.0 35.0 36.0 37.0 38.0 39.0											
agger Hin	s Limited						!		<u> </u>		<u> </u>

RECORD OF MONITORING WELL No. <u>OW-30-1</u> Co-Ord. <u>17T 0597401 E, 5262836 N</u> Project Number: TY131010.6000 Drilling Location: East Side of Solar Farm Logged by: Project Client: **City of Temiskaming Shores** Drilling Method: 200 mm Hollow Stem Augers Compiled by: MAT Project Name: Monitoring Well Installation Project - New Liskeard Landfill Site Drilling Machine: Track Mounted Drill Reviewed by: TIM Project Location: New Liskeard, Ontario Date Started: 6 Sep 14 Date Completed: 7 Sep 14 Revision No.: 0, 20/11/14 LITHOLOGY PROFILE **SOIL SAMPLING FIELD TESTING COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 INSTRUMENTATION INSTALLATION 1 riser pipe in bentonite PenetrationTesting 1 riser pipe in grout Ξ SPT DCPT Soil Vapour Reading 1 riser pipe in sand 1 slotted pipe in sand Sample Number △ parts per million (ppm) 100 200 300 400 DESCRIPTION SPT 'N' Value ithology Plot Recovery (%) Sample Type MTO Vane* ELEVATION Nilcon Vane* Ξ ♦ IntactRemould △ Intact ▲ Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) DEPTH * Undrained Shear Strength (kPa) ocal Ground Surface Elevation: 20 40 60 20 40 60 dark grey SILTY SAND some gravel and cobbles, trace clay STICK-UP HEIGHT: 0.90 m damp to wet, dense to very dense 2 3 ΑU AMEC Environment & Infrastructure A division of AMEC Americas Limited 131 Fielding Road Lively, Ontario Canada P3Y 1L7 Scale: 1:30 Tel +1(705) 682-2632 Fax +1(705) 682-2260 Page: 1 of 4 www.amec.com Continued on Next Page

RECORD OF MONITORING WELL No. <u>OW-30-I</u> Co-Ord. <u>17T 0597401 E, 5262836 N</u>

Co-Ord. 17T 0597401 E, 5262836 N

Drilling Location: East Side of Solar Farm

Logged by: JS

Project Number: TY131010.6000 LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING COMMENTS ★ Rinse pH Values
2 4 6 8 10 12
Soil Vapour Reading INSTRUMENTATION INSTALLATION 1 riser pipe in bentonite PenetrationTesting 1 riser pipe in grout Ξ O SPT DCPT Sample Number 1 riser pipe in sand △ parts per million (ppm) 100 200 300 400 **DESCRIPTION** ithology Plot Sample Type Recovery (%) SPT 'N' Value ELEVATION MTO Vane* Nilcon Vane* DEPTH (m) 1 slotted pipe in sand △ Intact
▲ Remould ♦ Intact
Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) * Undrained Shear Strength (kPa) 40 60 20 40 60 dark grey SILTY SAND some gravel and cobbles, trace clay damp to wet, dense to very dense 9 SS 100 15 10 2 100 21 - 11 12 SS 3 100 30 0

RECORD OF MONITORING WELL No. <u>OW-30-1</u> Co-Ord. <u>17T 0597401 E, 5262836 N</u>

Project Number: TY131010.6000 Drilling Location: East Side of Solar Farm Logged by:

	LITHOLOGY PROFILE	SO	IL SA	MPLI	NG			FIELD T	ESTING		COMMENTS
							<u></u>	PenetrationTesting	★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading	INSTRUMENTATION INSTALLATION	1 riser pipe in bentonite
ot	DESCRIPTION	g e	Sample Number	(%	en	_	ELEVATION (m)	O SPT DCPT	Soil Vapour Reading △ parts per million (ppm) 100 200 300 400	ATNI	1 riser pipe in grout 1 riser pipe in sand 1 slotted pipe in sand
gy PI	DESCRIPTION	T e	Nu	6) Kue	. \	Ē	Ι	MTO Vane* Nilcon Vane* △ Intact	100 200 300 400 ▲ Lower Explosive Limit	UME	1 slotted pipe in sand
tholog		Sample Type	ample 1	Recovery (%)	SPT 'N' Value	DEPTH (m)	Ē	* Undrained Shear Strength (kPa) 20 40 60 80	▲ Lower Explosive Limit * Passing 75 um (%) O Moisture Content (%) 20 40 60 80	STR	
Lithology Plot	dark grey	ικ	Š	Ř	S	□	Ш	20 40 60 80	20 40 60 80		=
	dark grey SILTY SAND some gravel and cobbles, trace clay					- 13					
	some gravel and cobbles, trace clay damp to wet, dense to very dense					- 13				녉녆	
						-				털털	
										틥녆	
						_				BB	
						Ė				園園	
						-				国道	
						- 				뎔녆	
		SS	4	38	100+	— 14 -)	튑녆	
						-				園園	
						t				BB	
						L				אין אין אין אין אין אין אין אין אין אין	
						-				国国	
						_				불병	
						-				털털	
						— 15 _				E E	
										B	
						-					
1111											
		SS	5	100	65	-					
						L					
										\bowtie	
						— 16					
						_					
						-					
						_					
						-					
						-					
		SS	6	100	64	— 17			 		
		33	"	100	04	Ė					
						ŀ					
						}					
						F					
						F					
						<u> </u>					
						— 18					
						L					
						[
						F					1
		SS	7	100	78	Ė					
						F					
						L					
						- 19			ļ <u>.</u> iļ		
						-					
						<u> </u>					
						F				制	

RECORD OF MONITORING WELL No. <u>OW-30-1</u> Co-Ord. <u>17T 0597401 E, 5262836 N</u>

Project Number: TY131010.6000 Drilling Location: East Side of Solar Farm Logged by:

	LITHOLOGY PROFILE	SO	IL SA	MPLII	NG			FIELD TESTING COMMENTS
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DЕРТН (m)	ELEVATION (m)	PenetrationTesting ○ SPT
	dark grey SILTY SAND some gravel and cobbles, trace clay damp to wet, dense to very dense	SS	8	100	50+	- - - - - 20 -		
	END OF BOREHOLE DUE TO REFUSAL ON PROBABLE BEDROCK OR BOULDERS 20.3							

RECORD OF MONITORING WELL No. OW-30-II Co-Ord. 17T 0597401 E, 5262836 N Project Number: TY131010.6000 Drilling Location: East Side of Solar Farm Logged by: JS Compiled by: MAT Project Client: **City of Temiskaming Shores** Drilling Method: 200 mm Hollow Stem Augers Project Name: Monitoring Well Installation Project - New Liskeard Landfill Site Drilling Machine: Track Mounted Drill Reviewed by: TIM Project Location: New Liskeard, Ontario Date Started: 5 Sep 14 Date Completed: 8 Sep 14 Revision No.: 0, 20/11/14 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 INSTRUMENTATION INSTALLATION 1 riser pipe in bentonite PenetrationTesting 1 riser pipe in grout Ξ SPT DCPT Soil Vapour Reading 1 riser pipe in sand 1 slotted pipe in sand Sample Number Value △ parts per million (ppm) 100 200 300 400 DESCRIPTION Recovery (%) ithology Plot Sample Type MTO Vane* ELEVATION Nilcon Vane Ξ ♦ Intact♦ Remould △ Intact ▲ Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) SPT 'N' \ DEPTH * Undrained Shear Strength (kPa) ocal Ground Surface Elevation: 20 40 60 20 40 60 light brown to dark grey SILTY SAND STICK-UP HEIGHT: 0.93 m some gravel damp, dense ΑU SS 2 72 21 Φ SS 3 18 75 q 2 SS 89 53 0 3 SS 5 79 38 SS 6 100 38 SS 7 100 26 0 5 AMEC Environment & Infrastructure AMICO Environment a immastructure A vivision of AMEC Americas Limited 131 Fielding Road Lively, Ontario Canada P3Y 1L7 Scale: 1:30 Tel +1(705) 682-2632 Fax +1(705) 682-2260 Page: 1 of 2 www.amec.com Continued on Next Page

RECORD OF MONITORING WELL No. OW-30-II Co-Ord. 17T 0597401 E, 5262836 N

anec Logged by: Js

Project Number: TY131010.6000 Drilling Location: East Side of Solar Farm

LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING COMMENTS ★ Rinse pH Values
2 4 6 8 10 12
Soil Vapour Reading 1 riser pipe in bentonite INSTRUMENTATION INSTALLATION PenetrationTesting Ξ O SPT DCPT 1 riser pipe in sand Sample Number △ parts per million (ppm) 100 200 300 400 **DESCRIPTION** ithology Plot Sample Type Recovery (%) SPT 'N' Value ELEVATION MTO Vane* Nilcon Vane* Ξ 1 slotted pipe in sand △ Intact
▲ Remould ♦ Intact
Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) DEPTH * Undrained Shear Strength (kPa) 40 60 20 40 60 light brown to dark grey SILTY SAND some gravel damp, dense 19 SS 8 100 Φ 0 SS 9 87 50+ END OF BOREHOLE 7.8

RI	ECORD	OF MONITORI	NG	WE	LL N	No.	<u>OW</u>	-10-III	<u> </u>	C	0-	-Or	d.	<u>05</u>	<u>966</u>	82	Ε,	52	<u> 263</u>	278	<u>8 N</u>	<u> </u>					
Pro	ject Number:	TY910491.8000							Oril	illing	g Lo	ocatio	on: <u>N</u>	lorth	Side	of La	ndfil	<u> </u>						Logged	d by:	ARM	
Pro	ject Client:	City of Temiskaming Shor	res						Oril	illing	g Me	etho	d: <u>2</u>	200 m	ım Ho	ollow	Ste	n Au	gers	3				Compil	ed by:	MAT	
Pro	ject Name:	2017 Supplemental Hydro	geolog	jical P	rogram	1			Oril	illing	g Ma	achir	ne: <u>T</u>	rack	Moun	ted I	Orill							Review	ed by:	BRG	i
Pro	ject Location	New Liskeard Landfill, Cit	y of Te	miska	ming S	Shores	, Ontario		Dat	te S	Star	ted:	0	7 Jur	17	_ D	ate C	omp	letec	i: 09 J	Jun	17	_	Revisio	n No.:	<u>1, 23</u>	/02/18
	LITH	HOLOGY PROFILE		SO	IL SA	MPLI	NG							FIE	LD T									COI	MMEN	TS	
					_			Ē		0				Testin	-	2	Rinse 4 oil Va	6 8	10			INSTRUMENTATION INSTALLATION	1 ris	ser pipe in b ser pipe in g			
Plot		DESCRIPTION		уре	aqwn	(%)	alue			М	ITO V	Vane	* N	lilcon \	Vane*	Δ	parts p	er milli	ion (pp			TENT/	1 ris	ser pipe in s otted pipe i			
Lithology Plot				Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DEPTH (m)		▲	Re	mould	•	Intac Rem	nould	*	Lower	Explos g 75 u	sive Lir m (%)	nit		TAUN	19.3				
Lith		Surface Elevation:		Sarr	Sarr	Rec	SPT	E.E.		* L	Jndra 20			Strengtl 60	h (kPa) 80		Moistu 20	re Con 40	tent (9	%) 80		SZ SZ					
	START OF C	CORING									1									1		88					
								-			į			ļ			į	į	į	į		88					
														1	1								<u> </u>				
								- 1			. T			1	1			1	1	1	E	36	틸				
							E	-			İ				İ					1	Ė		크 틴				
							E				į			į	į		į	į	į	j	E						
X	BEDROCK		2.1					- 2			I.			. I 	1		. L 	J 	 	l [36	=				
\gg								_							1		 			[1.1						
X											1			1	1					1			<u>=</u>				
	TOD 700/							- 3									ļ	ļ	-		-		립				
$\langle \rangle \rangle$	TCR = 78% SCR = 75% RQD = 50%										İ									ļ	100						
X	NQD = 30 %			RC	1	80		-									 	 		1		35	=				
	TCR = 81%		<u>4.0</u>					- 4			[ļ	ļ		ļ	1			Ė		크 틴				
	SCR = 83% RQD = 33%		4.0	RC	2	80	F				į			į	į		į	į	į	j							
M							-	=						1						Ì			립				
	TCR = 86% SCR = 50% RQD = 26%		4.7				E	- 5		l	l .]]]]	 	 							
	1100 2070			RC	3	86		Ü			1			 						1							
\gg				110	Ü			-			į			į	į		į	į	į	į	E		=				
M											i										-						
	TCR = 98% SCR = 100% RQD = 100%		5.9					- 6							1		 	1	 	1		=1 =	듹				
	1100	•						-						 	 		 	 		1							
\gg				RC	4	99	E				İ	ĺ						 		1	-						
X								- 7			÷			į	į		į	į	ij	· · · · ·	. [
	TCR = 98%		- _{7.4}				<u> </u>	_						1													
\gg	SCR = 100% RQD = 100%														 		 	 	1	 	×						
M								- 8			<u>.</u> [.			. l l	J		l	J I	. <u>I</u>	l							
				RC	5	98					į			İ	İ		İ	ĺ	į	Ì	8	8					
							F	-			į						į		į	į	8	$\begin{picture}(20,0) \put(0,0){\line(1,0){10}} \put(0,0$					
\searrow	TCR = 98%		9.0				-	- 9			· · ·				ļ		 	ļ	- -		.						
	SCR = 100% RQD = 100%						E]	 		 			1							
				PC.	6	00	E	-			İ	İ			 			 		1	8						
\gg				RC	6	99	E	- 10							ļ												
X																			1		8						
			10.5				-	-			1			1]]	1	l I	8						
								44			İ	İ		1			 	 			ľ						
		Amec Foster Wheeler Environment & Infrastructure 131 Fielding Road	¥ No	freestar	nding gr	oundwa	ter measu	11 ired in oper	n b	oore	hole	on c	ompl	etion.	•			•		,		- 1 ·	-				
am	ec ster	Lively, Ontario Canada P3Y 1L7 Tel +1(705) 682-2632	Borehol	e details	as prese	ented, do	not constitu	ute a thoroug	gh u	unde	ersta	nding	of all	potent	tial cond	ditions	prese	nt. Als	o, bor	ehole in	nform	nation	should be			Scale:	1:60
wh	eeler	Fax +1(705) 682-2260 www.amecfw.com	reau iii	oonganeti	on with t	e elivif(mineritai re	portion will	J11 11	ıı wa	45 CO		310116	u anu t	ne acco	pan	,y E	-piai ia	anon C	, polen	JJIE L	.Jy .					of 2

Scale: 1:60 Page: 1 of 2

RECORD OF MONITORING WELL No. OW-10-III Co-Ord. 0596682 E, 5263278 N Drilling Location: North Side of Landfill Project Number: TY910491.8000 Logged by: ARM LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING **COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading INSTRUMENTATION INSTALLATION 1 riser pipe in bentonite PenetrationTesting 1 riser pipe in grout Ξ O SPT DCPT 1 riser pipe in sand Sample Number 'N' Value △ parts per million (ppm) 100 200 300 400 둳 **DESCRIPTION** Recovery (%) Sample Type MTO Vane* Nilcon Vane* ELEVATION Ξ 1 slotted pipe in sand △ Intact ▲ Remould ♦ Intact Remould ithology ' ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) DEPTH SPT * Undrained Shear Strength (kPa) 40 60 20 40 60 BEDROCK RC 92 TCR = 92% SCR = 66% RQD = 72% TCR = 92% SCR = 66% RQD = 72% TCR = 100% 12 SCR = 95% RQD = 97% RC 8 100 13 TCR = 100% SCR = 100% RQD = 92% 13.4 14 100 15 TCR = 100% 15.0 SCR = 93% RQD = 88% RC 10 100 16 TCR = 100% SCR = 100% RQD = 100% 16.5 RC 11 100 18 END OF CORING 18.1

	ECORD OF MONITORIN ject Number: TY910491.8000	G WE	LLI	NO.	<u>Ov</u>	V-25		lling Location: Eastern Fen		<u>N</u>	Logged by:	ARM
	iect Client: City of Temiskaming Shores							lling Method: 200 mm Ho			_	MAT
	ject Name: 2017 Supplemental Hydroge		rogran	n				lling Machine: Track Mount			Reviewed by:	
	iect Location: New Liskeard Landfill, City o				. Onta	rio		te Started: 12 Jun 17	Date Completed: 13 Jun	17	Revision No.:	
-										1		
	LITHOLOGY PROFILE	30	IL SF	MPLI	NG			FIELD T	★ Rinse pH Values	Z	COMMEN 1 riser pipe in bentonite	18
inology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DEPTH (m)	ELEVATION (m)	O SPT	2 4 6 8 10 12 Soil Vapour Reading △ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) 20 40 60 80	INSTRUMENTATION INSTALLATION	1 riser pipe in grout 1 riser pipe in sand 1 slotted pipe in sand	
	Local Ground Surface Elevation: brown SILT & SAND some gravel moist	SS	1	30	14	- - -	ш_		20 40 60 80			
	TIOG			7.5	40					את על על לעל לעל לעל לעל לעל לעל לעל לעל		
		SS	2	75	16	-				בולים להיות להול להיות להול להול להול להול להיות להול להיות להיות להול להיות להול להיות להיות להול להיות להיות בלהיות להול להיות להול להיות להול להול להול להול להול להול להיות להיות להיות להיות להיות להיות להיות להיות להי		
		SS	3	80	52	- - - 2						
						- - -						
						- - - 3						
						- - 4 -						
						<u> </u>						
						5 - - - -						
						— 6 - - - -						
						- - - - - 7						
						-						
						- - - 8						
						<u>-</u> - -						
						- - - 9						
						_ _ _						
						_ 10 						
						-				הם למול למול להיו להול למול למול למול למול למול למול למו		
	■ Amec Foster Wheeler □					F 44		porehole on completion.				

131 Fielding Road
Lively, Ontario
Canada P3Y 1L7
Tel +1(705) 682-2632
Fax +1(705) 682-2260
www.amecfw.com
Continued on Next Page amec foster wheeler

RECORD OF MONITORING WELL No. OW-25-IV Co-Ord. 0597369 E, 5262983 N Project Number: TY910491.8000 Drilling Location: Eastern Fence Line Logged by: ARM LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING **COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading INSTRUMENTATION INSTALLATION riser pipe in bentonite PenetrationTesting 1 riser pipe in grout Ξ O SPT DCPT Sample Number 1 riser pipe in sand **DESCRIPTION** △ parts per million (ppm) 100 200 300 400 ithology Plot Recovery (%) SPT 'N' Value ELEVATION Sample Type MTO Vane* Nilcon Vane* Ξ 1 slotted pipe in sand △ Intact ▲ Remould ♦ Intact Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) DEPTH * Undrained Shear Strength (kPa) 40 60 20 40 60 brown SILT & SAND some gravel moist 12 14 15 16 17 18 19

20

21

22

23

RECORD OF MONITORING WELL No. OW-25-IV Co-Ord. 0597369 E, 5262983 N Project Number: TY910491.8000 Drilling Location: Eastern Fence Line Logged by: ARM LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING **COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading INSTRUMENTATION INSTALLATION 1 riser pipe in bentonite PenetrationTesting 1 riser pipe in grout Ξ O SPT DCPT Sample Number 1 riser pipe in sand 'N' Value △ parts per million (ppm) 100 200 300 400 **DESCRIPTION** ithology Plot Recovery (%) Sample Type MTO Vane* Nilcon Vane* ELEVATION Ξ 1 slotted pipe in sand △ Intact ▲ Remould ♦ Intact Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) DEPTH SPT * Undrained Shear Strength (kPa) 40 60 20 40 60 brown SILT & SAND some gravel moist 24 25 26 27 START OF CORING BEDROCK TCR = 85% SCR = 87% RQD = 64% 28 RC 85 TCR = 100% SCR = 70% RQD = 63% 28.8 29 RC 5 100 30 END OF CORING 30.3

R	RECORD OF MONITORING WELL No. OW-30-III Co-Ord. 0597401 E, 5262825 N											
Project Number: TY910491.8000							Dri	rilling Location: Eastern Fer	nce Line	_ Logged by:	ARM	
Pro	Project Client: City of Temiskaming Shores						Dri	rilling Method: 200 mm He	Compiled by:	MAT		
Pro	Project Name: 2017 Supplemental Hydrogeological Program						Dri	rilling Machine: Track Mour	Reviewed by:	BRG		
Project Location: New Liskeard Landfill, City of Temiskaming Shores, Ontario						rio	Da	ate Started: 15 May 17	Date Completed: 17 May 17	Revision No.:	1, 23/02/18	
LITHOLOGY PROFILE SOIL SAMPLING						FIELD 1	TESTING	COMMEN	TS			
Lithology Plot	DESCRIPTION Local Ground Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DЕРТН (m)	ELEVATION (m)	PenetrationTesting ○ SPT	★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading △ parts per million (ppm)	1 riser pipe in bentonite 1 riser pipe in grout 1 riser pipe in grout 1 riser pipe in sand 1 slotted pipe in sand		
	brown SILTY SAND trace clay and gravel moist to wet	SS	1	67	3	- - - - -						
		ss	2	51	22	_ _ 1		6				
	SAND some silt, trace gravel moist to wet	SS	3	59	54	3 4 5			\$\\\ \langle \			
	■ Amec Foster Wheeler ☑ No					- 7 - 8 - 9 - 10		borehole on completion.	200 - 100 100 100 100 100 100 100 100 100			

RECORD OF MONITORING WELL No. OW-30-III Co-Ord. 0597401 E, 5262825 N Drilling Location: Eastern Fence Line Project Number: TY910491.8000 Logged by: ARM LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING **COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading INSTRUMENTATION INSTALLATION 1 riser pipe in bentonite PenetrationTesting 1 riser pipe in grout Ξ O SPT DCPT 1 riser pipe in sand Sample Number △ parts per million (ppm) 100 200 300 400 **DESCRIPTION** SPT 'N' Value ithology Plot Recovery (%) Sample Type MTO Vane* Nilcon Vane* ELEVATION Ξ 1 slotted pipe in sand △ Intact ▲ Remould ♦ Intact♦ Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) DEPTH * Undrained Shear Strength (kPa) 40 60 20 40 60 brown SAND some silt, trace gravel moist to wet 12 13 14 15 16 17 18 19 20 START CORING 20.0 brown SAND & CLAY some gravel, trace silt compressed, moist 21 RC 22 22.3 brown SANDSTONE oxidation, wet 23 RC 100

RECORD OF MONITORING WELL No. OW-30-III Co-Ord. 0597401 E, 5262825 N Drilling Location: Eastern Fence Line Project Number: TY910491.8000 Logged by: ARM LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING **COMMENTS** 1 riser pipe in bentor ★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading INSTRUMENTATION INSTALLATION 1 riser pipe in bentonite PenetrationTesting Ξ O SPT DCPT 1 riser pipe in sand Sample Number 'N' Value △ parts per million (ppm) 100 200 300 400 **DESCRIPTION** ithology Plot Recovery (%) Sample Type MTO Vane* Nilcon Vane* ELEVATION Ξ 1 slotted pipe in sand △ Intact ▲ Remould ♦ Intact Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) DEPTH SPT * Undrained Shear Strength (kPa) 40 60 20 40 60 brown SANDSTONE oxidation, wet TCR = 100% SCR = 83% 23.9 24 RQD = 0% TCR = 32% SCR = 76% RQD = 7% RC 32 25 TCR = 84% 25.4 SCR = 48% RQD = 24% RC 84 26 TCR = 100% SCR = 85% RQD = 70% 26.6 RC 100 27 TCR = 92% 27.3 SCR = 95% RQD = 96% 28 RC 92 TCR = 100% SCR = 97% 28.8 29 RQD = 95% RC 100 30 END OF CORING 30.4

					V-31						
ect Number: TY910491.8000						Dril	ling Location: Eastern Fen	ce Line		Logged by:	ARM
ct Client: City of Temiskaming Shores						Dril	ling Method: 200 mm Ho	llow Stem Augers		Compiled by:	MAT
ect Name: 2017 Supplemental Hydrogeolo	gical P	rogran	n			Dril	ling Machine: Track Mount	ted Drill		Reviewed by:	BRG
ect Location: New Liskeard Landfill, City of 1	emiska	ıming S	Shores,	, Ontar	io	Dat	te Started: 18 May 17	_ Date Completed: 18 Ma	ıy 17	_ Revision No.:	<u>1, 23/02/18</u>
LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD T			COMMEN	TS
DESCRIPTION ocal Ground Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DЕРТН (m)	ELEVATION (m)	PenetrationTesting ○ SPT	★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading △ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit ★ Passing 75 um (%) O Moisture Content (%) 20 40 60 80	INSTRUMENTATION INSTALLATION	1 riser pipe in bentonite 1 1 riser pipe in grout 1 riser pipe in sand 1 slotted pipe in sand	
150 mm ORGANICS over					-						
grey SILT trace clay moist brown SAND & GRAVEL trace silt and clay increasing silt and clay content with depth wet	AU				3						
END OF BOREHOLE 7.6 (no refusal)											
	ISLT 0.4 SILT 0.4 Frace clay moist or own SAND & GRAVEL race silt and clay noreasing silt and clay content with depth wet END OF BOREHOLE 7.6 (no refusal)	is a min or of the state of the	SILT SILT SILT SILT SILT SILT SILT SILT	iso mm ORGANICS over grey SiLT Frace clay moist rown SAND & GRAVEL Frace silt and clay ncreasing silt and clay content with depth wet AU END OF BOREHOLE no refusal)	ison mm ORGANICS over grey SiLT race clay moist rown SAND & GRAVEL race silt and clay roreasing silt and clay content with depth wet AU END OF BOREHOLE [no refusal] AU	If one of the control	iso mm ORGANICS over grey Sit T race clay notes!	150 mm ORGANICS over grey grey grey grey grey grey grey gr	ISO mm ORGANICS over ISIO T	ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO more CANNCS over ISO MORE CANNCS OVER INCLUDED TO MORE CANNCS OVER ISO MORE CANNCS OVER INCLUDED TO MO	POR CONTROLLE TO THE PROPERTY OF THE PROPERTY

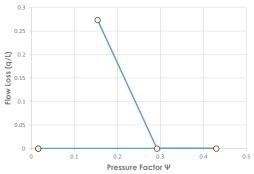
Amec Foster Wheeler Environment & Infrastructure 131 Fielding Road Lively, Ontario Canada P3Y 1L7 Tel +1(705) 682-2632 Fax +1(705) 682-2260 www.amecfw.com

RI	ECORD OF MONITORING	WE	LL I	No.	<u>OV</u>	V-31-I	<u>l</u> Co-Ord. <u>0597398 E, 5262893 N</u>
Pro	ject Number: TY910491.8000						Drilling Location: Eastern Fence Line Logged by: ARM
Pro	ject Client: City of Temiskaming Shores						Drilling Method: 200 mm Hollow Stem Augers Compiled by: MAT
Pro	ject Name: 2017 Supplemental Hydrogeolo	ogical P	rogran	n			Drilling Machine: Track Mounted Drill Reviewed by: BRG
Pro	ject Location: New Liskeard Landfill, City of	Гетіska	ming S	Shores	, Ontai	rio	Date Started: 18 May 17 Date Completed: 18 May 17 Revision No.: 1, 23/02/18
	LITHOLOGY PROFILE	sc	DIL SA	MPLI	NG		FIELD TESTING COMMENTS
							PenetrationTesting * Rinse pH Values 2 4 6 8 10 12 - 1 riser pipe in bentonite - 1 riser pipe in grout
t	DESCRIPTION	و ا	nber	(%	e		E O SPT ● DCPT Soil Vapour Reading
gy PI		e Typ	e Nu	ery (9	ı' Val	Ε.	MTO Vane* Nilcon Vane* 100 200 300 400
Lithology Plot	Local Ground Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DEPTH (m)	PenetrationTesting SPT DCPT MTO Vane* Nilcon Vane* Intact ↑ Intact ↑ Intact ↑ Remould ↑ Remould ↑ Remould ↑ Remould ↑ Passing 75 um (%) Undrained Shear Strength (kPa) 20 40 60 80 * Rinse pH Values 2 4 6 8 10 12 2 7 4 6 8 10 12 3 1 riser pipe in bentonite 1 1 riser pipe in prout VAO LAVO LAVO LAVO LAVO VAO VAO
M	150 mm ORGANICS over	1 "	0,		0,	-	
Ш	grey \SILT 0.4	ss	1	100	24	_	
	trace clay moist					-	
	brown SAND & GRAVEL	ss	2	5	67	- - 1	
	trace silt and clay increasing silt and clay content with depth		_		0.	-	
	wet					-	
		SS	3	33	40		
						<u> </u>	
						Ė	
		SS	4	100	48	-	
						_ 3	
		ss	5	16	41	-	
						-	
		ss	6	100	44	4 	
						E	
						<u> </u>	
		SS	7	100	40	- 5	
						-	
						- - 6	
						F °	
		SS	8	59	40	_	
						-	
						_ _ 7	
						_	
						-	
		ss	9	100	27	- - - 8	
						ŧ	
						_	
						Ė	
						9	
		ss	10	100	38	E	
						Ē	
						_ 10	
						F	
		\perp				F	
	10.7	/				F	
أكلاما	Amec Foster Wheeler	o freesta	nding gı	roundwa	iter mea	11 sured in op	en borehole on completion.
	Environment & Infrastructure 131 Fielding Road Lively, Ontario						
am	Canada P3Y 1L7 Borel	nole details	s as pres	ented, do	not cons	stitute a thoro	bugh understanding of all potential conditions present. Also, borehole information should be hich it was commissioned and the accompanying 'Explanation of Borehole Log'. Scale: 1:60
wh	Fax +1(705) 682-2260 www.amecfw.com	conjunct	WILI	THE CHANGE	orni etildi	. oportion W	Page: 1 of 2

Canada P3Y 1L7
Tel +1(705) 682-2632
Fax +1(705) 682-2260
www.amecfw.com
Continued on Next Page

Project Number: TY910491.8000 Drilling Location: Eastern Fence Line Logged by: ARM LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING **COMMENTS** ★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading INSTRUMENTATION INSTALLATION 1 riser pipe in bentonite PenetrationTesting 1 riser pipe in grout Ξ O SPT DCPT 1 riser pipe in sand Sample Number △ parts per million (ppm) 100 200 300 400 **DESCRIPTION** SPT 'N' Value ithology Plot Recovery (%) Sample Type MTO Vane* Nilcon Vane* ELEVATION Ξ 1 slotted pipe in sand △ Intact ▲ Remould ♦ Intact Remould ▲ Lower Explosive Limit * Passing 75 um (%) ○ Moisture Content (%) DEPTH * Undrained Shear Strength (kPa) 40 60 20 40 60 brown SILTY SAND some gravel moist 12 40 SS 12 59 13 SS 72 14 15 15.3 brown SAND & GRAVEL SS d 42 78 14 END OF BOREHOLE 15.9 DUE TO REFUSAL ON POSSIBLE COBBLE / BOULDERS OR BEDROCK

RECORD OF MONITORING WELL No. OW-31-II Co-Ord. 0597398 E, 5262893 N


Appendix C

Hydraulic Conductivities

PROJECT NO.:	TY91049.8000	TOP OF TEST INTERVAL:	59 FEET	
CLIENT:	City of Temiskaming Shores	BOTTOM OF TEST INTERVAL:	59.4 FEET	INTERVAL LENGTH: 0.1 METRES
LOCATION:	New Liskeard	GAUGE HEIGHT:	0.75 m above ground	WUUU.
BOREHOLE ID:	OW10-III	WATER LEVEL:	m below ground	
TEST DATE:	08-Jun-17	BOREHOLE DIP:	90 degrees	DIP WATER LEVEL: 0.90 m below ground
TEST NO.:	1	BOREHOLE RADIUS:	0.048 METRES	

	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)
	20	137.90	154.08	40	275.79	291.98	60	413.69	429.87	0	0.00	16.19	0	0.00	16.19
Time	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take
(min)	(m³)	(litres)	(litres)	(m³)	(litres)	(litres)	(m³)	(litres)	(litres)	(m³)	(litres)	(litres)	(m³)	(litres)	(litres)
0	36.039	36039		36.04	36040		36.04	36040		0			0		
1	36.039	36039	0	36.04	36040	0	36.04	36040	0	0			0		
5	36.039	36039	0	36.04	36040	0	36.04	36040	0	0			0		
10	36.039	36039	0	36.04	36040	0	36.04	36040	0	0			0		
30	36.04	36040	1	36.04	36040	0	36.04	36040	0	0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		

1				1
Pressure Stage				
0.00	0.50	1.00 LUGEON VALUE	1.50	2.00
0.3		LUGEON VALUE		

AVERAGE FLOW (litres / min)	0.03	AVERAGE FLOW (litres / min)	0.00	AVERAGE FLOW (litres / min)	0.00	AVERAGE FLOW (litres / min)		AVERAGE FLOW (litres / min)	
LUGEON VALUE	1.77	LUGEON VALUE	0.00	LUGEON VALUE	0.00	LUGEON VALUE	INCOMPLETE DATA	LUGEON VALUE	INCOMPLETE DATA
HYDRAULIC CONDUCTIVITY K (m/s)	4.30E-08	HYDRAULIC CONDUCTIVITY K (m/s)	0.00E+00	HYDRAULIC CONDUCTIVITY K (m/s)	0.00E+00	HYDRAULIC CONDUCTIVITY K (m/s)	INCOMPLETE DATA	HYDRAULIC CONDUCTIVITY K (m/s)	INCOMPLETE DATA

Interpretation References:

Houlsby, A. (1976). Routine Interpretation of the Lugeon Water-Test. Q. J. Eng. Geol. Vol. 9, pp. 303-313.

Quiñones-Rozo, Camilo (2010): Lugeon test interpretation, revisited. In: Collaborative Management of Integrated Watersheds, US Society of Dams, 30th Annual Conference, S. 405–414.

INTERPRETED K:		1.43E-08	(m/s)
INTERPRETED FLOW:		NO FLOW	
TEST BY:	EHS		
REVIEWED BY:	BG		

PROJECT NO.:	TY91049.8000	TOP OF TEST INTERVAL:	EET FEET		
CLIENT:	City of Temiskaming Shores	BOTTOM OF TEST INTERVAL:	FEET FEET	INTERVAL LENGTH: 6.1 METRES	
LOCATION:	New Liskeard	GAUGE HEIGHT:	0.75 m above ground	INTERVAL LENGTH: 6.1 METRES	
BOREHOLE ID:	OW10-III	WATER LEVEL:	m below ground		
TEST DATE:	08-Jun-17	BOREHOLE DIP:	90 degrees	DIP WATER LEVEL: 0.90 m below ground	
TEST NO.:	1	BOREHOLE RADIUS:	0.048 METRES		

	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)
	20	137.90	154.08	40	275.79	291.98	60	413.69	429.87	0	0.00	16.19	0	0.00	16.19
Time	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take
(min)	(m³)	(litres)	(litres)	(m³)	(litres)	(litres)	(m³)	(litres)	(litres)	(m³)	(litres)	(litres)	(m³)	(litres)	(litres)
0	36.04	36040		36.04	36040		36.041	36041		0			0		
1	36.04	36040	0	36.04	36040	0	36.041	36041	0	0			0		
5	36.04	36040	0	36.04	36040	0	36.041	36041	0	0			0		
10	36.04	36040	0	36.04	36040	0	36.041	36041	0	0			0		
30	36.04	36040	0	36.041	36041	1	36.041	36041	0	0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		

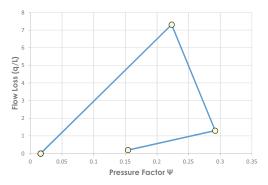
Pressure Stage				
5				
0.00	0.01	0.01	0.02	0.02
0.005		LUGEON VALUE		
0.006		9	2	
/b) s				
Plow Loss (q/L) 0.004				
€ 0.002				
0.001				

Pressure Factor Ψ

AVERAGE FLOW (litres / min)	0.00	AVERAGE FLOW (litres / min)	0.03	AVERAGE FLOW (litres / min)	0.00	AVERAGE FLOW (litres / min)		AVERAGE FLOW (litres / min)	
LUGEON VALUE	0.00	LUGEON VALUE	0.02	LUGEON VALUE	0.00	LUGEON VALUE	INCOMPLETE DATA	LUGEON VALUE	INCOMPLETE DATA
HYDRAULIC CONDUCTIVITY K (m/s)	0.00E+00	HYDRAULIC CONDUCTIVITY K (m/s)	2.36E-09	HYDRAULIC CONDUCTIVITY K (m/s)	0.00E+00	HYDRAULIC CONDUCTIVITY K (m/s)	INCOMPLETE DATA	HYDRAULIC CONDUCTIVITY K (m/s)	INCOMPLETE DATA

Interpretation References:

Houlsby, A. (1976). Routine Interpretation of the Lugeon Water-Test. Q. J. Eng. Geol. Vol. 9, pp. 303-313.


Quiñones-Rozo, Camilo (2010): Lugeon test interpretation, revisited. In: Collaborative Management of Integrated Watersheds, US Society of Dams, 30th Annual Conference, S. 405–414.

INTERPRETED K:		7.87E-10	(m/s)
INTERPRETED FLOW:		NO FLOW	
TEST BY:	EHS		
REVIEWED BY:	BG		

PROJECT NO.:	TY91049.8000	TOP OF TEST INTERVAL:	10 FEET	
CLIENT:	City of Temiskaming Shores	BOTTOM OF TEST INTERVAL:	27 FEET	INTERVAL LENGTH: 5.2 METRES
LOCATION:	New Liskeard	GAUGE HEIGHT:	0.75 m above ground	
BOREHOLE ID:	OW10-III	WATER LEVEL:	m below ground	
TEST DATE:	08-Jun-17	BOREHOLE DIP:	90 degrees	DIP WATER LEVEL: 0.90 m below ground
TEST NO.:	1	BOREHOLE RADIUS:	0.048 METRES	

	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)	GUAGE PRESSURE (PSI)	GUAGE PRESSURE (KPA)	EFFECTIVE TEST ZONE PRESSURE (KPA)
	20	137.90	154.08	40	275.79	291.98	30	206.84	223.03	0	0.00	16.19	0	0.00	16.19
Time	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take	Flowmeter	Flowmeter	Take
(min)	(m³)	(litres)	(litres)	(m ³)	(litres)	(litres)	(m³)	(litres)	(litres)	(m³)	(litres)	(litres)	(m ³)	(litres)	(litres)
0	36.041	36041		36.053	36053		36.254	36254		0			0		
1	36.042	36042	1	36.055	36055	2	36.274	36274	20	0			0		
5	36.047	36047	5	36.09	36090	35	36.429	36429	155	0			0		
10	36.051	36051	4	36.184	36184	94	36.633	36633	204	0			0		
30	0			36.254	36254	70				0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		
0	0			0			0			0			0		

Pressure Stage	1						ı
5 0.00	5.00	10.00	15.00 LUGEON	20.00 N VALUE	25.00	30.00	35.00

AVERAGE FLOW (litres / min)	1.00	AVERAGE FLOW (litres / min)	6.70	AVERAGE FLOW (litres / min)	37.90	AVERAGE FLOW (litres / min)		AVERAGE FLOW (litres / min)	
LUGEON VALUE	1.25	LUGEON VALUE	4.43	LUGEON VALUE	32.80	LUGEON VALUE	INCOMPLETE DATA	LUGEON VALUE	INCOMPLETE DATA
HYDRAULIC CONDUCTIVITY K (m/s)	1.53E-07	HYDRAULIC CONDUCTIVITY K (m/s)	5.40E-07	HYDRAULIC CONDUCTIVITY K (m/s)	4.00E-06	HYDRAULIC CONDUCTIVITY K (m/s)	INCOMPLETE DATA	HYDRAULIC CONDUCTIVITY K (m/s)	INCOMPLETE DATA

Houlsby, A. (1976). Routine Interpretation of the Lugeon Water-Test. Q. J. Eng. Geol. Vol. 9, pp. 303-313.

Quiñones-Rozo, Camilo (2010):Lugeon test interpretation, revisited. In: Collaborative Management of Integrated Watersheds, US Society of Dams, 30th Annual Conference, S. 405–414.

INTERPRETED K:		1.56E-06	(m/s)
INTERPRETED FLOW	:	NO FLOW	
TEST BY:	EHS		
REVIEWED BY:	BG		

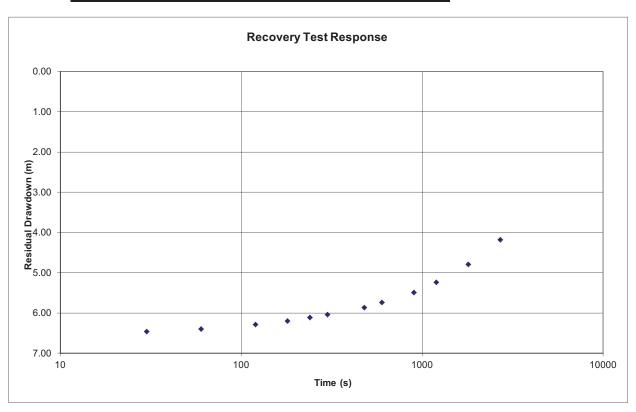


Hydraulic Conductivity Calculations - Hyorslev

JOB #: TY910491.8000 WELL OW-25-IV

STATIC LEVEL (m top) 5.7300
BOREHOLE DIAMETER (m) 0.2000
RISER DIAMETER (m) 0.0510
FILTER PACK LENGTH (m) 3.5000

	Time	Water Level	Drawdown	Hydraulic
(:	seconds)	(m)	(m)	Conductivity
				(m/s)
min				
	0	0.00	5.73	
	30	0.25	5.48	4.911E-07
	60	0.38	5.35	2.643E-07
	120	0.55	5.18	1.777E-07
	300	0.90	4.83	1.284E-07
	420	1.07	4.66	9.861E-08
	600	1.30	4.43	9.287E-08
	900	1.57	4.16	6.923E-08
	1980	2.26	3.47	5.546E-08
	2700	2.58	3.15	4.438E-08
	3600	2.87	2.86	3.544E-08
	17700	4.39	1.34	1.776E-08
Geometric Me	an of Hydrai	ulic Conductivit	y (m/s):	8.94E-08



Hydraulic Conductivity Calculations - Hyorslev

JOB #: TY910491.8000 WELL OW-30-III

STATIC LEVEL (m top) 6.6500
BOREHOLE DIAMETER (m) 0.2000
RISER DIAMETER (m) 0.0510
FILTER PACK LENGTH (m) 3.5000

Time	Water Level	Drawdown	Hydraulic
(seconds)	(m)	(m)	Conductivity
			(m/s)
min			
0	0.00	6.65	
30	0.19	6.46	3.191E-07
60	0.25	6.40	1.027E-07
120	0.36	6.29	9.543E-08
180	0.45	6.20	7.933E-08
240	0.54	6.11	8.049E-08
300	0.61	6.04	6.343E-08
480	0.78	5.87	5.238E-08
600	0.91	5.74	6.164E-08
900	1.16	5.49	4.902E-08
1200	1.41	5.24	5.131E-08
1800	1.86	4.79	4.942E-08
2700	2.47	4.18	4.999E-08
3600	3.15	3.50	6.515E-08
Geometric Mean of Hydra	ulic Conductivity	y (m/s):	7.29E-08

Appendix D

Summary of Groundwater Elevations

The City of Temiskaming Shores 2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Summary of Groundwater Elevations

	UTM Cod	ordinates	Measuring Measuring														Flev	ation of \	Vater (m	asi) ¹													
Monitor No.	Fastina	No othio o	Point Elevation	4.4	lul 44	C 44		1.1.45	0 45	M 40	1.1.40	C 40	M 47	lul 47	0 47	M 40					0 40	l 00	A 00	0-4.00	l 04	A 04	0-4.04	M 00	A 00	0-4-00	l 00	A 02	0-4-00
011/ 45 1	Easting	Northing	(masl) ¹	Jun-14	Jul-14	Sep-14	-		1	May-16	Jul-16	Sep-16	May-17	Jul-17	Sep-17	May-18		Oct-18			Sep-19	Jun-20	_			Aug-21		May-22	Aug-22	Oct-22			Oct-23
OW-1R-II	596848 596848	5262959 5262959	254.17 254.06	251.84 251.61	251.22		251.60			251.90 251.55	251.20	250.61 250.72			251.59 251.56		251.38 251.22											252.34 251.56		251.58 251.56			252.43 252.33
OW-1R-III	596848	5262959	254.06	252.97	252.16						252.99	251.96		252.36			252.25		252.82		252.37			252.75				252.46		252.55			
OW-2B	596919	5263040	247.26	ND	246.31														Decomn														
OW-2C	596919	5263040	247.14	ND	245.11															nissioned													
OW-3A	596974	5263111	244.55	243.28	242.41														Decomn														
OW-3B OW-4A	596974 596978	5263111 5262870	244.50 251.20	243.55 250.14	242.67															nissioned nissioned													
OW-4A OW-4C	596978	5262870	251.20	249.52	249.23														Decomin														
OW-5A	596879	5262883	253.48	250.32	250.09															nissioned													
OW-6A	596973	5262769	254.32	253.15	252.93														Decomn	nissioned													
OW-6B	596973	5262769	254.35	252.34	252.28															nissioned													
OW-7A	596895	5262781	255.83	252.45	252.22															nissioned													
OW-7B	596895	5262781	256.01 255.90	252.51 248.30	252.26 248.13														Decomn	nissioned													
OW-7C OW-8A	596895 597088	5262781 5262770	255.90	248.30															Decomin														
OW-8B	597088	5262770	249.54	240.13	240.03	L												Desti	oyed	iissiorieu													
OW-9A	597071	5262876	247.25	245.45	245.45															nissioned													
OW-9B	597071	5262876	247.33	245.14															Decomn														
OW-10-I	596724	5263229	251.67	249.76	248.82	249.78	249.68	248.85	249.28	249.79	247.85	248.52	249.64		249.43	249.57	248.63	249.61	249.83	248.83	249.37	249.69	249.58	249.91	249.07	249.79			248.53			249.43	249.84
OW-10-II	596724	5263229	251.69	250.31	248.99	250.14	250.16	248.92	249.71	250.27	248.86	248.50	250.25	249.56	249.91	250.22	248.63	249.97	250.45	248.84	249.65	250.12	249.85	250.39	249.32	250.04	249.94		248.48			249.59	250.33
OW-10-III	596724	5263229	ND												ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OW-11-I OW-11-II	597001 597001	5263159 5263159	242.93 242.82	241.18			241.13	240.47		240.93 241.34	240.54	238.90		240.86 240.76		240.90		240.71 240.85	240.71	240.54 240.51	240.48		240.94			240.83		241.00 240.98	240.61	240.79 240.83	240.91		240.93 241.09
OW-11-II	597007	5262919	242.82	246.73	246.69		241.34				246.40	246.48		246.83	246.92	247.03		240.85	247.14	246.65	240.79					240.98			246.52			247.16	247.32
OW-12-II	597007	5262919	248.95	246.86	246.69						246.46	246.55		246.85	246.98	247.11		247.02	247.16	246.59	247.07	247.17				247.15			246.55				247.21
OW-13-I	596602	5262921	273.70	264.94	264.02	264.71			264.27		264.13	263.78	265.02	264.26		265.31		264.03	266.28	264.12	263.85				264.14		264.45		263.86		264.74		265.97
OW-13-II	596602	5262921	273.85	268.66	268.59	268.64	268.67		268.47		268.57	268.52	268.62		268.61		268.53	268.47		268.59	268.53	268.64	268.63	268.67	268.39	268.64	268.60	268.64		268.6	268.69	268.57	268.68
OW-14-I	596977	5262674	258.81	253.95	253.76						253.77	253.78		253.95				253.00			254.02				253.72	ND			253.85	254.14			254.30
OW-14-II	596977	5262674	258.72	255.09	254.88	254.99	254.97	254.84	254.50	255.12	254.86	254.83	255.03	254.88	254.88	255.04	254.86			254.82	254.88	254.97	254.92	255.13	254.64	ND	254.96	255.02	255.05	254.89	254.99	254.91	255.04
OW-15-I	597059	5262605	254.32															Desti															
OW-15-II OW-16-I	597059 597372	5262605	254.40 238.59	225.16	22466	224.04	225.22	224.04	224.20	225.20	224.60	234.14	224.04	224.04	226.06	224.04	224 57	Desti		225.00	224.40	225 42	225 42	225.02	225 42	225 40	224.00	225 42	221 72	224.00	225.20	224.75	224.75
OW-16-II	597372	5263132 5263132	238.73	235.16	232.74	233.95			234.29	235.29	234.14	234.14	236.08		234.44		232.38	233.30	236.23	233.63	232.67	236.28						235.42				232.54	
OW-16-III	597372	5263132	238.94	236.74	236.27	236.81			236.82		235.64	235.98	237.38	236.59		237.23	235.58	237.29	237.64	235.03	237.94	238.04			237.35			200.41	202.1	Dama		202.04	200.20
OW-17-I	597359	5263362	230.08	229.60	229.23	229.34			228.93		229.21	228.68	229.39	229.24	229.14	229.44	229.00	228.58	229.71	227.78		229.46			229.34			229.62	228.91	229.01	229.36	228.88	229.30
OW-17-II	597359	5263362	229.88	228.51	226.16	227.31	228.64	227.54	226.38	228.67	226.29	226.48	228.21	227.59	226.96	228.42	227.09	226.50	228.78	229.04	226.44	228.21	227.63	227.02	228.13	227.66	226.73	228.67	226.69	226.02	227.81	226.58	226.49
OW-17-III	597359	5263362	230.04	228.54					<226.26		227.76	<226.26		226.89	<226.26			<226.26	228.91	226.28	<226.26				227.48	227.07	<226.26				227.15	ND	226.47
OW-18-I	596771	5262904	280.52	<273.48			8 <273.48			<273.48		<273.48			<273.48			<273.51	<273.49				<273.50		<273.51	<273.51	<273.51		ND	ND	ND	ND	273.37
OW-20-I	596970	5262468	259.31	257.67		257.86			257.09		257.28	256.82		257.61	257.82	257.80		257.61	258.00	257.35		257.68			257.63	257.84	257.70		257.06		257.92		258.07
OW-20-II OW-21-I	596970 597141	5262468 5262527	259.19 ND	258.01 252.54	257.45 Destroyed		257.98 ND	257.52 ND	257.55 ND	258.08 ND	257.44 ND	256.95 ND	258.12 ND	257.75 ND	257.92 ND	258.14 ND	257.28 ND	257.77 ND	258.28 ND	257.43 ND	ND	257.98 ND	257.86 ND	258.17 ND	ND	ND	257.84 ND	257.89 ND	257.09 ND	258.03 ND	257.47 ND	257.29 ND	258.05 ND
OW-21-1	596974	5262627	258.63	256.13	255.59	256.01			255.25		255.61	255.15	256.12		255.90	256.17	255.48	255.67	256.35	255.62	255.48	256.02	255.93		255.60	255.94	255.89		255.34		255.83		256.13
OW-23-I	597678	5263239	202.71	197.80	197.21	197.35			196.68		197.24	196.54	196.82					195.84	197.28	196.47	195.90				197.30	197.03				196.35		Destroyed	
OW-23-II	597678	5263239	203.02		194.78	193.80			192.56		195.14	192.62	196.69			196.48	192.06	192.01	196.95	195.45	192.71	197.05	191.66	189.69	197.39	192.36	192.44		192.42	191.93			
OW-24-I	597372	5263251	237.05		royed	230.00	230.21	229.95	229.05	229.35	229.64	229.15	229.99	229.83	229.75			229.12		229.80	229.39			230.16		230.35		230.42		229.78	230.28	229.65	230.14
OW-24-II	597372	5263251	236.99		royed	235.00			234.87		232.97	232.18		234.20		235.27		235.22	235.16	233.16	234.68	234.45	234.61	235.61	234.22	235.20			233.00			234.06	
OW-24-III	597372	5263251	236.96	234.89	233.77	234.93			234.63	234.84	232.72	231.97	234.72			235.28	233.30	235.23	235.46	233.45	235.06	234.76	234.92	235.90	234.51	235.51	235.59		233.33	235.57		Damaged	
OW-25-I	597370	5263000	240.33		234.56	234.90					234.49	233.98	234.82					233.90	235.15	234.66	234.19	234.88	234.82						234.25				
OW-25-II OW-25-III	597370 597370	5263000 5263000	240.38 240.36	235.98	235.13	235.68			235.53		236.08	235.05 235.71		235.27 237.94	236.11	235.02		235.37 238.78	236.22	233.53	234.89		235.28 238.17	235.78	235.99	235.61	235.49		236.58		235.97		235.60 238.72
OW-25-III OW-25-IV	597370	5263000	239.89	230.18	231.34	230.07	230.27	231.70	230.00	230.02	231.30	233.71	230.18	231.94	234.05			233.62	234.64	234.39	233.89	234.25	234.30		234.61	234.66			234.09		<239.89		237.84
OW-30-I	597401	5262836	241.43			228,48	236.95	229.26	231,29	237.54	232.53	230.69	234.73	232.33	232.13	234.90		231.36	235.33	231.05	230.25					234.16			234.24		236.47		237.50
OW-30-II	597401	5262836	241.56			234.55				238.53				238.53				238.36	239.91	238.35	238.04					239.13							239.73
OW-30-III	597401	5262836	241.35												234.43			233.84	235.06	234.60	234.10		234.73		235.04	235.03			234.24		234.70		234.69
OW-31-I	597398	5262893	240.19												238.70			232.67	233.70	232.72		233.69		232.75		232.81			233.55		233.78		232.70
OW-31-II	597398	5262893	240.20					1				1			236.89	234.49	235.58	236.57	235.70	236.08	236.53	235.39	236.41	237.27	235.73	236.78	237.31	235.3	236.67	237.00	235.72	236.67	237.34

Notes:
(1) masl - metres above sea level.
(2) ND - no current elevation data available.
(4) mbmp - metres below measuring point.

Appendix E

2023 Laboratory Analytical Reports

CA15703-JUN23 R1

TY131010.2023.1000.1142.5730-00, New Liskeard SW

Prepared for

WSP Environment & Infrastructure Canada Limited

First Page

CLIENT DETAILS		LABORATORY DETAI	LS
Client	WSP Environment & Infrastructure Canada Limited	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	131 Fielding Road	Address	185 Concession St., Lakefield ON, K0L 2H0
	Lively, ON		
	P3Y 1L7. Canada		
Contact	Dominique Gagnon	Telephone	705-652-2000
Telephone	705-665-0159	Facsimile	705-652-6365
Facsimile		Email	Maarit.Wolfe@sgs.com
Email	Dominique.Gagnon@wsp.com; meg.russell@wsp.com	SGS Reference	CA15703-JUN23
Project	TY131010.2023.1000.1142.5730-00, New Liskeard SW	Received	06/21/2023
Order Number		Approved	06/28/2023
Samples	Surface Water (6)	Report Number	CA15703-JUN23 R1
		Date Reported	06/28/2023

COMMENTS

Temperature of Sample upon Receipt: 4

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

Member of the SGS Group (SGS SA)

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	
QC Summary	
Legend	12
Annexes	13

SGS

Client: WSP Environment & Infrastructure Canada Limited

Project: TY131010.2023.1000.1142.5730-00, New Liskeard SW

Project Manager: Dominique Gagnon

Samplers: Aedan Lemon

IATRIX: WATER			Sample Number	6	7	8	9	10	11
			Sample Name	SW-1	SW-2	SW-4	SW-5	SW-6	SW DUP
			Sample Matrix	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
			Sample Date	19/06/2023	19/06/2023	19/06/2023	19/06/2023	19/06/2023	19/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result
eneral Chemistry									
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑	< 4↑	< 4↑	< 4↑	< 4↑	< 4↑
Total Suspended Solids	mg/L	2		22	2	23	46	42	39
Alkalinity	mg/L as CaCO3	2		64	341	323	26	26	25
Conductivity	uS/cm	2		153	780	3580	75	72	77
Total Dissolved Solids	mg/L	30		123	431	2050	66	77	83
Chemical Oxygen Demand	mg/L	8		20	14	26	19	23	38
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.18	0.25	< 0.05	0.14	0.25	0.14
Ammonia+Ammonium (N)	as N mg/L	0.04		0.06	0.05	0.08	< 0.04	< 0.04	0.04
etals and Inorganics									
Sulphate	mg/L	2		6	< 2	15	7	6	6
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.3↑	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		< 0.06	< 0.06	< 0.06	0.17	0.18	0.17
Nitrate + Nitrite (as N)	as N mg/L	0.06		< 0.06	< 0.06	<0.3↑	0.17	0.18	0.17
Arsenic (total)	mg/L	0.0002		0.0011	0.0009	0.0012	0.0013	0.0011	0.0012
Barium (total)	mg/L	0.00008		0.0148	0.0204	0.0857	0.0287	0.0201	0.0228
Boron (total)	mg/L	0.002		0.010	0.018	0.019	0.007	0.006	0.006
Cadmium (total)	mg/L	0.000003		0.000008	< 0.000003	0.000010	0.000035	0.000035	0.000037
Chromium (total)	mg/L	0.00008		0.00208	0.00044	0.00126	0.00633	0.00343	0.00426
Copper (total)	mg/L	0.0002		0.0020	0.0012	0.0021	0.0070	0.0041	0.0048
Iron (total)	mg/L	0.007		0.828	0.158	0.845	2.66	1.45	1.80
Lead (total)	mg/L	0.00009		0.00038	< 0.00009	0.00019	0.00238	0.00076	0.00172
Phosphorus (total)	mg/L	0.003		0.030	0.027	0.067	0.061	0.047	0.050

CA15703-JUN23 R1

Client: WSP Environment & Infrastructure Canada Limited

Project: TY131010.2023.1000.1142.5730-00, New Liskeard SW

Project Manager: Dominique Gagnon

Samplers: Aedan Lemon

MATRIX: WATER			Sample Number	6	7	8	9	10	11
			Sample Name	SW-1	SW-2	SW-4	SW-5	SW-6	SW DUP
			Sample Matrix	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
			Sample Date	19/06/2023	19/06/2023	19/06/2023	19/06/2023	19/06/2023	19/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result
letals and Inorganics (continued)									
Zinc (total)	mg/L	0.002		0.003	0.004	0.003	0.012	0.008	0.008
Other (ORP)									
рН	No unit	0.05		7.96	8.20	8.10	7.56	7.58	7.67
Chloride	mg/L	1		7	36	1400	6	3	5
Mercury (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
'henols									
4AAP-Phenolics	mg/L	0.001		< 0.001	< 0.001	0.003	< 0.001	< 0.001	< 0.001

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate LCS		S/Spike Blank		M	latrix Spike / Re	f.	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0538-JUN23	mg/L as	2	< 2	0	20	100	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	·.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0221-JUN23	mg/L	0.04	<0.04	ND	10	106	90	110	97	75	125
Ammonia+Ammonium (N)	SKA0246-JUN23	mg/L	0.04	<0.04	1	10	99	90	110	97	75	125

20230628 5 / 13

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5099-JUN23	mg/L	1	<1	ND	20	103	80	120	119	75	125
Sulphate	DIO5099-JUN23	mg/L	2	<2	ND	20	112	80	120	120	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike Recovery	Recove	=	Spike Recovery		ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0681-JUN23	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0681-JUN23	mg/L	0.03	<0.03	ND	20	98	90	110	100	75	125
Nitrate (as N)	DIO0681-JUN23	mg/L	0.06	<0.06	1	20	97	90	110	97	75	125
Nitrite (as N)	DIO0706-JUN23	mg/L	0.03	<0.03	8	20	100	90	110	103	75	125

20230628 6 / 13

QC SUMMARY

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-007

Parameter	QC batch	Units	·		LC	S/Spike Blank		M	latrix Spike / Ref	ī		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0047-JUN23	mg/L	2	< 2	22	30	110	70	130	NV	70	130

Chemical Oxygen Demand

Method: HACH 8000 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-009

Parameter	QC batch	Units	RL	·		licate	LC	S/Spike Blank		M	atrix Spike / Ref	•
	Reference	erence Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits 6)		
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Chemical Oxygen Demand	EWL0530-JUN23	mg/L	8	<8	4	20	106	80	120	105	75	125
Chemical Oxygen Demand	EWL0559-JUN23	mg/L	8	<8	12	20	110	80	120	104	75	125
Chemical Oxygen Demand	EWL0568-JUN23	mg/L	8	<8	ND	20	104	80	120	94	75	125

20230628 7 / 13

QC SUMMARY

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL			plicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference	Blank		RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-	
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Conductivity	EWL0538-JUN23	uS/cm	2	< 2	0	20	100	90	110	NA		

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate LCS/S		S/Spike Blank		М	atrix Spike / Re	f.	
	Reference			Blank	RPD	RPD AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (dissolved)	EHG0045-JUN23	mg/L	0.00001	< 0.00001	ND	20	93	80	120	88	70	130

20230628 8 / 13

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Arsenic (total)	EMS0213-JUN23	mg/L	0.0002	<0.0002	4	20	101	90	110	110	70	130
Barium (total)	EMS0213-JUN23	mg/L	0.00008	<0.00008	2	20	94	90	110	126	70	130
Boron (total)	EMS0213-JUN23	mg/L	0.002	<0.002	6	20	99	90	110	92	70	130
Cadmium (total)	EMS0213-JUN23	mg/L	0.000003	<0.000003	15	20	100	90	110	107	70	130
Chromium (total)	EMS0213-JUN23	mg/L	0.00008	<0.00008	4	20	102	90	110	116	70	130
Copper (total)	EMS0213-JUN23	mg/L	0.0002	<0.0002	4	20	103	90	110	111	70	130
Iron (total)	EMS0213-JUN23	mg/L	0.007	<0.007	3	20	104	90	110	125	70	130
Lead (total)	EMS0213-JUN23	mg/L	0.00009	<0.00009	8	20	100	90	110	96	70	130
Phosphorus (total)	EMS0213-JUN23	mg/L	0.003	<0.003	ND	20	99	90	110	NV	70	130
Zinc (total)	EMS0213-JUN23	mg/L	0.002	<0.002	3	20	98	90	110	107	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
РН	EWL0538-JUN23	No unit	0.05	NA	0		99			NA		

20230628 9 / 13

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0237-JUN23	mg/L	0.001	<0.001	ND	10	100	80	120	92	75	125

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-IENVIEWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	CS/Spike Blank		LCS/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)		
						(%)	Recovery (%)	Low	High	(%)	Low	High		
Total Dissolved Solids	EWL0515-JUN23	mg/L	30	<30	0	20	101	80	120	NA				
Total Dissolved Solids	EWL0517-JUN23	mg/L	30	<30	0	20	102	80	120	NA				

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank	Spike Blank		atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0560-JUN23	mg/L	2	< 2	0	10	98	90	110	NA		

20230628 10 / 13

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0238-JUN23	mg/L	0.05	<0.05	ND	10	102	90	110	100	75	125
Total Kjeldahl Nitrogen (N)	SKA0253-JUN23	mg/L	0.05	<0.05	ND	10	101	90	110	103	75	125

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230628

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20230628 12 / 13

	222	Re	equest for Laborator	y Services	and CHA	IN OF C	USTOD	Y (Gene	eral)				
	60	SGS Environmental Services - Lakefield								365 Web: v	ww.ca.sgs.co	om {4}	
		SGS Environmental Services - London:				2-4500 Toll F	ree: 877-84	3-8060 Fax	:: 519-672-0	361 Web: w	ww.ca.sgs.co	om {4}	
		JUN 2, 1 2023 to	Laboratory Info	ormation Sec	10.50	00	116	20	0	14 11	^ 2 2		
-122	ed Date (mm/dd/yy	111.			LAB LIMS		(10	TU	2-	ruv	123		
Receive	ed Time (After Hou	ırs Only):	Billing & Repo		Temperatu ation	ire Upon F	Receipt (°	C): L	131	6			
to	Company:	WSP EAS Canada Limi	ited			Quote #:			2021 12	40			
Invoice/Receipt to {3}:	Attention:	Dominique Gagnon				Attached	d Parame	ter List:	19	46	☐ YES		NO
/Rec {3}:	Address:	131 Fielding Rd Lively, Ontario							Turnara	und Time			
oice	Address.	P3Y 1L7				le *Pueh	Turnaro	und Tim	Salut raptional	March Charles		☐ YES	□ NO
Inv	Email:	dominique.gagnon@wsp.com				Specify:	Turriaro	una min	e Kequii	eu:			
Projec	t Name/Number:	TY131010 - NEW LISKEARD SW	P.O. #:			* Rush TA R	lequests Req	uire Lab Ap _l	proval				
		Client I	nformation/Report To:							Client L	.ab #:		
Co	mpany Name:	WSP				Phone	Numbei	:		705-68	2-2632		
(Contact Name:					Fax Nu	mber:						
	Address:					E-mail:							
	Copy to:								7.0				
			Sample	nformation									
						(pleas		the an		equired	ted below a each san		ck off
		Sample Identifier	Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Comprehensive SW-Column 3							
SW-1			01/19/23	5:59pm	9	Х			100				
SW-2			06/19/23	6:22pm	9	х							
SW-3						X			_		4.		
SW-4			6/19/12	6:400	9	х			- 万				
SW-5			6/19/13	7:24,000	9	х			1 1				
SW-6			6/19/23	7:07nm	9	Х		-16			14	a,717.	# Dire
SW DI	JP		6/19/23	c - pro-c	à	х	3.2		32.1				
			6/1/22		,				744	10.45			
													1
818													
							-						
	100										1.		
	Sampled By {1}:	(Name) Arden Vernan	(Signature)	de	161	ten		Date:	06	119	23	(mm/	dd/yy)
	inquished by {2):	1100000	(Signature)	1100	110	200		Date:		120			dd/vv)

indemnification and jurisdiction issues defined therein.

334151514190 PTN 945 me

CA15726-JUN23 R

TY131010.2023.1000.1142.5730-00 NEW LISKEARD Supply Well

Prepared for

WSP E & I Canada Ltd

First Page

CLIENT DETAILS	S	LABORATORY DETAILS	
Client	WSP E & I Canada Ltd	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	131 Fielding Road	Address	185 Concession St., Lakefield ON, K0L 2H0
	Lively, ON		
	P3Y 1L7. Canada		
Contact	Dominique Gagnon	Telephone	705-652-2000
Telephone	705-665-0159	Facsimile	705-652-6365
Facsimile		Email	Maarit.Wolfe@sgs.com
Email	Dominique.Gagnon@wsp.com; meg.russell@wsp.com	SGS Reference	CA15726-JUN23
Project	TY131010.2023.1000.1142.5730-00 NEW LISKEARD Supply V	Received	06/22/2023
Order Number		Approved	06/29/2023
Samples	Ground Water (7)	Report Number	CA15726-JUN23 R
		Date Reported	06/29/2023

COMMENTS

Temperature of Sample upon Receipt: 13 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

SIGNATORIES

Maarit Wolfe, Hon.B.Sc LMWOYE

1 / 14

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-5
QC Summary	6-12
Legend	13
Annexes	14

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 NEW LISKEARD Supply Well

Project Manager: Dominique Gagnon

Samplers: Aedon Lemon

IATRIX: WATER			Sample Number	7	8	9	10	11	12	13	
			Sample Name	WS-7	WS-8	WS-9	WS-13	WS-14	WS-16	NL Res Dup	
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	
			Sample Date	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	19/06/2023	20/06/2023	
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	
eneral Chemistry											
Alkalinity	mg/L as CaCO3	2		361	314	285	301	322	342	378	
Conductivity	uS/cm	2		768	679	731	582	605	648	775	
Total Dissolved Solids	mg/L	30		463	406	426	334	357	389	446	
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.16	0.15	0.05	0.13	0.32	0.19	0.22	
Ammonia+Ammonium (N)	as N mg/L	0.04		< 0.04	0.14	0.04	0.04	0.26	0.14	0.07	
Organic Nitrogen	mg/L	0.05		0.13	< 0.05	< 0.05	0.09	0.06	0.05	0.15	
Dissolved Organic Carbon	mg/L	1		1	2	1	3	1	1	2	
Total Reactive Phosphorous (o-phosphate	mg/L	0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
as P)											
etals and Inorganics											
Fluoride	mg/L	0.06		0.14	0.23	0.96	< 0.06	0.43	0.25	0.11	
Sulphate	mg/L	2		28	30	84	19	11	15	28	
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Nitrate (as N)	as N mg/L	0.06		< 0.06	< 0.06	< 0.06	0.07	< 0.06	< 0.06	< 0.06	
Hardness (dissolved)	mg/L as CaCO3	0.05		391	354	2.11	314	317	347	387	
Aluminum (dissolved)	mg/L	0.001		0.016	0.002	< 0.001	0.002	< 0.001	< 0.001	0.004	
Arsenic (dissolved)	mg/L	0.0002		< 0.0002	0.0012	0.0011	< 0.0002	0.0029	0.0035	< 0.0002	
Barium (dissolved)	mg/L	0.00008		0.06948	0.05782	0.00049	0.01806	0.07729	0.08941	0.06912	
Beryllium (dissolved)	mg/L	0.000007		< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	
Bismuth (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	
Boron (dissolved)	mg/L	0.002		0.009	0.011	0.299	0.025	0.070	0.026	0.007	
Calcium (dissolved)	mg/L	0.01		100	87.8	0.42	84.1	73.8	84.7	99.8	

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 NEW LISKEARD Supply Well

Project Manager: Dominique Gagnon

Samplers: Aedon Lemon

ATRIX: WATER		Sample Number	7	8	9	10	11	12	13	
		Sample Name	WS-7	WS-8	WS-9	WS-13	WS-14	WS-16	NL Res Dup	
		Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	
		Sample Date	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	19/06/2023	20/06/2023	
Parameter	Units RL		Result	Result	Result	Result	Result	Result	Result	
etals and Inorganics (continued)										
Cadmium (dissolved)	mg/L 0.000003		< 0.000003	< 0.000003	0.000003	0.000014	0.000003	< 0.000003	< 0.000003	
Cobalt (dissolved)	mg/L 0.000004		0.000071	0.000028	0.000027	0.000026	0.000136	0.000170	0.000063	
Chromium (dissolved)	mg/L 0.00008		< 0.00008	< 0.00008	< 0.00008	0.00022	0.00009	< 0.00008	0.00009	
Copper (dissolved)	mg/L 0.0002		0.0031	0.0007	0.0043	0.0045	0.0007	0.0022	0.0007	
Iron (dissolved)	mg/L 0.007		2.15	1.18	0.046	< 0.007	1.22	1.48	1.98	
Potassium (dissolved)	mg/L 0.009		2.07	2.37	0.207	1.14	3.30	2.32	2.08	
Lead (dissolved)	mg/L 0.00009		0.00013	< 0.00009	0.00046	0.00040	< 0.00009	0.00024	< 0.00009	
Magnesium (dissolved)	mg/L 0.001		34.1	32.6	0.258	25.3	32.1	32.9	33.5	
Manganese (dissolved)	mg/L 0.00001		0.03080	0.02731	0.00057	0.00004	0.01188	0.01607	0.03057	
Molybdenum (dissolved)	mg/L 0.00004		0.00067	0.00098	0.00370	0.00022	0.00222	0.00173	0.00067	
Nickel (dissolved)	mg/L 0.0001		0.0022	0.0002	0.0006	0.0007	0.0003	0.0003	0.0008	
Phosphorus (dissolved)	mg/L 0.003		0.014	0.010	< 0.003	< 0.003	< 0.003	< 0.003	0.012	
Selenium (dissolved)	mg/L 0.00004		< 0.00004	< 0.00004	< 0.00004	0.00016	< 0.00004	< 0.00004	< 0.00004	
Sodium (dissolved)	mg/L 0.01		17.4	8.64	162	5.11	9.56	6.65	17.0	
Silicon (dissolved)	mg/L 0.02		7.30	9.14	5.94	4.52	4.70	5.28	7.13	
Silver (dissolved)	mg/L 0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	
Strontium (dissolved)	mg/L 0.00008		0.180	0.218	0.02785	0.135	1.48	0.519	0.174	
Sulfur (dissolved)	mg/L 3		8	9	30	6	3	5	8	
Thallium (dissolved)	mg/L 0.000005		< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000011	< 0.000005	
Tin (dissolved)	mg/L 0.00006		< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	
Titanium (dissolved)	mg/L 0.00007		< 0.00007	0.00041	< 0.00007	0.00010	< 0.00007	< 0.00007	< 0.00007	
Uranium (dissolved)	mg/L 0.000002		0.000062	0.000248	0.000225	0.000579	0.000815	0.001306	0.000065	

CA15726-JUN23 R

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 NEW LISKEARD Supply Well

Project Manager: Dominique Gagnon

Samplers: Aedon Lemon

MATRIX: WATER			Sample Number	7	8	9	10	11	12	13
			Sample Name	WS-7	WS-8	WS-9	WS-13	WS-14	WS-16	NL Res Dup
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
			Sample Date	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	19/06/2023	20/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result
Metals and Inorganics (continued)										
Vanadium (dissolved)	mg/L	0.00001		0.00003	0.00004	0.00003	0.00030	< 0.00001	0.00001	0.00002
Zinc (dissolved)	mg/L	0.002		0.004	< 0.002	0.005	< 0.002	0.008	0.163	0.002
Other (ORP)										
рН	No unit	0.05		8.04	8.07	8.12	7.96	8.07	7.98	8.04
Chloride	mg/L	1		31	24	10	6	< 1	2	31

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		plicate L		S/Spike Blank		M	latrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)			
						(%)	Recovery (%)	Low	High	(%)	Low	High			
Alkalinity	EWL0538-JUN23	mg/L as	2	< 2	0	20	100	80	120	NA					
		CaCO3													

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank RPD AC (%) F		Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0231-JUN23	mg/L	0.04	<0.04	0	10	104	90	110	111	75	125

20230629 6 / 14

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch Units		RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5103-JUN23	mg/L	1	<1	1	20	102	80	120	94	75	125
Sulphate	DIO5103-JUN23	mg/L	2	<2	ND	20	112	80	120	108	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrite (as N)	DIO0686-JUN23	mg/L	0.03	<0.03	ND	20	100	90	110	105	75	125
Nitrate (as N)	DIO0686-JUN23	mg/L	0.06	<0.06	ND	20	101	90	110	101	75	125

20230629 7 / 14

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference		E	Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0249-JUN23	mg/L	1	<1	ND	20	101	90	110	94	75	125
Dissolved Organic Carbon	SKA0267-JUN23	mg/L	1	<1	1	20	99	90	110	101	75	125

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
Conductivity	EWL0538-JUN23	uS/cm	2	< 2	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0708-JUN23	mg/L	0.06	<0.06	ND	10	96	90	110	87	75	125

20230629 8 / 14

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ery Limits
						()	(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0218-JUN23	mg/L	0.00005	<0.00005	ND	20	99	90	110	104	70	130
Aluminum (dissolved)	EMS0218-JUN23	mg/L	0.001	<0.001	0	20	99	90	110	124	70	130
Arsenic (dissolved)	EMS0218-JUN23	mg/L	0.0002	<0.0002	11	20	104	90	110	106	70	130
Barium (dissolved)	EMS0218-JUN23	mg/L	0.00008	<0.00008	2	20	99	90	110	105	70	130
Beryllium (dissolved)	EMS0218-JUN23	mg/L	0.000007	<0.000007	ND	20	93	90	110	90	70	130
Boron (dissolved)	EMS0218-JUN23	mg/L	0.002	<0.002	0	20	91	90	110	94	70	130
Bismuth (dissolved)	EMS0218-JUN23	mg/L	0.00001	<0.00001	2	20	97	90	110	97	70	130
Calcium (dissolved)	EMS0218-JUN23	mg/L	0.01	<0.01	1	20	102	90	110	106	70	130
Cadmium (dissolved)	EMS0218-JUN23	mg/L	0.000003	<0.000003	18	20	101	90	110	101	70	130
Cobalt (dissolved)	EMS0218-JUN23	mg/L	0.000004	<0.000004	10	20	97	90	110	96	70	130
Chromium (dissolved)	EMS0218-JUN23	mg/L	0.00008	<0.00008	2	20	95	90	110	115	70	130
Copper (dissolved)	EMS0218-JUN23	mg/L	0.0002	<0.0002	4	20	97	90	110	103	70	130
Iron (dissolved)	EMS0218-JUN23	mg/L	0.007	<0.007	15	20	102	90	110	75	70	130
Potassium (dissolved)	EMS0218-JUN23	mg/L	0.009	<0.009	1	20	109	90	110	104	70	130
Magnesium (dissolved)	EMS0218-JUN23	mg/L	0.001	<0.001	2	20	100	90	110	104	70	130
Manganese (dissolved)	EMS0218-JUN23	mg/L	0.00001	<0.00001	0	20	102	90	110	105	70	130
Molybdenum (dissolved)	EMS0218-JUN23	mg/L	0.00004	<0.00004	7	20	98	90	110	110	70	130
Sodium (dissolved)	EMS0218-JUN23	mg/L	0.01	<0.01	1	20	96	90	110	103	70	130
Nickel (dissolved)	EMS0218-JUN23	mg/L	0.0001	<0.0001	1	20	100	90	110	98	70	130
Lead (dissolved)	EMS0218-JUN23	mg/L	0.00009	<0.00009	3	20	102	90	110	95	70	130

20230629

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	·
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	ry Limits 6)	Spike Recovery	Recove	ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (dissolved)	EMS0218-JUN23	mg/L	0.003	<0.003	9	20	98	90	110	NV	70	130
Selenium (dissolved)	EMS0218-JUN23	mg/L	0.00004	<0.00004	14	20	107	90	110	92	70	130
Sulfur (dissolved)	EMS0218-JUN23	mg/L	3	<1	0	20	103	90	110	NV	70	130
Silicon (dissolved)	EMS0218-JUN23	mg/L	0.02	<0.02	1	20	95	90	110	NV	70	130
Tin (dissolved)	EMS0218-JUN23	mg/L	0.00006	<0.00006	1	20	101	90	110	NV	70	130
Strontium (dissolved)	EMS0218-JUN23	mg/L	0.00008	<0.00008	1	20	104	90	110	101	70	130
Titanium (dissolved)	EMS0218-JUN23	mg/L	0.00007	<0.00005	6	20	107	90	110	NV	70	130
Thallium (dissolved)	EMS0218-JUN23	mg/L	0.000005	<0.000005	ND	20	96	90	110	96	70	130
Uranium (dissolved)	EMS0218-JUN23	mg/L	0.000002	<0.000002	0	20	97	90	110	104	70	130
Vanadium (dissolved)	EMS0218-JUN23	mg/L	0.00001	<0.00001	2	20	96	90	110	103	70	130
Zinc (dissolved)	EMS0218-JUN23	mg/L	0.002	<0.002	1	20	93	90	110	124	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery (%)	Recover	•
							(%)	Low	High	(70)	Low	High
рН	EWL0538-JUN23	No unit	0.05	NA	0		99			NA		

20230629 10 / 14

QC SUMMARY

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-[ENVISFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Reactive Phosphorous (o-phosphate as P)	SKA0247-JUN23	mg/L	0.03	<0.03	3	10	101	90	110	96	75	125

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0544-JUN23	mg/L	30	<30	0	20	90	80	120	NA		

20230629 11 / 14

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	·.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0238-JUN23	mg/L	0.05	<0.05	ND	10	102	90	110	100	75	125
Total Kjeldahl Nitrogen (N)	SKA0253-JUN23	mg/L	0.05	<0.05	ND	10	101	90	110	103	75	125

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230629

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20230629 13 / 14

	000	Reques	st for Laborator	v Services	and CHA	IN OF CUS	TODY (Gen	oral)				
- 5	G 5	SGS Environmental Services - Lakefield: 185 C			Mr. Asi				365 Meh: wa	101 C3 CGC C	om (4)	
		SGS Environmental Services - London: 657 Co										
			Laboratory Inf				建筑建筑					
Receive	d Date (mm/dd/y)	yy): JUN 2 2 2023 V	m		LAB LIMS	#: C	A 157	26	- 10	n23	5	
Receive	d Time (After Hou	ırs Only):	Billing & Repo	wina Inform	Temperatu	ire Upon Rece	eipt (°C):	3×	3			
9	Company:	WSP	Billing & Repo	orung intorm	ation	Quote #:		2021 12	46		DANGE CHICAN	
Invoice/Receipt to {3}:	Attention:	Dominique Gagnon				Attached Pa	rameter List:					-
/Rec {3}:	A dida	131 Fielding Rd				Attached i	numeter List.			YES		NO
oice	Address:	Lively, Ontario P3Y 1L7						SOUTH STATE	und Time			
'n	Email:	dominique.gagnon@wsp.com				Specify:	rnaround Tim	ne Requir	ed?		YES	□ N
Projec	t Name/Number:	TY131010 - NEW LISKEARD Supply	P.O. #:				sts Require Lab Ap	angara)				
	West of March 1 and 1	Well			AF-21 - 12 - 12 - 12 - 12 - 12 - 12 - 12	Rusii IA Reque	sis Require Lab Ap	provai				
			nation/Report To:						Client La			
Co	mpany Name:	WSP				Phone Nui	mber:		705-682	2-2632		
(Contact Name:					Fax Numb	er:				- P-	
	Address:					E-mail:						- ×
	Copy to:											
			Sample	Information								
			Date				A enter the ar which anal	nalysis r		below a		ck off
		Sample Identifier	Sampled (mm/dd/yy)	Sampled #of bottles	Rottles Time Sample	New Liskeard Supply Wells Package						
WS-7			06/20/23	5	15:35	X			T			
WS-8			06/20/23	5	15:17	х	T.					
WS-9			06/20/23	5	16:09	х						
WS-13			06/20/23	5	16:23	х						
WS-14			06/20/23	5	15:55	Х						5
WS-15						х						
WS-16			06/19/23	5	15:30	х					~	
NL Res	Dup		06/20/23	5		х			1744			
						-				7.44		
											-37.0	
											10-	
		Calabara 1917							7-			
	Sampled By {1}:	(Name) And and sman	(Signature)	10.1	1/-1		Date:	106	120	23	(m1	dd/yy)
	nquished by {2):		(Signature)		an		Date:		121			dd/vv)

Note: {1} Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). {3} Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. {4} Completion of work may require the subcontracting of samples between the London and Lakefield laboratories.

This document is issued by the Company under its General Conditions of Service accessible at http://www.gs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

334170466331 Km PP 9:45

CA15728-JUN23 R1

TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Prepared for

WSP E & I Canada Ltd

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	WSP E & I Canada Ltd	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	131 Fielding Road	Address	185 Concession St., Lakefield ON, K0L 2H0
	Lively, ON		
	P3Y 1L7. Canada		
Contact	Dominique Gagnon	Telephone	705-652-2000
Telephone	705-665-0159	Facsimile	705-652-6365
Facsimile		Email	Maarit.Wolfe@sgs.com
Email	Dominique.Gagnon@wsp.com; meg.russell@wsp.com	SGS Reference	CA15728-JUN23
Project	TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW	Received	06/22/2023
Order Number		Approved	06/29/2023
Samples	Ground Water (30)	Report Number	CA15728-JUN23 R1
		Date Reported	06/29/2023

COMMENTS

Temperature of Sample upon Receipt: 12 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

TK RL raised fur tag 28 due to sample matrix

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

1 / 25

t 705-652-2000 f 705-652-6365

www.sgs.com

CA15728-JUN23 R1

FINAL REPORT

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-13
QC Summary	14-21
Legend	22
Annexes	23-25

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

MATRIX: WATER			Sample Number	7	8	9	10	11	12	13	14
			Sample Name	OW-1R-I	OW-1-R-III	OW-10-I	OW-10-II	OW-11-I	OW-11-II	OW-12-I	OW-12-II
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
			Sample Date	21/06/2023	21/06/2023	20/06/2023	20/06/2023	21/06/2023	21/06/2023	21/06/2023	21/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
General Chemistry											
Alkalinity	mg/L as CaCO3	2		975	797	275	274	252	429	328	531
Conductivity	uS/cm	2		2500	1850	698	678	582	1110	856	1240
Total Dissolved Solids	mg/L	30		1480	1130	466	489	280	700	594	757
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		31.2	18.9	0.63	0.09	0.06	0.79	0.35	1.22
Ammonia+Ammonium (N)	as N mg/L	0.04		30.7	18.1	0.05	< 0.04	0.06	< 0.04	< 0.04	< 0.04
Organic Nitrogen	mg/L	0.05		0.46	0.86	0.58	0.06	< 0.05	0.77	0.39	1.20
Total Reactive Phosphorous (o-phosphate as P)	mg/L	0.03		0.04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dissolved Organic Carbon	mg/L	1		22	18	3	2	1	7	2	8
letals and Inorganics											
Sulphate	mg/L	2		98	91	110	110	42	130	78	81
Nitrite (as N)	as N mg/L	0.03		< 0.3↑	0.11	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		0.30	0.40	< 0.06	0.06	< 0.06	< 0.06	< 0.06	< 0.06
Fluoride	mg/L	0.06		0.13	0.08	0.32	0.07	0.37	0.19	0.38	< 0.06
Hardness (dissolved)	mg/L as CaCO3	0.05		832	712	415	407	326	561	460	613
Aluminum (dissolved)	mg/L	0.001		0.009	0.002	0.002	0.003	< 0.001	0.001	< 0.001	0.001
Arsenic (dissolved)	mg/L	0.0002		0.0014	0.0004	< 0.0002	< 0.0002	< 0.0002	0.0002	< 0.0002	0.0002
Barium (dissolved)	mg/L	0.00008		0.103	0.120	0.0312	0.0174	0.0339	0.0296	0.0590	0.0366
Beryllium (dissolved)	mg/L	0.000007		< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (dissolved)	mg/L	0.002		1.47	1.10	0.178	0.021	0.276	0.483	0.371	0.260
Calcium (dissolved)	mg/L	0.01		155	176	110	127	81.1	149	115	181

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

ATRIX: WATER		Sample Number	7	8	9	10	11	12	13	14
		Sample Name	OW-1R-I	OW-1-R-III	OW-10-I	OW-10-II	OW-11-I	OW-11-II	OW-12-I	OW-12-II
		Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
		Sample Date	21/06/2023	21/06/2023	20/06/2023	20/06/2023	21/06/2023	21/06/2023	21/06/2023	21/06/2023
Parameter	Units RL		Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics (continued)										
Cadmium (dissolved)	mg/L 0.000003		0.000013	0.000034	< 0.000003	< 0.000003	0.000007	< 0.000003	< 0.000003	< 0.000003
Chromium (dissolved)	mg/L 0.00008		0.00090	0.00057	0.00012	0.00014	0.00014	0.00025	0.00015	0.00031
Cobalt (dissolved)	mg/L 0.000004		0.0104	0.00484	0.000026	0.000043	0.000061	0.000191	0.000019	0.000247
Copper (dissolved)	mg/L 0.0002		0.0017	0.0088	0.0012	0.0015	0.0017	0.0015	0.0011	0.0016
Iron (dissolved)	mg/L 0.007		0.862	0.013	0.203	< 0.007	< 0.007	0.020	< 0.007	0.040
Potassium (dissolved)	mg/L 0.009		127	79.4	5.67	1.09	7.36	6.72	9.36	3.20
Magnesium (dissolved)	mg/L 0.001		108	66.1	33.9	22.0	29.9	46.1	41.9	39.4
Manganese (dissolved)	mg/L 0.00001		0.972	0.905	0.0359	0.00159	0.00221	0.0163	0.00043	0.0437
Molybdenum (dissolved)	mg/L 0.00004		0.00094	0.00077	0.00006	0.00016	0.00027	0.00093	0.00063	0.00020
Sodium (dissolved)	mg/L 0.01		181	95.8	4.67	1.96	16.2	47.9	19.4	66.6
Nickel (dissolved)	mg/L 0.0001		0.0578	0.0274	0.0002	0.0007	0.0017	0.0064	0.0031	0.0090
Phosphorus (dissolved)	mg/L 0.003		0.058	0.006	0.105	< 0.003	< 0.003	0.003	< 0.003	0.006
Lead (dissolved)	mg/L 0.00009		0.00023	0.00030	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Selenium (dissolved)	mg/L 0.00004		0.00032	0.00038	< 0.00004	0.00010	< 0.00004	0.00011	< 0.00004	0.00007
Silicon (dissolved)	mg/L 0.02		8.57	7.42	3.43	2.42	3.40	5.05	5.08	4.18
Silver (dissolved)	mg/L 0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L 0.00008		1.09	0.873	1.23	0.178	2.18	0.300	2.33	0.467
Sulfur (dissolved)	mg/L 3		38	32	40	41	27	45	32	29
Thallium (dissolved)	mg/L 0.000005		0.000323	0.000233	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin (dissolved)	mg/L 0.00006		0.00030	0.00012	< 0.00006	< 0.00006	< 0.00006	< 0.00006	0.00006	0.00006
Titanium (dissolved)	mg/L 0.00007		0.00047	0.00016	0.00011	0.00009	< 0.00007	< 0.00007	< 0.00007	< 0.00007
Uranium (dissolved)	mg/L 0.000002		0.00188	0.00139	0.000023	0.000242	0.000318	0.000901	0.000476	0.000597

SGS

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

IATRIX: WATER			Sample Number	7	8	9	10	11	12	13	14
			Sample Name	OW-1R-I	OW-1-R-III	OW-10-I	OW-10-II	OW-11-I	OW-11-II	OW-12-I	OW-12-II
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
			Sample Date	21/06/2023	21/06/2023	20/06/2023	20/06/2023	21/06/2023	21/06/2023	21/06/2023	21/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
letals and Inorganics (continued)											
Vanadium (dissolved)	mg/L	0.00001		0.00040	0.00041	< 0.00001	0.00005	0.00006	0.00009	0.00008	0.00006
Zinc (dissolved)	mg/L	0.002		0.006	0.047	< 0.002	0.002	0.036	0.002	0.002	< 0.002
ther (ORP)											
рН	No unit	0.05		7.84	7.85	8.13	8.09	8.11	7.97	8.14	8.02
Chloride	mg/L	1		280	99	4	1	16	52	49	59
IATRIX: WATER			Sample Number	15	16	17	18	19	20	21	22
			Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-17-III	OW-23-I	OW-23-II
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wat
			Sample Date	21/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	
raiailioloí	Office				rtoour	Result				rtoduit	Result
eneral Chemistry		-			roout	Result				rtooun	Result
	mg/L as CaCO3	2		376	307	166	236	280	356	209	Result 219
eneral Chemistry				376 822			236 462	280	356 643		
eneral Chemistry Alkalinity	mg/L as CaCO3	2			307	166				209	219
Alkalinity Conductivity	mg/L as CaCO3	2 2		822	307 549	166 496	462	632	643	209 406	219 615
eneral Chemistry Alkalinity Conductivity Total Dissolved Solids	mg/L as CaCO3 uS/cm mg/L	2 2 30		822 540	307 549 400	166 496 286	462 297	632 426	643 397	209 406 286	219 615 383
eneral Chemistry Alkalinity Conductivity Total Dissolved Solids Total Kjeldahl Nitrogen (N)	mg/L as CaCO3 uS/cm mg/L as N mg/L	2 2 30 0.05		822 540 1.66	307 549 400 1.56	166 496 286 < 0.05	462 297 0.09	632 426 < 0.05	643 397 < 0.05	209 406 286 10.7	219 615 383 < 0.05
eneral Chemistry Alkalinity Conductivity Total Dissolved Solids Total Kjeldahl Nitrogen (N) Ammonia+Ammonium (N)	mg/L as CaCO3 uS/cm mg/L as N mg/L as N mg/L	2 2 30 0.05 0.04		822 540 1.66 0.14	307 549 400 1.56 1.31	166 496 286 < 0.05 < 0.04	462 297 0.09 0.07	632 426 < 0.05 < 0.04	643 397 < 0.05 < 0.04	209 406 286 10.7 9.62	219 615 383 < 0.05 < 0.04

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

ATRIX: WATER			Sample Number	15	16	17	18	19	20	21	22
			Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-17-III	OW-23-I	OW-23-II
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
			Sample Date	21/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics											
Sulphate	mg/L	2		96	< 2	82	18	72	5	4	90
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.22	< 0.03
Nitrate (as N)	as N mg/L	0.06		< 0.06	< 0.06	0.09	< 0.06	0.07	< 0.06	< 0.06	0.13
Fluoride	mg/L	0.06		0.24	1.59	1.00	0.35	1.28	0.07	0.23	1.24
Hardness (dissolved)	mg/L as CaCO3	0.05		506	91.0	119	263	266	377	137	147
Aluminum (dissolved)	mg/L	0.001		0.002	0.005	0.010	< 0.001	0.068	0.006	0.009	0.002
Arsenic (dissolved)	mg/L	0.0002		0.0009	0.0004	0.0011	0.0003	0.0007	0.0013	0.0005	0.0006
Barium (dissolved)	mg/L	0.00008		0.0371	0.0421	0.0301	0.0305	0.0469	0.0174	0.0285	0.0324
Beryllium (dissolved)	mg/L	0.000007		< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (dissolved)	mg/L	0.002		0.125	0.400	0.198	0.037	0.134	0.002	0.128	0.300
Calcium (dissolved)	mg/L	0.01		133	17.2	24.7	72.0	51.9	103	32.6	27.3
Cadmium (dissolved)	mg/L	0.000003		0.000007	< 0.000003	0.000015	< 0.000003	0.000009	< 0.000003	0.000071	0.000017
Chromium (dissolved)	mg/L	0.00008		0.00017	0.00048	0.00036	0.00012	0.00056	0.00015	0.00021	0.00040
Cobalt (dissolved)	mg/L	0.000004		0.000803	0.000124	0.000017	0.000147	0.000091	0.00161	0.000114	0.000022
Copper (dissolved)	mg/L	0.0002		0.0047	0.0009	0.0024	0.0009	0.0009	0.0005	0.0009	0.0015
Iron (dissolved)	mg/L	0.007		0.221	0.122	< 0.007	0.327	0.107	2.12	0.261	< 0.007
Potassium (dissolved)	mg/L	0.009		12.2	4.75	7.59	3.46	4.73	0.568	2.80	4.52
Magnesium (dissolved)	mg/L	0.001		42.4	11.7	13.9	20.1	33.2	29.2	13.6	19.2
Manganese (dissolved)	mg/L	0.00001		0.0378	0.0177	0.00111	0.0371	0.00385	0.873	0.0295	0.00123
Molybdenum (dissolved)	mg/L	0.00004		0.00255	0.00942	0.0249	0.00234	0.0114	0.00049	0.00479	0.0420
Sodium (dissolved)	mg/L	0.01		3.08	104	69.9	4.12	58.8	6.32	27.6	86.2

CA15728-JUN23 R1

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

ATRIX: WATER		Sample Number	15	16	17	18	19	20	21	22
		Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-17-III	OW-23-I	OW-23-II
		Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
		Sample Date	21/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units RL		Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics (continued)										
Nickel (dissolved)	mg/L 0.0001		0.0039	0.0004	0.0005	0.0004	0.0009	0.0035	0.0004	0.0006
Phosphorus (dissolved)	mg/L 0.003		3.39	0.075	0.006	0.023	0.006	< 0.003	1.36	< 0.003
Lead (dissolved)	mg/L 0.00009		< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Selenium (dissolved)	mg/L 0.00004		0.00009	0.00005	0.00025	< 0.00004	0.00008	0.00007	0.00029	0.00020
Silicon (dissolved)	mg/L 0.02		5.45	8.26	3.44	9.32	4.60	8.07	4.53	3.25
Silver (dissolved)	mg/L 0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L 0.00008		0.685	0.577	0.510	0.494	3.26	0.149	0.216	0.878
Sulfur (dissolved)	mg/L 3		38	< 3	31	6	24	< 3	3	32
Thallium (dissolved)	mg/L 0.000005		0.000008	< 0.000005	0.000006	< 0.000005	0.000005	< 0.000005	< 0.000005	< 0.000005
Tin (dissolved)	mg/L 0.00006		0.00009	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	0.00010	< 0.00006
Titanium (dissolved)	mg/L 0.00007		0.00042	0.00088	0.00007	0.00014	0.00288	0.00030	0.00065	< 0.00007
Uranium (dissolved)	mg/L 0.000002		0.000800	0.000044	0.00275	0.000042	0.00381	0.000420	0.000095	0.00169
Vanadium (dissolved)	mg/L 0.00001		0.00094	0.00119	0.00158	0.00012	0.00064	0.00023	0.00023	0.00026
Zinc (dissolved)	mg/L 0.002		0.007	< 0.002	< 0.002	< 0.002	< 0.002	0.010	< 0.002	< 0.002

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

ATRIX: WATER			Sample Number	15	16	17	18	19	20	21	22
			Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-17-III	OW-23-I	OW-23-II
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
			Sample Date	21/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
ther (ORP)											
рН	No unit	0.05		8.13	8.22	8.24	8.17	8.24	8.09	7.90	8.28
Chloride	mg/L	1		2	7	5	< 1	4	< 1	3	13
ATRIX: WATER			Sample Number	23	24	25	26	27	28	29	30
			Sample Name	OW-24-I	OW-24-II	OW-25-I	OW-25-II	OW-25-III	OW-30-I	OW-30-II	OW-30-III
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wat
			Sample Date	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
eneral Chemistry											
Alkalinity	mg/L as CaCO3	2		233	348	232	150	348	180	224	182
Conductivity	uS/cm	2		470	676	426	703	717	696	514	371
Total Dissolved Solids	mg/L	30		309	474	263	466	471	491	317	229
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.06	< 0.05	0.48	0.20	< 0.05	< 0.25↑	0.44	0.19
Ammonia+Ammonium (N)	as N mg/L	0.04		0.11	< 0.04	0.33	< 0.04	0.04	< 0.04	< 0.04	0.06
Organic Nitrogen	mg/L	0.05		< 0.05	< 0.05	0.15	0.19	< 0.05	< 0.05	0.42	0.13
Total Reactive Phosphorous (o-phosphate as P)	mg/L	0.03		0.06	0.06	0.07	< 0.03	0.06	0.10	0.08	< 0.03
Dissolved Organic Carbon	mg/L	1		2	2	4	1	2	2	2	3
etals and Inorganics											
Sulphate	mg/L	2		24	37	3	200	65	180	55	19
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		< 0.06	0.13	< 0.06	0.12	< 0.06	0.06	0.09	< 0.06
Fluoride	mg/L	0.06		0.35	0.79	0.66	1.10	1.06	1.49	0.53	0.22

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

ATRIX: WATER			Sample Number	23	24	25	26	27	28	29	30
			Sample Name	OW-24-I	OW-24-II	OW-25-I	OW-25-II	OW-25-III	OW-30-I	OW-30-II	OW-30-III
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
			Sample Date	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics (continued)											
Hardness (dissolved)	mg/L as CaCO3	0.05		248	379	173	126	427	146	169	200
Aluminum (dissolved)	mg/L	0.001		0.002	0.001	< 0.001	0.004	0.001	0.004	0.005	< 0.001
Arsenic (dissolved)	mg/L	0.0002		0.0003	< 0.0002	0.0002	0.0017	0.0009	0.0005	0.0006	< 0.0002
Barium (dissolved)	mg/L	0.00008		0.0280	0.0489	0.0395	0.0250	0.0597	0.0290	0.0312	0.0710
Beryllium (dissolved)	mg/L	0.000007		< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000014
Bismuth (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (dissolved)	mg/L	0.002		0.037	0.037	0.140	0.179	0.022	0.451	0.089	0.025
Calcium (dissolved)	mg/L	0.01		68.7	88.1	39.5	26.0	104	24.9	37.0	54.3
Cadmium (dissolved)	mg/L	0.000003		< 0.000003	0.00003	< 0.000003	0.000017	< 0.000003	0.000015	0.000012	< 0.00000
Chromium (dissolved)	mg/L	0.00008		0.00017	0.00009	0.00013	0.00036	0.00009	0.00015	0.00017	0.00014
Cobalt (dissolved)	mg/L	0.000004		0.000089	0.000153	0.000018	0.000020	0.00480	0.000021	0.000045	0.000024
Copper (dissolved)	mg/L	0.0002		0.0007	0.0007	0.0005	0.0010	0.0007	0.0009	0.0017	0.0004
Iron (dissolved)	mg/L	0.007		0.198	< 0.007	0.206	< 0.007	0.073	< 0.007	0.008	1.55
Potassium (dissolved)	mg/L	0.009		2.53	5.19	3.99	7.72	4.21	7.22	5.24	3.20
Magnesium (dissolved)	mg/L	0.001		18.5	38.6	18.1	14.9	40.6	20.2	18.5	15.5
Manganese (dissolved)	mg/L	0.00001		0.0318	0.0313	0.0113	0.00092	0.113	0.00179	0.00560	0.0634
Molybdenum (dissolved)	mg/L	0.00004		0.00222	0.00683	0.00311	0.0374	0.00535	0.0396	0.0103	0.00064
Sodium (dissolved)	mg/L	0.01		8.07	15.7	31.9	103	15.3	107	50.6	4.72
Nickel (dissolved)	mg/L	0.0001		0.0005	0.0015	0.0001	0.0005	0.0026	0.0006	0.0007	0.0001
Phosphorus (dissolved)	mg/L	0.003		0.003	< 0.003	0.035	0.007	< 0.003	0.010	0.008	0.055
Lead (dissolved)	mg/L	0.00009		< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Selenium (dissolved)	mg/L	0.00004		< 0.00004	< 0.00004	< 0.00004	0.00051	0.00008	< 0.00004	0.00008	< 0.00004

CA15728-JUN23 R1

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

MATRIX: WATER			Sample Number	23	24	25	26	27	28	29	30
			Sample Name	OW-24-I	OW-24-II	OW-25-I	OW-25-II	OW-25-III	OW-30-I	OW-30-II	OW-30-III
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
			Sample Date	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
letals and Inorganics (continued)											
Silicon (dissolved)	mg/L	0.02		6.90	5.79	7.79	3.12	6.52	2.80	3.88	6.38
Silver (dissolved)	mg/L	0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L	0.00008		0.360	1.23	0.825	0.572	2.04	0.997	0.462	0.971
Sulfur (dissolved)	mg/L	3		7	11	< 3	68	23	68	16	6
Thallium (dissolved)	mg/L	0.000005		< 0.000005	0.000011	< 0.000005	< 0.000005	0.000011	0.000009	0.000008	< 0.000005
Tin (dissolved)	mg/L	0.00006		< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	0.00009	< 0.00006	< 0.00006
Titanium (dissolved)	mg/L	0.00007		0.00015	0.00009	< 0.00007	0.00010	< 0.00007	0.00022	0.00012	< 0.00007
Uranium (dissolved)	mg/L	0.000002		0.000359	0.00161	0.000039	0.00439	0.00394	0.000665	0.00165	0.000053
Vanadium (dissolved)	mg/L	0.00001		0.00030	0.00027	0.00006	0.00179	0.00039	0.00030	0.00045	0.00011
Zinc (dissolved)	mg/L	0.002		< 0.002	0.003	< 0.002	0.003	< 0.002	< 0.002	< 0.002	< 0.002
Other (ORP)		'	,								
рН	No unit	0.05		8.09	8.10	8.22	8.19	7.99	8.35	8.17	7.90
Chloride	mg/L	1		< 1	3	< 1	6	< 1	3	1	< 1

CA15728-JUN23 R1

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

IATRIX: WATER			Sample Number	31	32	33	34	35	36
			Sample Name	OW-10-III	OW-31-I	OW-31-II	NL GW Dup-1	NL GW Dup-2	NL GW Dup-3
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
			Sample Date	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	21/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result
eneral Chemistry									
Alkalinity	mg/L as CaCO3	2		201	134	130	236	182	805
Conductivity	uS/cm	2		530	783	629	465	371	1890
Total Dissolved Solids	mg/L	30		340	534	414	280	220	1090
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.05	0.42	0.20	< 0.05	0.12	19.4
Ammonia+Ammonium (N)	as N mg/L	0.04		0.06	< 0.04	< 0.04	0.07	0.07	18.6
Organic Nitrogen	mg/L	0.05		< 0.05	0.39	0.19	< 0.05	0.05	0.83
Total Reactive Phosphorous (o-phosphate	mg/L	0.03		< 0.03	< 0.03	0.10	< 0.03	0.04	< 0.03
as P)									
Dissolved Organic Carbon	mg/L	1		< 1	1	3	3	3	18
etals and Inorganics									
Sulphate	mg/L	2		81	280	200	26	18	89
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.10
Nitrate (as N)	as N mg/L	0.06		< 0.06	0.44	< 0.06	< 0.06	< 0.06	0.39
Fluoride	mg/L	0.06		0.54	0.71	1.19	0.36	0.23	< 0.06
Hardness (dissolved)	mg/L as CaCO3	0.05		216	240	138	245	203	692
Aluminum (dissolved)	mg/L	0.001		0.002	0.033	0.335	0.001	< 0.001	0.003
Arsenic (dissolved)	mg/L	0.0002		< 0.0002	0.0003	0.0006	0.0003	< 0.0002	0.0004
Barium (dissolved)	mg/L	0.00008		0.0214	0.0318	0.0446	0.0295	0.0691	0.122
Beryllium (dissolved)	mg/L	0.000007		< 0.000007	< 0.000007	0.000012	< 0.000007	0.000015	< 0.000007
Bismuth (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (dissolved)	mg/L	0.002		0.208	0.167	0.181	0.038	0.027	0.919
Calcium (dissolved)	mg/L	0.01		54.5	45.2	28.8	68.1	55.6	170

CA15728-JUN23 R1

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

IATRIX: WATER		Sample Number	31	32	33	34	35	36
		Sample Name	OW-10-III	OW-31-I	OW-31-II	NL GW Dup-1	NL GW Dup-2	NL GW Dup-3
		Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
		Sample Date	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	21/06/2023
Parameter	Units RL		Result	Result	Result	Result	Result	Result
etals and Inorganics (continued)								
Cadmium (dissolved)	mg/L 0.000003		< 0.000003	0.000006	0.000006	< 0.000003	< 0.000003	0.000037
Chromium (dissolved)	mg/L 0.00008		0.00017	0.00038	0.00195	0.00012	0.00017	0.00056
Cobalt (dissolved)	mg/L 0.000004		0.000263	0.000054	0.000426	0.000098	0.000026	0.00523
Copper (dissolved)	mg/L 0.0002		0.0009	0.0018	0.0034	0.0005	< 0.0002	0.0090
Iron (dissolved)	mg/L 0.007		0.021	0.044	0.705	0.195	1.56	0.012
Potassium (dissolved)	mg/L 0.009		6.03	9.26	5.75	2.52	3.20	78.6
Magnesium (dissolved)	mg/L 0.001		19.3	31.0	16.1	18.2	15.6	64.7
Manganese (dissolved)	mg/L 0.00001		0.0217	0.00203	0.0367	0.0339	0.0652	0.975
Molybdenum (dissolved)	mg/L 0.00004		0.00027	0.0149	0.0167	0.00235	0.00050	0.00087
Sodium (dissolved)	mg/L 0.01		36.7	76.4	93.2	8.14	4.85	95.9
Nickel (dissolved)	mg/L 0.0001		0.0003	0.0013	0.0029	0.0005	0.0001	0.0286
Phosphorus (dissolved)	mg/L 0.003		< 0.003	< 0.003	0.031	< 0.003	0.057	0.006
Lead (dissolved)	mg/L 0.00009		< 0.00009	< 0.00009	0.00035	< 0.00009	< 0.00009	0.00031
Selenium (dissolved)	mg/L 0.00004		< 0.00004	0.00034	< 0.00004	< 0.00004	< 0.00004	0.00033
Silicon (dissolved)	mg/L 0.02		3.17	3.08	3.50	7.01	5.99	6.60
Silver (dissolved)	mg/L 0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L 0.00008		1.98	1.07	0.760	0.368	0.983	0.914
Sulfur (dissolved)	mg/L 3		28	96	68	7	6	31
Thallium (dissolved)	mg/L 0.000005		< 0.000005	0.000024	< 0.000005	< 0.000005	< 0.000005	0.000255
Tin (dissolved)	mg/L 0.00006		< 0.00006	0.00009	0.00019	< 0.00006	< 0.00006	0.00014
Titanium (dissolved)	mg/L 0.00007		< 0.00007	0.00160	0.0162	0.00010	0.00008	0.00019
Uranium (dissolved)	mg/L 0.000002		0.000044	0.00243	0.000929	0.000373	0.000051	0.00139

CA15728-JUN23 R1

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 - New Liskeard LF GW

Project Manager: Dominique Gagnon

MATRIX: WATER			Sample Number	31	32	33	34	35	36
			Sample Name	OW-10-III	OW-31-I	OW-31-II	NL GW Dup-1	NL GW Dup-2	NL GW Dup-3
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
			Sample Date	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	21/06/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result
Metals and Inorganics (continued)									
Vanadium (dissolved)	mg/L	0.00001		0.00013	0.00093	0.00155	0.00040	0.00013	0.00040
Zinc (dissolved)	mg/L	0.002		0.002	< 0.002	0.004	< 0.002	< 0.002	0.043
Other (ORP)									
рН	No unit	0.05		8.14	8.10	8.14	8.02	7.96	7.78
Chloride	mg/L	1		< 1	2	2	< 1	< 1	130

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Re		f.
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0584-JUN23	mg/L as	2	< 2	1	20	102	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike		ike / Ref.	
	Reference	Reference		Blank	RPD			(9		•	Spike Recovery		ery Limits
					(%)	(%)	(%)	Low	High	(%)	Low	High	
Ammonia+Ammonium (N)	SKA0244-JUN23	mg/L	0.04	<0.04	0	10	99	90	110	94	75	125	
Ammonia+Ammonium (N)	SKA0265-JUN23	mg/L	0.04	<0.04	ND	10	100	90	110	95	75	125	

20230629 14 / 25

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD AC Spike (%) Recove (%)	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)		Low	High	(%)	Low	High
Chloride	DIO5106-JUN23	mg/L	1	<1	ND	20	104	80	120	111	75	125
Sulphate	DIO5106-JUN23	mg/L	2	<2	1	20	111	80	120	114	75	125
Chloride	DIO5108-JUN23	mg/L	1	<1	1	20	101	80	120	98	75	125
Sulphate	DIO5108-JUN23	mg/L	2	<2	5	20	110	80	120	90	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrite (as N)	DIO0661-JUN23	mg/L	0.03	<0.03	ND	20	97	90	110	104	75	125
Nitrate (as N)	DIO0661-JUN23	mg/L	0.06	<0.06	0	20	97	90	110	NV	75	125
Nitrite (as N)	DIO0721-JUN23	mg/L	0.03	<0.03	ND	20	100	90	110	105	75	125
Nitrate (as N)	DIO0721-JUN23	mg/L	0.06	<0.06	3	20	97	90	110	99	75	125
Nitrite (as N)	DIO0723-JUN23	mg/L	0.03	<0.03	ND	20	99	90	110	100	75	125
Nitrate (as N)	DIO0723-JUN23	mg/L	0.06	<0.06	ND	20	98	90	110	99	75	125
Nitrite (as N)	DIO0773-JUN23	mg/L	0.03	<0.03	4	20	100	90	110	106	75	125

20230629 15 / 25

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0249-JUN23	mg/L	1	<1	ND	20	101	90	110	94	75	125
Dissolved Organic Carbon	SKA0267-JUN23	mg/L	1	<1	1	20	99	90	110	101	75	125

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0584-JUN23	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0613-JUN23	mg/L	0.06	<0.06	ND	10	98	90	110	93	75	125

20230629 16 / 25

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
							(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0225-JUN23	mg/L	0.00005	<0.00005	ND	20	102	90	110	92	70	130
Aluminum (dissolved)	EMS0225-JUN23	mg/L	0.001	<0.001	3	20	100	90	110	113	70	130
Arsenic (dissolved)	EMS0225-JUN23	mg/L	0.0002	<0.0002	3	20	104	90	110	117	70	130
Barium (dissolved)	EMS0225-JUN23	mg/L	0.00008	<0.00008	2	20	100	90	110	99	70	130
Beryllium (dissolved)	EMS0225-JUN23	mg/L	0.000007	<0.000007	4	20	104	90	110	100	70	130
Boron (dissolved)	EMS0225-JUN23	mg/L	0.002	<0.002	5	20	99	90	110	93	70	130
Bismuth (dissolved)	EMS0225-JUN23	mg/L	0.00001	<0.00001	ND	20	97	90	110	90	70	130
Calcium (dissolved)	EMS0225-JUN23	mg/L	0.01	<0.01	1	20	103	90	110	106	70	130
Cadmium (dissolved)	EMS0225-JUN23	mg/L	0.000003	<0.000003	18	20	105	90	110	98	70	130
Cobalt (dissolved)	EMS0225-JUN23	mg/L	0.000004	<0.000004	2	20	101	90	110	107	70	130
Chromium (dissolved)	EMS0225-JUN23	mg/L	0.00008	<0.00008	0	20	105	90	110	101	70	130
Copper (dissolved)	EMS0225-JUN23	mg/L	0.0002	<0.0002	2	20	104	90	110	96	70	130
Iron (dissolved)	EMS0225-JUN23	mg/L	0.007	<0.007	2	20	107	90	110	125	70	130
Potassium (dissolved)	EMS0225-JUN23	mg/L	0.009	<0.009	1	20	110	90	110	118	70	130
Magnesium (dissolved)	EMS0225-JUN23	mg/L	0.001	<0.001	2	20	102	90	110	104	70	130
Manganese (dissolved)	EMS0225-JUN23	mg/L	0.00001	<0.00001	0	20	105	90	110	102	70	130
Molybdenum (dissolved)	EMS0225-JUN23	mg/L	0.00004	<0.00004	1	20	101	90	110	110	70	130
Sodium (dissolved)	EMS0225-JUN23	mg/L	0.01	<0.01	2	20	105	90	110	116	70	130
Nickel (dissolved)	EMS0225-JUN23	mg/L	0.0001	<0.0001	0	20	105	90	110	100	70	130
Lead (dissolved)	EMS0225-JUN23	mg/L	0.00009	<0.00009	4	20	105	90	110	96	70	130

20230629 17 / 25

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Phosphorus (dissolved)	EMS0225-JUN23	mg/L	0.003	<0.003	ND	20	105	90	110	NV	70	130
Selenium (dissolved)	EMS0225-JUN23	mg/L	0.00004	<0.00004	7	20	104	90	110	109	70	130
Sulfur (dissolved)	EMS0225-JUN23	mg/L	3	<1	0	20	110	90	110	NV	70	130
Silicon (dissolved)	EMS0225-JUN23	mg/L	0.02	<0.02	2	20	102	90	110	NV	70	130
Tin (dissolved)	EMS0225-JUN23	mg/L	0.00006	<0.00006	ND	20	97	90	110	NV	70	130
Strontium (dissolved)	EMS0225-JUN23	mg/L	0.00008	<0.00008	0	20	102	90	110	99	70	130
Titanium (dissolved)	EMS0225-JUN23	mg/L	0.00007	<0.00005	5	20	101	90	110	NV	70	130
Thallium (dissolved)	EMS0225-JUN23	mg/L	0.000005	<0.000005	13	20	100	90	110	98	70	130
Uranium (dissolved)	EMS0225-JUN23	mg/L	0.000002	<0.000002	4	20	103	90	110	116	70	130
Vanadium (dissolved)	EMS0225-JUN23	mg/L	0.00001	<0.00001	1	20	104	90	110	100	70	130
Zinc (dissolved)	EMS0225-JUN23	mg/L	0.002	<0.002	7	20	96	90	110	125	70	130
Boron (dissolved)	EMS0285-JUN23	mg/L	0.002	<0.002	0	20	98	90	110	102	70	130

20230629

QC SUMMARY

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0584-JUN23	No unit	0.05	NA	0		99			NA		

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-IENVISFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	F.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Reactive Phosphorous (o-phosphate as P)	SKA0247-JUN23	mg/L	0.03	<0.03	3	10	101	90	110	96	75	125
Total Reactive Phosphorous (o-phosphate as P)	SKA0258-JUN23	mg/L	0.03	<0.03	ND	10	99	90	110	90	75	125

20230629 19 / 25

QC SUMMARY

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0552-JUN23	mg/L	30	<30	1	20	99	80	120	NA		
Total Dissolved Solids	EWL0561-JUN23	mg/L	30	<30	5	20	98	80	120	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0253-JUN23	mg/L	0.05	<0.05	ND	10	101	90	110	103	75	125
Total Kjeldahl Nitrogen (N)	SKA0283-JUN23	mg/L	0.05	<0.05	ND	10	102	90	110	105	75	125
Total Kjeldahl Nitrogen (N)	SKA0294-JUN23	mg/L	0.05	<0.05	2	10	102	90	110	102	75	125

20230629 20 / 25

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230629

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20230629 22 / 25

Atto	npany: Vention: During dress: Lemail: d		- London: 657 Con: L	sortium Court, Lond	ormation Sec	8 Phone: 519-6 tion LAB LIMS Temperatu	#: (A 15	728	ax: 519-672-		www.ca.sgs.		
Received Time (After House Con 15 15 15 15 15 15 15 15 15 15 15 15 15	npany: Vention: During dress: Lemail: d	WSP Dominique Gagnon 31 Fielding Rd Lively, Ontario	JUN 2.22	aboratory Info	ormation Sec	LAB LIMS	#: (AIS	728	3			com {4}	
Received Time (After House Con 15 15 15 15 15 15 15 15 15 15 15 15 15	npany: Vention: During dress: Lemail: d	VSP Dominique Gagnon 31 Fielding Rd .ively, Ontario 23Y 1L7	JUN 2.22	973 W	m	LAB LIMS			. ^	- Contract	Jung	13		
Received Time (After House Con 15 15 15 15 15 15 15 15 15 15 15 15 15	npany: Vention: During dress: Lemail: d	VSP Dominique Gagnon 31 Fielding Rd .ively, Ontario 23Y 1L7				Temperatu			. ^	- Contract	Conto	7		
Additional and the control of the co	npany: Vention: Contion: Contion: Lorenze Lore	VSP Dominique Gagnon 31 Fielding Rd Lively, Ontario P3Y 1L7		Billing & Repo	rting Informa	ation		1000.p.,						
Atto	dress: L Email: d	Dominique Gagnon 31 Fielding Rd Lively, Ontario P3Y 1L7					THE PERSON NAMED IN							
Invoice/Receip (3):	dress: L F Email: d	31 Fielding Rd ively, Ontario 23Y 1L7					Quote #	:		2021 142	26			
Invoice/Re {3}	dress: L P Email: d	ively, Ontario P3Y 1L7					Attache	d Parame	ter List:			YES		NO
Invoic	Email: d									Turnaro	und Time	3		
Ē		ominique.gagnon@wsp.com		184			ls *Rush	n Turnaro	und Tim	e Require	ed?	grossy suprior no	YES	
	т Т	1 3 3 @ op. op					Specify:							
Project Name/Number		TY131010 New Liskeard LF	gw	P.O. #:			* Rush TA I	Requests Re	quire Lab Ap	oproval				
会是发展的。 第二章		Clir	ent Informatio	n/Report To:							Client L	ab #:		
Company N	ame: V	WSP					Phone	Numbe	r:		705-68	2-2632		
Contact N	ame:						Fax Nu	ımber:					125. 3121	
Add	ress:						E-mail:							
Cop	y to:													
				Sample I	nformation									
							(plea		the an	and the same of th	equired	ted below a each sam		ck off
	Sa	mple Identifier		Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Itered	per	per					
		3					Field Filtered	SW as p	GW as quote	1				ë
OW-1R-I				06/21/23	9:58	55		100	X	Jan Jan	and the	12/		
OW-1-R-III				06/21/23	9153	5			Х					0
OW-10-I				AL120/22	9:05	6			х					3 %
OW-10-II				1/20/23	9:00	5			х					
OW-11-I				6/21/22	1	5			x					
				61/2/12	11:25	2								
OW-11-II				06/21/0	11:28	5			Х					1
OW-12-I				06/21/23	11:46	5			Х					
OW-12-II				06/21/23	11:40	5			Х					
OW-13-1 OW-13-1				06/21/23	10:30	5			х					
OW-16-I				06/20/23	11:25	5			Х		176	-	# 1 1	
OW-16-II				06/20/23	11:12	5			х					
9 ₩-16-Ш				DRY					х				- 28	
OW-17-1				06/20/22	18:13	5			х					
OW-17-II				66/20/23	17:55	5			х			-		1
OW-17-III				06/20/23	18:05	5			Х					
OW-23-1 OU-2	3-1			06/20/23	17:10	5			х	7 ² ,				
Sampled E	By {1}: (I	Name) CLEMENT CHEC	w G	(Signature)	the t	3		1	Date:	06	121	23	(mm/	dd/yy)
Relinquished I	oy {2): (I	Name) CLBMENT CHEW	WG.	(Signature)	Link	5			Date:	06	121	23		dd/yy)
authorization for completion of	of work.	GS is acknowledgement that you hav	r be retained on	file in the contrac	t, or in an alter	native format	(e.g. shipp	oing docum	ents). {3}	Results m	ay be sent	by email to		
		cost. Fax is available upon request. y under its General Conditions of Service	e accessible at ht		terms_and_con	ditions.htm. (I							limitation c	of liability

Revision #: 2.3 Date of Issue: 24 Jun. 2014 2mm 334170466315 9:45 11 6356 PP 11 6349

CC	2	Reg	uest for Laborat	tory Service	es and Cl	HAIN OI	CUSTO	DY (Ger	neral)				
2 6	12	SGS Environmental Services - Lakefield:	185 Concession St., Lake	field, ON K0L 2H) Phone: 705-6	652-2000 To	oll Free: 877-	747-7658 Fax	: 705-652	-6365 Web:	www.ca.sg	s.com {4}	
		SGS Environmental Services - London: 65	7 Consortium Court, Lond	don, ON, N6E 2S	8 Phone: 519-6	672-4500 To	oll Free: 877-	848-8060 Fax	c 519-672	-0361 Web:	www.ca.sg	s.com {4}	
HE STATE OF THE ST	国际公理的 宣传等600		Laboratory Info	ormation Sec	2.59(2.5)				de par				
	te (mm/dd/yyyy):				LAB LIMS	#:							
eceived Tin	ne (After Hours Only	y):	Billing & Repo	rting Informa	Temperatu	ire Upon	Receipt (°	C):	MICE VICE	CHL PACE			Jan Barra
9	Company:	WSP		9	A A Comprision	Quote #	:	2	2021 14	26		2 DATE OF THE PARTY OF THE PART	DOMESTICAL PROPERTY.
Invoice/Receipt to {3}:	Attention:	Dominique Gagnon				Attache	d Parame	ter List:			☐ YES		NO
(3):	Address:	131 Fielding Rd Lively, Ontario						-	urnara	und Time			10/20/19
oice	Address.	P3Y 1L7				le *Pue	h Turnaro	und Time	HE WOLLD	HALL SHOWN		☐ YES	
<u>ē</u>	Email:	dominique.gagnon@wsp.com				Specify:		una riine	Requir	ou:			
Project I	Name/Number:	TY131010 New Liskeard LF GW	P.O. #:					quire Lab App	roval				
West Washington						autolitis (topolo	NAME OF TAXABLE PARTY.	ATTERNOTION OF THE	ENG-METOLIK			e se arture double	and stated or the
			nation/Report To:							Client L			
C	Company Name:	WSP			12	Phone	Numbe	r:		705-68	2-2632		
	Contact Name:					Fax N	umber:						
	Address:					E-mail	:						
	Copy to:												
			Sample	Information									
			Date			(plea		Ana the ana h analys	lysis r		below		ck off
	s	ample Identifier	Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Field Filtered	SW as per quote	GW as per quote					
DW-23-II			06/20/23	1905	5			Х			6		1
DW-24-I			06/20/23	11:10	5			х		Service :			T.
DW-24-II			0.100/22	11:15	5	90		х			-		1
0 ₩-24- III	_		06/20/22	Mar				х				_	
DW-25-I			NIZAZ	12:45	5			х					
DW-25-II			0/2963		9	- 27 = -		x					
DW-25-III			06/20/25	12:50	5								-
			02/20/23	12-50	5			X					-
DW-30-I			06/20/23	12:22	3			Х				-	
DW-30-II			06/20/23	12:10	5			Х					
DW-30-III			06/20/23	13:15	5			X					
OW-10-III			06/20/23	9:10	5			х					
W-25-I √								х					
DW-31-I			06/20/23	11:04	5			х	1.5				
DW-31-II			06/20/23	11:10	5			х					-
NL GW Du	p-1		06/20/23		5			х					
NL GW Du	p-2		06/20/13		5			х					
	Sampled By {1}:	(Name)	(Signature)					Date:		<i>i</i> _	P -19	(mm/	/dd/yy)
Re	elinquished by {2):	(Name)	(Signature)					Date:		1		(mm/	/dd/yy)

authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). {3} Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. {4} Completion of work may require the subcontracting of samples between the London and Lakelfield laboratories.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

00		R	Request for Laborat	on Servic	es and Cl	HAIN O	F CUSTO	DDY (Ge	neral)				
SG	S	SGS Environmental Services - Lakefie	2.1							2-6365 Web:	www.ca.sns	com (4)	
		SGS Environmental Services - Londor											
			Laboratory Info										
Received Dat	te (mm/dd/yyyy):	JUM 2 2 2023	row		LAB LIMS	#:	CANS	1720	7-5	and:	3		
Received Tim	ne (After Hours Only	()::			Temperatu	ıre Upon	Receipt (°	C): 1	24	3		5	
			Billing & Repo	rting Informa	ation				2004				
ot to	Company: Attention:	Dominique Gagnon				Quote #	7:		2021 14	126			
Invoice/Receipt to {3}:	Attention.	131 Fielding Rd				Attache	ed Parame	eter List:		1	YES		NO
e/Rec {3}:	Address:	Lively, Ontario							Turnard	ound Time			
/oic		P3Y 1L7				Is *Rus	h Turnaro	und Time	Requir	red?	ski wi smili i Grisi	_ YES	□ NO
ıuı	Email:	dominique.gagnon@wsp.com				Specify							
Project I	Name/Number:	TY131010 New Liskeard LF GW	P.O.#:				Requests Re	quire Lab Ap	proval				
	nt Venny den elektron skall				a magnitude sur section	n. Rhaga riprotie	Succession of the			120			annanda ocea
			formation/Report To:							Client L	TO COMPANY OF THE PARTY OF THE		
C	Company Name:	WSP				Phone	Numbe	r:		705-68	2-2632		
	Contact Name:					Fax N	umber:						
	Address:					E-mai	l:					7:	
	Copy to:												
			Sample	nformation									
						(plea	ase enter whic	the ana	alysis r	Request required olies to e	below a		ck off
	S	ample Identifier	Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Field Filtered	SW as per quote	GW as per quote					
NL GW Du	p-3			251	5		0, 8	x	ATP AL				
													N
									24				
					2-			2.					
													100
				J									
							-						
				100									
												2-17	
													-
	-									-		1 514	
	Sampled By {1}:		(Signature)					Date:		_'			dd/yy)
Re	elinquished by {2):	(Name)	(Signature)					Date:		_/		(mm/	dd/yy)

Note: [1] Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples. [2] Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). [3] Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. [4] Completion of work may require the subcontracting of samples between the London and Lakefield laboratories.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, independent herein.

indemnification and jurisdiction issues defined therein.

VMM 9:45

CA19657-AUG23 R1

PO#C025701288, TY131010.2023.1000.1142.5730-00-New Liskeard SW

Prepared for

WSP E & I Canada Ltd

First Page

CLIENT DETAILS	8	LABORATORY DETAILS	
Client	WSP E & I Canada Ltd	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	131 Fielding Road, Lively	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, P3Y 1L7		
	Phone: 705-665-0159. Fax:		
Contact	Dominique Gagnon	Telephone	705-652-2143
Telephone	705-665-0159	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	Dominique.Gagnon@wsp.com; meg.russell@wsp.com	SGS Reference	CA19657-AUG23
Project	PO#C025701288, TY131010.2023.1000.1142.5730-00-New Lis	Received	08/31/2023
Order Number		Approved	09/13/2023
Samples	Surface Water (7)	Report Number	CA19657-AUG23 R1
		Date Reported	09/13/2023

COMMENTS

Temperature of Sample upon Receipt: 9 Cooling Agent Present: UNKNOWN Custody Seal Present: UNKNOWN

Chain of Custody Number:NA

SIGNATORIES

Brad Moore Hon. B.Sc

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2143 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-4
Exceedance Summary	5
QC Summary	6-12
Legend	13
Annexes	14

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00-New Liskearc

Project Manager: Dominique Gagnon

Samplers: Aedon Lemon

ATRIX: WATER			Sample Number	7	8	9	10	11	12	13
			Sample Name	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW DUP
= PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
			Sample Date	30/08/2023	30/08/2023	30/08/2023	30/08/2023	30/08/2023	30/08/2023	30/08/2023
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result	Result
eneral Chemistry										
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑	< 4↑	< 4↑	< 4↑	< 4↑	< 4↑	< 4↑
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.22	0.52	0.55	< 0.05	0.28	0.32	0.26
Total Suspended Solids	mg/L	2		27	12	441	20	9	11	25
Alkalinity	mg/L as CaCO3	2		89	292	298	263	66	62	87
Conductivity	uS/cm	2		198	551	552	2300	193	170	216
Total Dissolved Solids	mg/L	30		137	383	340	1120	149	120	34
Chemical Oxygen Demand	mg/L	8		24	37	40	47	30	26	25
Ammonia+Ammonium (N)	as N mg/L	0.04		0.04	0.04	0.04	0.04	0.05	< 0.04	0.04
etals and Inorganics										
Sulphate	mg/L	2		5	< 2	< 2	26	9	9	5
Nitrite (as N)	as N mg/L	0.003		< 0.003	< 0.003	< 0.003	< 0.03↑	< 0.003	< 0.003	< 0.003
Nitrate (as N)	as N mg/L	0.006		0.011	< 0.006	< 0.006	< 0.006	0.066	0.067	0.119
Arsenic (total)	mg/L	0.0002	0.005	0.0010	0.0005	0.0008	0.0010	0.0011	0.0011	0.0009
Barium (total)	mg/L	0.00008		0.0180	0.0200	0.0277	0.0554	0.0181	0.0174	0.0182
Boron (total)	mg/L	0.002	0.2	0.008	0.020	0.015	0.019	0.012	0.011	0.008
Cadmium (total)	mg/L	0.000003	0.0001	0.000011	0.000017	0.000026	0.000028	0.000014	0.000010	0.000009
Chromium (total)	mg/L	0.00008	0.1	0.00193	0.00069	0.00145	0.00189	0.00124	0.00135	0.00231
Copper (total)	mg/L	0.0002	0.001	0.0018	0.0017	0.0028	0.0173	0.0032	0.0023	0.0018
Iron (total)	mg/L	0.007	0.3	0.827	0.249	0.537	1.23	0.495	0.551	0.896
Lead (total)	mg/L	0.00009	0.02	0.00046	0.00019	0.00048	0.00138	0.00043	0.00032	0.00046
			0.025							
Phosphorus (total)	mg/L	0.003	0.01	0.035	0.033	0.059	0.079	0.030	0.031	0.028

CA19657-AUG23 R1

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00-New Liskearc

Project Manager: Dominique Gagnon

Samplers: Aedon Lemon

MATRIX: WATER			5	Sample Number	7	8	9	10	11	12	13
				Sample Name	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW DUP
1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E	į			Sample Matrix	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
				Sample Date	30/08/2023	30/08/2023	30/08/2023	30/08/2023	30/08/2023	30/08/2023	30/08/2023
Parameter	Units	RL	L1		Result	Result	Result	Result	Result	Result	Result
Metals and Inorganics (continued)											
Zinc (total)	mg/L	0.002	0.02		0.003	0.003	0.006	0.008	0.003	0.003	0.004
Other (ORP)				·							
рН	No unit	0.05	8.6		8.03	8.41	8.35	8.23	8.04	7.99	8.02
Chloride	mg/L	1			9	7	19	600	17	13	9
Mercury (dissolved)	mg/L	0.00001	0.0002		0.00002	0.00002	0.00001	0.00002	0.00001	0.00001	0.00001
Phenois				·							
4AAP-Phenolics	mg/L	0.001	0.001		< 0.001	0.002	0.002	0.003	< 0.001	0.002	< 0.001

EXCEEDANCE SUMMARY

EXCEEDANCE SUMMARY				
				PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E
Parameter	Method	Units	Result	L1
SW-1				
Copper	SM 3030/EPA 200.8	mg/L	0.0018	0.001
Iron	SM 3030/EPA 200.8	mg/L	0.827	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.035	0.01
SW-2				
Copper	SM 3030/EPA 200.8	mg/L	0.0017	0.001
Phosphorus	SM 3030/EPA 200.8	mg/L	0.033	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	0.002	0.001
		9/=	0.002	0.001
SW-3				
Copper	SM 3030/EPA 200.8	mg/L	0.0028	0.001
Iron	SM 3030/EPA 200.8	mg/L	0.537	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.059	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	0.002	0.001
SW-4				
Copper	SM 3030/EPA 200.8	mg/L	0.0173	0.001
Iron	SM 3030/EPA 200.8	mg/L	1.23	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.079	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	0.003	0.001
SW-5				
Copper	SM 3030/EPA 200.8	mg/L	0.0032	0.001
Iron	SM 3030/EPA 200.8	mg/L	0.495	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.030	0.01
SW-6				
Copper	SM 3030/EPA 200.8	mg/L	0.0023	0.001
Iron	SM 3030/EPA 200.8	mg/L	0.551	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.031	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	0.002	0.001
SW DUP				
Copper	SM 3030/EPA 200.8	mg/L	0.0018	0.001
Iron	SM 3030/EPA 200.8	mg/L	0.896	0.3
	5W 5000/El /\ 200.0	g/L	0.000	0.5

20230913 5 / 14

SM 3030/EPA 200.8

mg/L

0.028

Phosphorus

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		M	latrix Spike / Re	of.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0004-SEP23	mg/L as	2	< 2	3	20	102	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		М	atrix Spike / Re	f.)
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0004-SEP23	mg/L	0.04	<0.04	ND	10	100	90	110	96	75	125

20230913 6 / 14

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch Units		RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5015-SEP23	mg/L	1	<1	0	20	102	80	120	95	75	125
Sulphate	DIO5015-SEP23	mg/L	2	<2	2	20	98	80	120	99	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrite (as N)	DIO0042-SEP23	mg/L	0.003	<0.003	ND	20	98	90	110	103	75	125
Nitrate (as N)	DIO0042-SEP23	mg/L	0.006	<0.006	ND	20	100	90	110	103	75	125
Nitrite (as N)	DIO0102-SEP23	mg/L	0.003	<0.003	1	20	98	90	110	102	75	125

20230913 7 / 14

QC SUMMARY

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	CS/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0060-AUG23	mg/L	2	< 2	3	30	102	70	130	NV	70	130

Chemical Oxygen Demand

Method: HACH 8000 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chemical Oxygen Demand	EWL0018-SEP23	mg/L	8	<8	0	20	116	80	120	109	75	125
Chemical Oxygen Demand	EWL0042-SEP23	mg/L	8	<8	0	20	102	80	120	98	75	125

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0004-SEP23	uS/cm	2	3	4	20	100	90	110	NA		

20230913 8 / 14

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank		M	atrix Spike / Ref	1.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (dissolved)	EHG0002-SEP23	mg/L	0.00001	< 0.00001	0	20	95	80	120	95	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units			Dup	licate	LCS	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ery Limits %)
						(76)	(%)	Low	High	(%)	Low	High
Arsenic (total)	EMS0007-SEP23	mg/L	0.0002	<0.0002	4	20	100	90	110	99	70	130
Barium (total)	EMS0007-SEP23	mg/L	0.00008	<0.00008	3	20	100	90	110	94	70	130
Boron (total)	EMS0007-SEP23	mg/L	0.002	<0.002	1	20	96	90	110	111	70	130
Cadmium (total)	EMS0007-SEP23	mg/L	0.000003	<0.000003	4	20	97	90	110	103	70	130
Chromium (total)	EMS0007-SEP23	mg/L	0.00008	<0.00008	1	20	94	90	110	91	70	130
Copper (total)	EMS0007-SEP23	mg/L	0.0002	<0.0002	3	20	95	90	110	95	70	130
Iron (total)	EMS0007-SEP23	mg/L	0.007	<0.007	0	20	94	90	110	125	70	130
Lead (total)	EMS0007-SEP23	mg/L	0.00009	<0.00009	ND	20	100	90	110	96	70	130
Phosphorus (total)	EMS0007-SEP23	mg/L	0.003	<0.003	ND	20	94	90	110	NV	70	130
Zinc (total)	EMS0007-SEP23	mg/L	0.002	<0.002	2	20	93	90	110	96	70	130

20230913 9 / 14

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate LC		S/Spike Blank		М	atrix Spike / Ref		
	Reference			Blank	RPD	AC (%)	Spike		ery Limits %)	Spike Recovery	Recover	·
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0004-SEP23	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-IENVISFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0017-SEP23	mg/L	0.001	<0.001	ND	10	102	80	120	85	75	125
4AAP-Phenolics	SKA0029-SEP23	mg/L	0.001	<0.001	ND	10	101	80	120	85	75	125

20230913

QC SUMMARY

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recove	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0668-AUG23	mg/L	30	<30	2	20	98	80	120	NA		
Total Dissolved Solids	EWL0669-AUG23	mg/L	30	<30	2	20	92	80	120	NA		

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0003-SEP23	mg/L	2	< 2	0	10	104	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	CS/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0022-SEP23	mg/L	0.05	<0.05	ND	10	104	90	110	101	75	125

20230913 11 / 14

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230913 12 / 14

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20230913 13 / 14

C	CC	Re	quest for Laborator	y Services	and CHA	IN OF CUS	TODY (Gene	eral)				
2	G 2	SGS Environmental Services - Lakefield:	185 Concession St., Lakefield	d, ON KOL 2H0 F	hone: 705-652	2-2000 Toll Free:	877-747-7658 Fax	: 705-652-6	365 Web: w	ww.ca.sgs.co	om {4}	
	,	SGS Environmental Services - London: 6				2-4500 Toll Free:	877-848-8060 Fax	: 519-672-0	361 Web: w	ww.ca.sgs.c	om {4}	-
		m. 8,31,23	Laboratóry Inf	ormation Se		7	34 0	657			0	100
	Date (mm/dd/yy				LAB LIMS			607			me	100
Received	d Time (After Hou	irs Only):	Billing & Repo	orting Inform		ure Upon Rece	eipt (°C):		x 3		V	
to	Company:	WSP E & I				Quote #:	V I =	2021 12	46			
eipt	Attention:	Dominique Gagnon	O			Attached Pa	rameter List:] YES		NO
Invoice/Receipt to {3}:	Address:	131 Fielding Rd Lively, Ontario				50 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10 K. 10		Turnaro	und Time			
roice	Addices.	P3Y 1L7				le *Pueh Tu	rnaround Time	SUB-LINE LANGE	THE PERSON NAMED IN	Petricine Service	□ YES	□ NO
É	Email:	APInvoice.Canada@woodplc.com, meg.russe	II@wsp.com, dominique	.gagnon@ws	p.com	Specify:	maround riiii	e Require	u:			
Project	Name/Number:	TY131010.2023.1000.1142.5730-00 - New Liskeard SW	P.O. #:	C023701288	3		sts Require Lab App	oroval				
		Client In	formation/Report To:						Client L	ab #:		
Cor	mpany Name:	WSP E & I				Phone Nu	mber:		705-68	2-2632		
С	ontact Name:	Dominique Gagnon, Meg Russell				Fax Numb	er:					
	Address:					E-mail:						
	Copy to:	meg.russell@wsp.com, dominique.ga	agnon@wsp.com									
10000000000000000000000000000000000000			7	Information								
						(please	Arenter the an which analy	nalysis alysis r sis app	equired	below a	ind che	ck off
		Sample Identifier	Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Comprehensive SW-Column 3	PH	Tems				
SW-1			08/30/23		9	X	724	16.12				
SW-2			1		9	х	- College	15,27				
SW-3					9	х	8.01					
SW-4	17 31,74				a	x	7.66	F.54				
SW-5					a	x						
SW-6					0		8.14	19,01				
					9	х		19,43			14	
SW DU	Р		9		9	Х	7,24	16.12				
				24 J. (1)								
												-
					<u> </u>						No.	
						E.						
S	Sampled By {1}:	(Name) Ledon Lesson	(Signature)	estel	em		Date:	O 8	130	123	(mm/c	dd/yy)
Relin	quished by {2):	(Name) Hedon Comon	(Signature)	socr.	In			08			(mm/c	
autnorizat unlimited i	ion for completion number of address	nples to SGS is acknowledgement that you have b of work. Signatures may appear on this form or b ses for no additional cost. Fax is available upon re	e retained on file in the co equest. {4} Completion of v	ntract, or in ar vork mav regu	alternative treethe subco	format (e.g. shi ontracting of sai	pping document moles between	ts). {3} Re	sults may	be sent by efield labor	email to a	an
i nis docum	nent is issued by the	Company under its General Conditions of Service acce	ssible at http://www.sgs.com indemnification and jurisd	/terms_and_cor liction issues de	nditions.htm. fined therein.	(Printed copies a	re available upon	request.)	Attention is	drawn to th	e limitation	of liability,

CA19658-AUG23 R1

PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskeard GW

Prepared for

WSP E & I Canada Ltd

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	WSP E & I Canada Ltd	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	131 Fielding Road, Lively	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, P3Y 1L7		
	Phone: 705-665-0159. Fax:		
Contact	Dominique Gagnon	Telephone	705-652-2143
Telephone	705-665-0159	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	Dominique.Gagnon@wsp.com; meg.russell@wsp.com	SGS Reference	CA19658-AUG23
Project	PO#C025701288, TY131010.2023.1000.1142.5730-00- New Li	Received	08/31/2023
Order Number		Approved	09/14/2023
Samples	Ground Water (28)	Report Number	CA19658-AUG23 R1
		Date Reported	09/14/2023

COMMENTS

Temperature of Sample upon Receipt: 8 Cooling Agent Present: UNKNOWN Custody Seal Present: UNKNOWN

Chain of Custody Number:NA

NO2 RL raised for sample #7 due to sample matrix

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mod

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

> Member of the SGS Group (SGS SA) 1/30

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-13
Exceedance Summary	14-17
QC Summary	18-26
Legend	27
Annexes	28-30

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

MATRIX: WATER			8	Sample Number	7	8	9	10	11	12	13	14
				Sample Name	OW-1R-I	OW-1-R-III	OW-10-I	OW-10-II	OW-11-I	OW-11-II	OW-12-I	OW-12-II
I = ODWS_AO_OG / WATER / Table 4 - Drinking Water	- Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	Vater - Reg O.169_03			Sample Date	29/08/2023	29/08/2023	29/08/2023	28/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
Seneral Chemistry												
Alkalinity	mg/L as CaCO3	2	500		928	1020	282	257	246	472	357	558
Conductivity	uS/cm	2			2300	2520	678	755	577	1100	919	1290
Total Dissolved Solids	mg/L	30	500		1540	1430	431	563	340	731	671	703
Dissolved Organic Carbon	mg/L	1.0	5		29.0	28.3	1.2	2.7	< 1.0	7.2	3.0	8.9
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			35.2	34.9	0.16	0.17	0.07	0.63	0.30	1.11
Ammonia+Ammonium (N)	as N mg/L	0.04			33.3	32.3	0.10	0.05	< 0.04	< 0.04	< 0.04	0.04
Organic Nitrogen	mg/L	0.05	0.15		1.97	2.53	0.06	0.12	0.06	0.61	0.29	1.07
Total Reactive Phosphorous (o-phosphate	mg/L	0.03			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
as P)												
letals and Inorganics												
Fluoride	mg/L	0.06		1.5	0.15	0.11	0.33	< 0.06	0.33	0.22	0.37	0.08
Sulphate	mg/L	2	500		110	99	91	160	54	96	84	83
Nitrite (as N)	as N mg/L	0.03		1	< 0.3↑	0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	< 0.06	< 0.06	< 0.06	< 0.06	0.13	< 0.06	< 0.06	< 0.06
Hardness (dissolved)	mg/L as CaCO3	0.05	100		851	832	369	426	296	552	467	589
Aluminum (dissolved)	mg/L	0.001			0.003	0.003	< 0.001	0.001	< 0.001	0.041	0.007	0.001
Arsenic (dissolved)	mg/L	0.0002		0.01	0.0010	0.0008	< 0.0002	0.0003	< 0.0002	0.0002	< 0.0002	0.0003
Barium (dissolved)	mg/L	0.00008		1	0.124	0.158	0.0315	0.0206	0.0349	0.0365	0.0689	0.0450
Boron (dissolved)	mg/L	0.002		5	1.87	1.49	0.204	0.024	0.277	0.415	0.396	0.310
Beryllium (dissolved)	mg/L	0.000007			< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth (dissolved)	mg/L	0.00001			< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Calcium (dissolved)	mg/L	0.01			147	166	94.8	130	70.8	143	112	164

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

IATRIX: WATER				Sample Number	7	8	9	10	11	12	13	14
				Sample Name	OW-1R-I	OW-1-R-III	OW-10-I	OW-10-II	OW-11-I	OW-11-II	OW-12-I	OW-12-II
= ODWS_AO_OG / WATER / Table 4 - Drinking Water - F	Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
! = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	ter - Reg O.169_03			Sample Date	29/08/2023	29/08/2023	29/08/2023	28/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
letals and Inorganics (continued)												
Cadmium (dissolved)	mg/L	0.000003		0.005	0.000004	0.000083	< 0.000003	< 0.000003	0.000010	0.000006	0.000011	< 0.000003
Chromium (dissolved)	mg/L	0.00008		0.05	0.00083	0.00102	0.00025	0.00056	0.00025	0.00035	0.00020	0.00028
Cobalt (dissolved)	mg/L	0.000004			0.00966	0.0107	0.000018	0.000068	0.000026	0.000199	0.000060	0.000243
Copper (dissolved)	mg/L	0.0002	1		0.0020	0.0044	0.0008	0.0008	0.0011	0.0012	0.0017	0.0006
Iron (dissolved)	mg/L	0.007	0.3		0.329	0.177	0.274	0.066	< 0.007	0.063	0.033	0.354
Potassium (dissolved)	mg/L	0.009			124	112	5.32	1.19	6.92	7.31	9.64	3.84
Magnesium (dissolved)	mg/L	0.001			118	101	32.2	24.8	29.0	47.6	45.5	43.6
Manganese (dissolved)	mg/L	0.00001	0.05		0.877	1.74	0.0201	0.00931	0.00034	0.0143	0.00127	0.0477
Sodium (dissolved)	mg/L	0.01	200	20	187	147	4.82	1.86	13.6	36.8	19.1	64.5
Lead (dissolved)	mg/L	0.00009		0.01	0.00020	0.00108	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Molybdenum (dissolved)	mg/L	0.00004			0.00095	0.00098	0.00007	0.00024	0.00022	0.00070	0.00045	0.00014
Nickel (dissolved)	mg/L	0.0001			0.0569	0.0505	0.0002	0.0008	0.0011	0.0045	0.0037	0.0080
Phosphorus (dissolved)	mg/L	0.003			0.017	0.012	0.012	< 0.003	< 0.003	< 0.003	< 0.003	0.009
Selenium (dissolved)	mg/L	0.00004		0.05	0.00037	0.00043	< 0.00004	0.00009	< 0.00004	0.00008	0.00007	0.00008
Silicon (dissolved)	mg/L	0.02			7.73	7.58	3.65	2.43	3.42	5.39	5.40	4.62
Silver (dissolved)	mg/L	0.00005			< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L	0.00008			1.67	1.04	1.23	0.214	2.24	0.339	2.57	0.558
Sulfur (dissolved)	mg/L	3			40	36	32	56	25	32	34	28
Thallium (dissolved)	mg/L	0.000005			0.000132	0.000600	< 0.000005	< 0.000005	< 0.000005	0.000005	< 0.000005	< 0.00000
Tin (dissolved)	mg/L	0.00006			0.00063	0.00040	0.00009	0.00038	0.00011	0.00011	0.00012	0.00018
Titanium (dissolved)	mg/L	0.00007			0.00021	0.00027	0.00068	0.00008	< 0.00007	0.00202	0.00034	0.00011
Uranium (dissolved)	mg/L	0.000002		0.02	0.00187	0.00183	0.000017	0.000256	0.000280	0.000811	0.000408	0.000445

SGS

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

MATRIX: WATER			;	Sample Number	7	8	9	10	11	12	13	14
				Sample Name	OW-1R-I	OW-1-R-III	OW-10-I	OW-10-II	OW-11-I	OW-11-II	OW-12-I	OW-12-II
= ODWS_AO_OG / WATER / Table 4 - Drinking Water -	- Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
? = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	/ater - Reg 0.169_03			Sample Date	29/08/2023	29/08/2023	29/08/2023	28/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
letals and Inorganics (continued)												
Vanadium (dissolved)	mg/L	0.00001			0.00034	0.00053	0.00004	0.00011	0.00009	0.00023	0.00012	0.00010
Zinc (dissolved)	mg/L	0.002	5		0.002	0.005	0.002	< 0.002	0.009	0.005	0.004	< 0.002
Other (ORP)												
рН	No unit	0.05	8.5		8.14	7.77	7.95	8.17	8.60	8.25	7.93	7.83
Chloride	mg/L	1	250		240	250	2	2	12	45	49	66
				Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-23-II	OW-24-I	
= ODWS_AO_OG / WATER / Table 4 - Drinking Water -	_			Sample Name Sample Matrix Sample Date	OW-13-I Ground Water 30/08/2023	OW-16-I Ground Water 29/08/2023	OW-16-II Ground Water 29/08/2023	OW-17-1 Ground Water 30/08/2023	OW-17-II Ground Water 30/08/2023	OW-23-II Ground Water 30/08/2023	OW-24-I Ground Water 29/08/2023	OW-24-II Ground Wate 29/08/2023
_	_	RL	L1	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wat
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	/ater - Reg O.169_03	RL	L1	Sample Matrix Sample Date	Ground Water 30/08/2023	Ground Water 29/08/2023	Ground Water 29/08/2023	Ground Water 30/08/2023	Ground Water 30/08/2023	Ground Water 30/08/2023	Ground Water 29/08/2023	Ground Wat 29/08/2023
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	/ater - Reg O.169_03	RL 2	L1	Sample Matrix Sample Date	Ground Water 30/08/2023	Ground Water 29/08/2023	Ground Water 29/08/2023	Ground Water 30/08/2023	Ground Water 30/08/2023	Ground Water 30/08/2023	Ground Water 29/08/2023	Ground Wat 29/08/2023
P = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking With Parameter Seneral Chemistry	/ater - Reg 0.169_03 Units			Sample Matrix Sample Date	Ground Water 30/08/2023 Result	Ground Water 29/08/2023 Result	Ground Water 29/08/2023 Result	Ground Water 30/08/2023 Result	Ground Water 30/08/2023 Result	Ground Water 30/08/2023 Result	Ground Water 29/08/2023 Result	Ground Wat 29/08/2023 Result
P = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking William Parameter General Chemistry Alkalinity	/ater - Reg 0.169_03 Units mg/L as CaCO3	2		Sample Matrix Sample Date	Ground Water 30/08/2023 Result	Ground Water 29/08/2023 Result	Ground Water 29/08/2023 Result	Ground Water 30/08/2023 Result	Ground Water 30/08/2023 Result	Ground Water 30/08/2023 Result	Ground Water 29/08/2023 Result	Ground Wat 29/08/2023 Result
Parameter General Chemistry Alkalinity Conductivity	water - Reg O.169_03 Units mg/L as CaCO3 uS/cm	2 2	500	Sample Matrix Sample Date	Ground Water 30/08/2023 Result 383 840	Ground Water 29/08/2023 Result 389 556	Ground Water 29/08/2023 Result 165 501	Ground Water 30/08/2023 Result 240 466	Ground Water 30/08/2023 Result 303 649	Ground Water 30/08/2023 Result 217 596	Ground Water 29/08/2023 Result 234 456	Ground Wat 29/08/2023 Result 345 612
Parameter Seneral Chemistry Alkalinity Conductivity Total Dissolved Solids	mg/L as CaCO3 uS/cm mg/L	2 2 30	500	Sample Matrix Sample Date	Ground Water 30/08/2023 Result 383 840 526	Ground Water 29/08/2023 Result 389 556 461	Ground Water 29/08/2023 Result 165 501 317	Ground Water 30/08/2023 Result 240 466 266	Ground Water 30/08/2023 Result 303 649 414	Ground Water 30/08/2023 Result 217 596 380	Ground Water 29/08/2023 Result 234 456 309	Ground Wat 29/08/2023 Result 345 612 434
Parameter General Chemistry Alkalinity Conductivity Total Dissolved Solids Dissolved Organic Carbon	mg/L as CaCO3 uS/cm mg/L mg/L	2 2 30 1.0	500	Sample Matrix Sample Date	Ground Water 30/08/2023 Result 383 840 526 4.3	Ground Water 29/08/2023 Result 389 556 461 9.8	Ground Water 29/08/2023 Result 165 501 317 4.6	Ground Water 30/08/2023 Result 240 466 266 2.7	Ground Water 30/08/2023 Result 303 649 414 1.5	Ground Water 30/08/2023 Result 217 596 380 1.8	Ground Water 29/08/2023 Result 234 456 309 9.6	Ground Wat 29/08/2023 Result 345 612 434 1.2
Parameter General Chemistry Alkalinity Conductivity Total Dissolved Solids Dissolved Organic Carbon Total Kjeldahl Nitrogen (N)	mg/L as CaCO3 uS/cm mg/L as N mg/L	2 2 30 1.0 0.05	500	Sample Matrix Sample Date	Ground Water 30/08/2023 Result 383 840 526 4.3 2.92	Ground Water 29/08/2023 Result 389 556 461 9.8 1.74	Ground Water 29/08/2023 Result 165 501 317 4.6 < 0.05	Ground Water 30/08/2023 Result 240 466 266 2.7 0.17	Ground Water 30/08/2023 Result 303 649 414 1.5 < 0.05	Ground Water 30/08/2023 Result 217 596 380 1.8 0.13	Ground Water 29/08/2023 Result 234 456 309 9.6 0.11	Ground Wat 29/08/2023 Result 345 612 434 1.2 0.07

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

ATRIX: WATER			;	Sample Number	15	16	17	18	19	20	21	22
				Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-23-II	OW-24-I	OW-24-II
= ODWS_AO_OG / WATER / Table 4 - Drinking Water -	Reg O.169 03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
- = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	ater - Reg O.169_03			Sample Date	30/08/2023	29/08/2023	29/08/2023	30/08/2023	30/08/2023	30/08/2023	29/08/2023	29/08/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics												
Fluoride	mg/L	0.06		1.5	0.27	1.55	1.02	0.36	1.27	1.32	0.57	0.73
Sulphate	mg/L	2	500		85	< 2	89	18	70	82	32	33
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	0.24	< 0.06	0.15	< 0.06	0.06	0.10	< 0.06	0.06
Hardness (dissolved)	mg/L as CaCO3	0.05	100		468	86.7	110	244	228	131	213	372
Aluminum (dissolved)	mg/L	0.001			0.004	0.003	0.006	0.001	0.038	0.002	0.002	0.002
Arsenic (dissolved)	mg/L	0.0002		0.01	0.0008	0.0004	0.0012	0.0008	0.0006	0.0005	0.0005	< 0.0002
Barium (dissolved)	mg/L	0.00008		1	0.0378	0.0424	0.0310	0.0296	0.0455	0.0294	0.0375	0.0460
Boron (dissolved)	mg/L	0.002		5	0.096	0.411	0.194	0.032	0.122	0.336	0.075	0.036
Beryllium (dissolved)	mg/L	0.000007			< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth (dissolved)	mg/L	0.00001			< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Calcium (dissolved)	mg/L	0.01			120	14.8	21.5	65.2	40.4	21.4	52.7	83.2
Cadmium (dissolved)	mg/L	0.000003		0.005	0.000004	0.000009	0.000014	0.000004	0.000006	0.000018	< 0.000003	0.000005
Chromium (dissolved)	mg/L	0.00008		0.05	0.00053	0.00053	0.00052	0.00032	0.00055	0.00059	0.00029	0.00010
Cobalt (dissolved)	mg/L	0.000004			0.000350	0.000102	0.000012	0.000189	0.000058	0.000018	0.000117	0.000198
Copper (dissolved)	mg/L	0.0002	1		0.0010	0.0003	0.0017	0.0009	0.0014	0.0013	0.0004	0.0017
Iron (dissolved)	mg/L	0.007	0.3		0.555	0.224	< 0.007	0.437	0.058	< 0.007	0.112	0.014
Potassium (dissolved)	mg/L	0.009			6.74	4.36	7.48	3.30	4.40	4.03	3.02	4.82
Magnesium (dissolved)	mg/L	0.001			40.7	12.1	13.8	19.7	30.8	18.9	19.8	40.0
Manganese (dissolved)	mg/L	0.00001	0.05		0.0387	0.0188	0.00017	0.0414	0.00203	0.00029	0.0662	0.0335
Sodium (dissolved)	mg/L	0.01	200	20	2.48	99.5	62.5	3.74	62.0	80.7	21.4	13.6
Lead (dissolved)	mg/L	0.00009		0.01	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009

CA19658-AUG23 R1

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

MATRIX: WATER				Sample Number	15	16	17	18	19	20	21	22
				Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-23-II	OW-24-I	OW-24-II
= ODWS_AO_OG / WATER / Table 4 - Drinking Water - R	eg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
e = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water	er - Reg O.169_03			Sample Date	30/08/2023	29/08/2023	29/08/2023	30/08/2023	30/08/2023	30/08/2023	29/08/2023	29/08/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
letals and Inorganics (continued)												
Molybdenum (dissolved)	mg/L	0.00004			0.00119	0.00907	0.0210	0.00198	0.00986	0.0353	0.00456	0.00583
Nickel (dissolved)	mg/L	0.0001			0.0012	0.0002	0.0004	0.0003	0.0008	0.0006	0.0005	0.0018
Phosphorus (dissolved)	mg/L	0.003			1.02	0.063	0.005	0.022	< 0.003	< 0.003	< 0.003	< 0.003
Selenium (dissolved)	mg/L	0.00004		0.05	0.00035	0.00009	0.00060	< 0.00004	0.00008	0.00017	< 0.00004	0.00005
Silicon (dissolved)	mg/L	0.02			5.32	8.06	3.45	9.21	4.60	3.30	6.86	5.95
Silver (dissolved)	mg/L	0.00005			< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L	0.00008			0.648	0.579	0.521	0.501	3.19	0.782	0.535	1.12
Sulfur (dissolved)	mg/L	3			34	< 3	31	6	24	29	9	11
Thallium (dissolved)	mg/L	0.000005			< 0.000005	< 0.000005	0.000005	< 0.000005	0.000005	< 0.000005	< 0.000005	0.000018
Tin (dissolved)	mg/L	0.00006			0.00013	0.00007	0.00015	0.00022	0.00010	0.00008	0.00012	0.00045
Titanium (dissolved)	mg/L	0.00007			0.00037	0.00083	0.00011	0.00007	0.00184	0.00012	0.00014	0.00015
Uranium (dissolved)	mg/L	0.000002		0.02	0.000622	0.000034	0.00248	0.000039	0.00374	0.00155	0.000503	0.00160
Vanadium (dissolved)	mg/L	0.00001			0.00090	0.00078	0.00141	0.00016	0.00059	0.00027	0.00066	0.00023
Zinc (dissolved)	mg/L	0.002	5		0.004	< 0.002	0.003	0.002	< 0.002	< 0.002	< 0.002	0.004

SGS

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

MATRIX: WATER				Sample Number	15	16	17	18	19	20	21	22
				Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-23-II	OW-24-I	OW-24-II
.1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water -	- Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
.2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	Vater - Reg O.169_03			Sample Date	30/08/2023	29/08/2023	29/08/2023	30/08/2023	30/08/2023	30/08/2023	29/08/2023	29/08/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
Other (ORP)												
рН	No unit	0.05	8.5		7.94	8.41	8.09	8.02	8.19	8.17	8.44	8.23
Chloride	mg/L	1	250		2	9	5	< 1	4	12	< 1	4
MATRIX: WATER				Sample Number	23	24	25	26	27	28	29	30
				Sample Name	OW-25-I	OW-25-II	OW-30-I	OW-30-II	OW-30-III	OW-31-I	OW-31-II	NL GW Dup-
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water -	- Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	Vater - Reg O.169_03			Sample Date	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
General Chemistry												
Alkalinity	mg/L as CaCO3	2	500		231	151	206	184	118	148	263	217
Conductivity	uS/cm	2			421	703	701	366	612	799	638	557
Total Dissolved Solids	mg/L	30	500		232	477	491	217	429	529	409	320
Dissolved Organic Carbon	mg/L	1.0	5		2.7	1.4	1.5	2.4	2.1	1.3	1.9	1.4
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.69	< 0.05	< 0.05	0.20	0.13	< 0.05	0.10	0.14
Ammonia+Ammonium (N)	as N mg/L	0.04			0.39	< 0.04	< 0.04	0.06	< 0.04	< 0.04	< 0.04	0.11
Organic Nitrogen	mg/L	0.05	0.15		0.30	< 0.05	< 0.05	0.14	0.13	< 0.05	0.10	< 0.05
Total Reactive Phosphorous (o-phosphate as P)	mg/L	0.03			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Metals and Inorganics												
Fluoride	mg/L	0.06		1.5	0.67	1.18	1.54	0.24	1.22	0.76	0.34	0.69
Sulphate	mg/L	2	500		< 2	200	210	18	200	290	83	89
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

MATRIX: WATER			;	Sample Number	23	24	25	26	27	28	29	30
				Sample Name	OW-25-I	OW-25-II	OW-30-I	OW-30-II	OW-30-III	OW-31-I	OW-31-II	NL GW Dup-1
I = ODWS_AO_OG / WATER / Table 4 - Drinking Water - R	teg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water	er - Reg O.169_03			Sample Date	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
Metals and Inorganics (continued)												
Nitrate (as N)	as N mg/L	0.06		10	< 0.06	0.14	< 0.06	< 0.06	< 0.06	0.40	< 0.06	< 0.06
Hardness (dissolved)	mg/L as CaCO3	0.05	100		168	119	135	192	105	227	151	363
Aluminum (dissolved)	mg/L	0.001			0.002	0.005	0.003	0.001	0.002	0.004	0.003	< 0.001
Arsenic (dissolved)	mg/L	0.0002		0.01	< 0.0002	0.0026	0.0004	< 0.0002	0.0007	0.0003	0.0006	< 0.0002
Barium (dissolved)	mg/L	80000.0		1	0.0384	0.0226	0.0307	0.0646	0.0392	0.0346	0.0306	0.0306
Boron (dissolved)	mg/L	0.002		5	0.125	0.189	0.430	0.031	0.195	0.189	0.138	0.202
Beryllium (dissolved)	mg/L	0.000007			< 0.000007	< 0.000007	< 0.000007	0.000009	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth (dissolved)	mg/L	0.00001			< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Calcium (dissolved)	mg/L	0.01			36.4	22.4	21.1	50.6	18.5	40.3	26.1	93.6
Cadmium (dissolved)	mg/L	0.000003		0.005	< 0.000003	0.000023	0.000027	< 0.000003	0.000008	0.000011	0.000009	< 0.000003
Chromium (dissolved)	mg/L	0.00008		0.05	0.00024	0.00047	0.00032	0.00040	0.00035	0.00033	0.00038	0.00028
Cobalt (dissolved)	mg/L	0.000004			0.000022	0.000014	0.000028	0.000053	0.000030	0.000022	0.000030	0.000017
Copper (dissolved)	mg/L	0.0002	1		0.0006	0.0013	0.0011	0.0007	0.0018	0.0023	0.0010	0.0002
Iron (dissolved)	mg/L	0.007	0.3		0.128	< 0.007	< 0.007	1.50	< 0.007	0.009	< 0.007	0.273
Potassium (dissolved)	mg/L	0.009			3.75	7.34	6.18	3.10	5.44	9.01	6.16	5.31
Magnesium (dissolved)	mg/L	0.001			18.6	15.2	20.1	16.0	14.3	30.7	20.8	31.4
Manganese (dissolved)	mg/L	0.00001	0.05		0.0120	0.00028	0.00341	0.0786	0.00490	0.00168	0.00196	0.0196
Sodium (dissolved)	mg/L	0.01	200	20	28.4	101	95.8	4.20	90.3	73.3	61.7	4.65
Lead (dissolved)	mg/L	0.00009		0.01	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Molybdenum (dissolved)	mg/L	0.00004			0.00185	0.0370	0.0346	0.00119	0.0146	0.0132	0.0134	0.00046
Nickel (dissolved)	mg/L	0.0001			< 0.0001	0.0005	0.0005	0.0002	0.0011	0.0011	0.0004	0.0001
Phosphorus (dissolved)	mg/L	0.003			0.034	0.008	0.006	0.053	< 0.003	< 0.003	0.007	0.011

CA19658-AUG23 R1

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

MATRIX: WATER				Sample Number	23	24	25	26	27	28	29	30
				Sample Name	OW-25-I	OW-25-II	OW-30-I	OW-30-II	OW-30-III	OW-31-I	OW-31-II	NL GW Dup-1
.1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water -	Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
.2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	ater - Reg O.169_03			Sample Date	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023	29/08/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
Metals and Inorganics (continued)												
Selenium (dissolved)	mg/L	0.00004		0.05	< 0.00004	0.00055	< 0.00004	< 0.00004	0.00004	0.00045	< 0.00004	< 0.00004
Silicon (dissolved)	mg/L	0.02			8.12	3.27	2.52	6.62	3.60	3.30	4.30	3.66
Silver (dissolved)	mg/L	0.00005			< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L	0.00008			0.788	0.556	1.02	0.881	0.689	1.03	0.544	1.24
Sulfur (dissolved)	mg/L	3			< 3	70	69	6	70	99	28	31
Thallium (dissolved)	mg/L	0.000005			< 0.000005	< 0.000005	0.000006	< 0.000005	0.000007	0.000022	0.000009	< 0.000005
Tin (dissolved)	mg/L	0.00006			0.00011	0.00012	0.00017	0.00007	0.00017	0.00012	0.00006	< 0.00006
Titanium (dissolved)	mg/L	0.00007			0.00013	0.00014	< 0.00007	0.00009	< 0.00007	0.00018	0.00012	0.00010
Uranium (dissolved)	mg/L	0.000002		0.02	0.000037	0.00498	0.000562	0.000053	0.000968	0.00218	0.00159	0.000019
Vanadium (dissolved)	mg/L	0.00001			0.00015	0.00211	0.00030	0.00021	0.00112	0.00085	0.00057	0.00004
Zinc (dissolved)	mg/L	0.002	5		< 0.002	0.002	< 0.002	0.002	< 0.002	0.003	< 0.002	< 0.002
Other (ORP)												
рН	No unit	0.05	8.5		8.14	8.30	8.40	8.00	8.30	8.27	8.37	8.37
Chloride	mg/L	1	250		< 1	7	3	< 1	2	< 1	1	3

CA19658-AUG23 R1

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

MATRIX: WATER			9	Sample Number	31	32	33	34	
VIATRIA. WATER			•	Sample Name	NL GW Dup-2	NL GW Dup-3	OW-25-III	OW-10-III	
I = ODWS_AO_OG / WATER / Table 4 - Drinking Water -	- Rea O 169 03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water -	_			Sample Date	29/08/2023	30/08/2023	29/08/2023	28/08/2023	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	
General Chemistry									
Alkalinity	mg/L as CaCO3	2	500		187	248	402	197	
Conductivity	uS/cm	2			363	446	754	537	
Total Dissolved Solids	mg/L	30	500		237	306	480	309	
Dissolved Organic Carbon	mg/L	1.0	5		2.5	2.2	1.2	< 1.0	
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.08	0.08	0.10	0.07	
Ammonia+Ammonium (N)	as N mg/L	0.04			0.06	0.05	< 0.04	< 0.04	
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05	0.09	< 0.05	
Total Reactive Phosphorous (o-phosphate	mg/L	0.03			< 0.03	< 0.03	< 0.03	< 0.03	
as P)									
letals and Inorganics									
Fluoride	mg/L	0.06		1.5	0.24	0.35	1.06	0.59	
Sulphate	mg/L	2	500		18	21	64	87	
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03	< 0.03	< 0.03	
Nitrate (as N)	as N mg/L	0.06		10	< 0.06	< 0.06	< 0.06	< 0.06	
Hardness (dissolved)	mg/L as CaCO3	0.05	100		192	244	405	205	
Aluminum (dissolved)	mg/L	0.001			0.001	0.002	0.002	0.050	
Arsenic (dissolved)	mg/L	0.0002		0.01	< 0.0002	0.0004	0.0023	< 0.0002	
Barium (dissolved)	mg/L	0.00008		1	0.0636	0.0303	0.0744	0.0216	
Boron (dissolved)	mg/L	0.002		5	0.025	0.027	0.021	0.221	
Beryllium (dissolved)	mg/L	0.000007			0.000012	< 0.000007	< 0.000007	< 0.000007	
Bismuth (dissolved)	mg/L	0.00001			< 0.00001	< 0.00001	< 0.00001	< 0.00001	
Calcium (dissolved)	mg/L	0.01			50.8	65.5	96.6	49.3	

CA19658-AUG23 R1

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

IATRIX: WATER				Sample Number	31	32	33	34	
				Sample Name	NL GW Dup-2	NL GW Dup-3	OW-25-III	OW-10-III	
= ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O				Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	
= ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - F	-			Sample Date	29/08/2023	30/08/2023	29/08/2023	28/08/2023	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	
etals and Inorganics (continued)									_
Cadmium (dissolved)		0.000003		0.005	< 0.000003	< 0.000003	< 0.000003	< 0.000003	
Chromium (dissolved)	mg/L	0.00008		0.05	0.00018	0.00021	0.00026	0.00047	
Cobalt (dissolved)	mg/L	0.000004			0.000050	0.000128	0.00374	0.000335	
Copper (dissolved)	mg/L	0.0002	1		0.0003	0.0003	0.0004	0.0008	
Iron (dissolved)	mg/L	0.007	0.3		1.52	0.657	1.22	0.076	
Potassium (dissolved)	mg/L	0.009			3.11	3.46	3.74	5.88	
Magnesium (dissolved)	mg/L	0.001			16.0	19.5	39.7	19.9	
Manganese (dissolved)	mg/L	0.00001	0.05		0.0772	0.0397	0.0920	0.0291	
Sodium (dissolved)	mg/L	0.01	200	20	4.13	3.65	13.9	34.3	
Lead (dissolved)	mg/L	0.00009		0.01	< 0.00009	< 0.00009	< 0.00009	< 0.00009	
Molybdenum (dissolved)	mg/L	0.00004			0.00044	0.00145	0.00463	0.00019	
Nickel (dissolved)	mg/L	0.0001			0.0002	0.0003	0.0022	0.0005	
Phosphorus (dissolved)	mg/L	0.003			0.054	0.023	< 0.003	< 0.003	
Selenium (dissolved)	mg/L	0.00004		0.05	0.00005	< 0.00004	0.00008	< 0.00004	
Silicon (dissolved)	mg/L	0.02			6.61	9.32	7.82	3.22	
Silver (dissolved)	mg/L	0.00005			< 0.00005	< 0.00005	< 0.00005	< 0.00005	
Strontium (dissolved)	mg/L	0.00008			0.887	0.504	1.90	1.92	
Sulfur (dissolved)	mg/L	3			6	6	18	29	
Thallium (dissolved)	mg/L	0.000005			< 0.000005	< 0.000005	< 0.000005	< 0.000005	
Tin (dissolved)	mg/L	0.00006			< 0.00006	0.00012	0.00009	0.00012	
Titanium (dissolved)	mg/L	0.00007			0.00008	0.00014	0.00019	0.00185	
Uranium (dissolved)	mg/L	0.000002		0.02	0.000051	0.000026	0.00456	0.000033	

CA19658-AUG23 R1

Client: WSP E & I Canada Ltd

Project: PO#C025701288, TY131010.2023.1000.1142.5730-00- New Liskean

Project Manager: Dominique Gagnon

MA	TRIX: WATER				Sample Number	31	32	33	34
					Sample Name	NL GW Dup-2	NL GW Dup-3	OW-25-III	OW-10-III
L1 = (ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O	.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = (ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - R	Reg O.169_03			Sample Date	29/08/2023	30/08/2023	29/08/2023	28/08/2023
F	Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Met	tals and Inorganics (continued)								
V	Vanadium (dissolved)	mg/L	0.00001			0.00016	0.00012	0.00033	0.00024
Z	Zinc (dissolved)	mg/L	0.002	5		< 0.002	< 0.002	< 0.002	< 0.002
Oth	er (ORP)								
p	pΗ	No unit	0.05	8.5		7.77	8.18	8.07	8.45
C	Chloride	mg/L	1	250		< 1	< 1	< 1	< 1

EXCEEDANCE SUMMARY ODWS_AO_OG / ODWS_MAC / WATER / - - Table 4 WATER / - - Table - Drinking Water -1,2 and 3 -Reg O.169_03 Drinking Water -Reg O.169_03 Method L2 Parameter Units Result L1 OW-1R-I Organic Nitrogen 1.97 mg/L SM 2320 Alkalinity mg/L as CaCO3 928 **Total Dissolved Solids** SM 2540C mg/L 1540 SM 3030/EPA 200.7 Hardness (dissolved) mg/L as CaCO3 851 Iron (dissolved) SM 3030/EPA 200.8 0.329 mg/L Manganese (dissolved) SM 3030/EPA 200.8 0.877 mg/L Sodium (dissolved) SM 3030/EPA 200.8 187 mg/L Dissolved Organic Carbon SM 5310B 29.0 mg/L OW-1-R-III Organic Nitrogen ma/L 2.53 Alkalinity SM 2320 mg/L as CaCO3 1020 **Total Dissolved Solids** SM 2540C mg/L 1430 Hardness (dissolved) SM 3030/EPA 200.7 mg/L as CaCO3 832 Manganese (dissolved) SM 3030/EPA 200.8 mg/L 1.74 0.05 Sodium (dissolved) SM 3030/EPA 200.8 mg/L 147 Dissolved Organic Carbon SM 5310B mg/L 28.3 OW-10-I SM 3030/EPA 200.7 369 Hardness (dissolved) mg/L as CaCO3 **OW-10-II** Total Dissolved Solids SM 2540C mg/L 563 Hardness (dissolved) SM 3030/EPA 200.7 mg/L as CaCO3 426 **OW-11-I** Hardness (dissolved) SM 3030/EPA 200.7 mg/L as CaCO3 296 рΗ SM 4500 No unit 8.60 **OW-11-II** Organic Nitrogen 0.61 mg/L Total Dissolved Solids SM 2540C mg/L 731 Hardness (dissolved) SM 3030/EPA 200.7 mg/L as CaCO3 552 Sodium (dissolved) SM 3030/EPA 200.8 36.8 mg/L Dissolved Organic Carbon SM 5310B 7.2 mg/L

OW-12-I

Organic Nitrogen		mg/L	0.29	0.15
Total Dissolved Solids	SM 2540C	mg/L	671	500
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	467	100

20230914 14 / 30

				ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.169_03	ODWS_MAC / WATER / Tab 1,2 and 3 - Drinking Water Reg O.169_03
Parameter	Method	Units	Result	L1	L2
<i>I</i> -12-II					
Organic Nitrogen		mg/L	1.07	0.15	
Alkalinity	SM 2320	mg/L as CaCO3	558	500	
Total Dissolved Solids	SM 2540C	mg/L	703	500	
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	589	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	0.354	0.3	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	64.5		20
Dissolved Organic Carbon	SM 5310B	mg/L	8.9	5	
/-13-I				'	
Organic Nitrogen		mg/L	0.49	0.15	
Total Dissolved Solids	SM 2540C	mg/L	526	500	
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	468	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	0.555	0.3	
/-16-I					
Organic Nitrogen		mg/L	0.37	0.15	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	99.5		20
Fluoride	SM 4500	mg/L	1.55		1.5
Dissolved Organic Carbon	SM 5310B	mg/L	9.8	5	
/-16-II					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	110	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	62.5		20
<i>I</i> -17-1					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	244	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	0.437	0.3	
/-17-II					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	228	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	62.0		20
/-23-II					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	131	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	80.7	100	20
/-24-I	2 / 2222.2	g, =		1	
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	213	100	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.0662	0.05	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	21.4	0.00	20

mg/L

15 / 30 20230914

Dissolved Organic Carbon

SM 5310B

				ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.169_03	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg O.169_03
Parameter	Method	Units	Result	L1	L2
V-24-II					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	372	100	
V-25-I					
Organic Nitrogen		mg/L	0.30	0.15	
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	168	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	28.4		20
V-25-II					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	119	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	101		20
V-30-I					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	135	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	95.8		20
Fluoride	SM 4500	mg/L	1.54		1.5
V-30-II Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	192	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	1.50	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.0786	0.05	
V-30-III					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	105	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	90.3		20
V-31-I					
Total Dissolved Solids	SM 2540C	mg/L	529	500	
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	227	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	73.3		20
V-31-II					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	151	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	61.7		20
GW Dup-1					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	363	100	
GW Dup-2					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	192	100	

20230914 16 / 30

EXCEEDANCE SUMMARY

				ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.169_03	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water -
Parameter	Method	Units	Result	L1	Reg O.169_03 L2
III CM Don O (southerned)					
L GW Dup-2 (continued)					
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.0772	0.05	
IL GW Dup-3					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	244	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	0.657	0.3	
W-25-III					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	405	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	1.22	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.0920	0.05	
W-10-III					
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	205	100	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	34.3		20

20230914 17 / 30

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0004-SEP23	mg/L as	2	< 2	3	20	102	80	120	NA		
Alkalinity	EWL0015-SEP23	mg/L as CaCO3	2	< 2	0	20	104	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0004-SEP23	mg/L	0.04	<0.04	ND	10	100	90	110	96	75	125
Ammonia+Ammonium (N)	SKA0026-SEP23	mg/L	0.04	<0.04	1	10	100	90	110	88	75	125

20230914 18 / 30

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate LCS/Spike Blank				M	Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5013-SEP23	mg/L	1	<1	ND	20	102	80	120	107	75	125
Sulphate	DIO5013-SEP23	mg/L	2	<2	17	20	104	80	120	108	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate RPD AC		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank			•	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrite (as N)	DIO0017-SEP23	mg/L	0.03	<0.03	ND	20	98	90	110	104	75	125
Nitrate (as N)	DIO0017-SEP23	mg/L	0.06	<0.06	ND	20	100	90	110	104	75	125
Nitrite (as N)	DIO0019-SEP23	mg/L	0.03	<0.03	ND	20	98	90	110	104	75	125
Nitrate (as N)	DIO0019-SEP23	mg/L	0.06	<0.06	ND	20	99	90	110	101	75	125
Nitrite (as N)	DIO0061-SEP23	mg/L	0.03	<0.03	ND	20	97	90	110	106	75	125

20230914 19 / 30

QC SUMMARY

Carbon by Combustion/Oxidation

Method: SM 5310B | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-023

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	EWL0024-SEP23	mg/L	1.0	<1.0	ND	20	101	90	110	93	75	125
Dissolved Organic Carbon	EWL0033-SEP23	mg/L	1.0	<1.0	ND	20	100	90	110	98	75	125
Dissolved Organic Carbon	EWL0061-SEP23	mg/L	1.0	<1.0	0	20	101	90	110	105	75	125

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate L0			LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	· (%)		Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Conductivity	EWL0004-SEP23	uS/cm	2	3	4	20	100	90	110	NA			
Conductivity	EWL0015-SEP23	uS/cm	2	< 2	0	20	100	90	110	NA			

20230914 20 / 30

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch				Matrix Spike / Ref.							
	Reference			Blank	RPD	_	•	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0068-SEP23	mg/L	0.06	<0.06	ND	10	100	90	110	109	75	125
Fluoride	EWL0077-SEP23	mg/L	0.06	<0.06	0	10	100	90	110	97	75	125

20230914 21 / 30

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover		Spike Recovery		ory Limits %)
						(7-5)	(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0261-AUG23	mg/L	0.00005	<0.00005	ND	20	99	90	110	79	70	130
Aluminum (dissolved)	EMS0261-AUG23	mg/L	0.001	<0.001	0	20	98	90	110	108	70	130
Arsenic (dissolved)	EMS0261-AUG23	mg/L	0.0002	<0.0002	1	20	100	90	110	73	70	130
Barium (dissolved)	EMS0261-AUG23	mg/L	0.00008	<0.00008	0	20	95	90	110	91	70	130
Beryllium (dissolved)	EMS0261-AUG23	mg/L	0.000007	<0.000007	ND	20	93	90	110	98	70	130
Boron (dissolved)	EMS0261-AUG23	mg/L	0.002	<0.002	0	20	96	90	110	97	70	130
Bismuth (dissolved)	EMS0261-AUG23	mg/L	0.00001	<0.00001	ND	20	93	90	110	95	70	130
Calcium (dissolved)	EMS0261-AUG23	mg/L	0.01	<0.01	1	20	99	90	110	91	70	130
Cadmium (dissolved)	EMS0261-AUG23	mg/L	0.000003	<0.000003	ND	20	101	90	110	96	70	130
Cobalt (dissolved)	EMS0261-AUG23	mg/L	0.000004	<0.000004	8	20	98	90	110	91	70	130
Chromium (dissolved)	EMS0261-AUG23	mg/L	0.00008	<0.00008	2	20	96	90	110	96	70	130
Copper (dissolved)	EMS0261-AUG23	mg/L	0.0002	<0.0002	10	20	100	90	110	103	70	130
Iron (dissolved)	EMS0261-AUG23	mg/L	0.007	<0.007	4	20	100	90	110	75	70	130
Potassium (dissolved)	EMS0261-AUG23	mg/L	0.009	<0.009	1	20	102	90	110	99	70	130
Magnesium (dissolved)	EMS0261-AUG23	mg/L	0.001	0.001	1	20	100	90	110	90	70	130
Manganese (dissolved)	EMS0261-AUG23	mg/L	0.00001	<0.00001	1	20	102	90	110	93	70	130
Molybdenum (dissolved)	EMS0261-AUG23	mg/L	0.00004	<0.00004	2	20	103	90	110	91	70	130
Sodium (dissolved)	EMS0261-AUG23	mg/L	0.01	<0.01	0	20	96	90	110	94	70	130
Nickel (dissolved)	EMS0261-AUG23	mg/L	0.0001	<0.0001	10	20	100	90	110	89	70	130
Lead (dissolved)	EMS0261-AUG23	mg/L	0.00009	<0.00009	ND	20	101	90	110	95	70	130

20230914 22 / 30

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	-	Spike Recovery	Recove	ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (dissolved)	EMS0261-AUG23	mg/L	0.003	<0.003	ND	20	99	90	110	NV	70	130
Selenium (dissolved)	EMS0261-AUG23	mg/L	0.00004	<0.00004	NV	20	98	90	110	119	70	130
Sulfur (dissolved)	EMS0261-AUG23	mg/L	3	<1	ND	20	104	90	110	NV	70	130
Silicon (dissolved)	EMS0261-AUG23	mg/L	0.02	<0.02	3	20	99	90	110	NV	70	130
Tin (dissolved)	EMS0261-AUG23	mg/L	0.00006	<0.00006	3	20	100	90	110	NV	70	130
Strontium (dissolved)	EMS0261-AUG23	mg/L	0.00008	<0.00008	0	20	99	90	110	88	70	130
Titanium (dissolved)	EMS0261-AUG23	mg/L	0.00007	<0.00005	9	20	100	90	110	NV	70	130
Thallium (dissolved)	EMS0261-AUG23	mg/L	0.000005	<0.000005	0	20	99	90	110	99	70	130
Uranium (dissolved)	EMS0261-AUG23	mg/L	0.000002	<0.000002	1	20	96	90	110	95	70	130
Vanadium (dissolved)	EMS0261-AUG23	mg/L	0.00001	<0.00001	0	20	100	90	110	97	70	130
Zinc (dissolved)	EMS0261-AUG23	mg/L	0.002	<0.002	ND	20	99	90	110	93	70	130

20230914 23 / 30

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike Recovery	Recove	-	Spike Recovery	Recover	•
						(%)	(%)	Low	High	(%)	Low	High
рН	EWL0004-SEP23	No unit	0.05	NA	0		100			NA		
рН	EWL0015-SEP23	No unit	0.05	NA	0		100			NA		

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recovery Limits		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Reactive Phosphorous (o-phosphate as P)	SKA0023-SEP23	mg/L	0.03	<0.03	3	10	97	90	110	107	75	125	

20230914 24 / 30

QC SUMMARY

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0005-SEP23	mg/L	30	<30	3	20	102	80	120	NA		
Total Dissolved Solids	EWL0031-SEP23	mg/L	30	<30	1	20	100	80	120	NA		
Total Dissolved Solids	EWL0045-SEP23	mg/L	30	<30	0	20	101	80	120	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank	Spike Blank		atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0022-SEP23	mg/L	0.05	<0.05	ND	10	104	90	110	101	75	125

20230914 25 / 30

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230914 26 / 30

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20230914 27 / 30

CCC	Rec	uest for Labora	tory Service	es and C	HAIN O	F CUSTO	DDY (G	eneral)				
202	SGS Environmental Services - Lakefield:	185 Concession St., Lak	efield, ON K0L 2	H0 Phone: 705	5-652-2000 °	Toll Free: 87	7-747-7658	Fax: 705-65	52-6365 Web	: www.ca.s	gs.com {4	}
	SGS Environmental Services - London: 65				-672-4500	Toll Free: 87	7-848-8060	Fax: 519-67	72-0361 Web	: www.ca.s	gs.com {4	}
Received Date (mm/dd/yyyy):	0,31,23	Laboratory Inf	ormation Se			CA	196	-cQ.	- 0		10	
Received Time (After Hours Only		1		LAB LIMS				208	V2	y	+3	
	等数据 <u>证据</u> 的现在分词。	Billing & Repo	orting Inform	Temperatu ation	are Opon	Receipt (*	C):		64			
g Company:	WSP E & I	//			Quote #	# :	2 19 17	2021 12	46	4-14	V STATE	
9	Dominique Gagnon 131 Fielding Rd	\cup			Attache	ed Parame	ter List:		0	YES		NO
Address:	Lively, Ontario							Turnaro	und Time			
voic	P3Y 1L7				Is *Rus	h Turnaro	und Tim	Application and the	HEROPAGA LI RICIGA		□ YES	
E Email:	dominique.gagnon@wsp.com				Specify:							2
Project Name/Number:	TY131010 New Liskeard LF GW	P.O. #:			* Rush TA	Requests Rec	quire Lab Ap	proval				
	Client Inform	nation/Report To:							Client La	b#:		
Company Name:	WSP E & I				Phone	Numbe	r:		705-682	-2632		
Contact Name:					Fax N	umber:						
Address:					E-mail				PSA PAR.			
Copy to:						also .						
		Sample	Information									
					(plea	ase ente whic	r the an	alysis r	Request equired lies to ea	below a		eck off
S	Sample Identifier	Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Field Filtered	SW as per quote	GW as per quote	Me	711.0			
OW-1R-I		B8179+	3	5	Y		Х	7:28	189			
OW-1-R-III		02/29 4	3	5	Y		х	7.01	13,4		3 3	
OW-10-I		06/12/12	5	5	Y		х	7.41	9.7			_
OW-10-II		08/29	TENY -	~	V		х	t Gr	12,12	7.79		*
OW-11-I					1		х		11,9			gio
OW-11-II		08/24		5	1			7.73				
		04/291		5	4	- 1	X		15.5	4.		_
OW-12-I		08/29/		5	4		Х	7.53	-			•
OW-12-II		08/291	13	5	Y		X		15.0			-
OW-13-I		08362		55	Y		Х	6.37	5.92			*
OW-16-I		08/501	1.5	5	Y		X	2.17				-
OW-16-II		०४ / २ वा	13	5	У	¥-15	х		10.6			-
OVV-10-lii	the state of the s						×					_
OW-17-1		08/30/29	3	5	Y		х	7.45	6,96			ৰ
OW-17-II		04/30/2		S	Y		х		8.8			•
ØW-17-111					<u> </u>	200	-X-					14.4
OW-23-1		08/30/23		5	Y		_x_					
Sampled By {1}:	(Name)	(Signature)			/		Date:		<i></i>	34.5	(mm	/dd/yy)
Relinquished by {2):	(Name)	(Signature)		- 5			Date:		<i>I</i>	< 15.	(mm	/dd/yy)
Note: {1} Submission of samples to	SGS is acknowledgement that you have been p	provided direction on	sample collec	tion/handling	and trans	nortation o	f samples	123 Suhm	ission of sa	moles to	SGS is o	oneidore

authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). {3} Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. {4} Completion of work may require the subcontracting of samples between the London and Lakefield laboratories.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CCC	Re	quest for Labora	tory Service	es and C	HAIN OF	CUSTODY (G	eneral)				
303	SGS Environmental Services - Lakefield									•	
	SGS Environmental Services - London: 6	Laboratory In			-672-4500 Tol	l Free: 877-848-806	0 Fax: 519-6	72-0361 We	b: www.ca.s	gs.com {4	
Received Date (mm/dd/yyyy)	//			LAB LIMS	#:					A-HOVE IN PER	(1) 20 mm (1) 1
Received Time (After Hours (Only)::			Temperatu	re Upon Re	eceipt (°C):					
Compa	iny: WSP E & I	Billing & Repo	orting Inform	ation	Quote #:		2021 12	46			
-	on: Dominique Gagnon				Quote #:		2021 12	46			
(3):	131 Fielding Rd				Attached	Parameter List:] YES	0	NO
Addre	ess: Lively, Ontario						Turnaro	und Time)		
Ŏ <u>u</u>	P3Y 1L7				ls *Rush 1	Turnaround Tin	ne Require	ed?		□ YES	
Project Name/Number:	ail: dominique.gagnon@wsp.com TY131010.2023.1000.1142.5730-00 (New	P.O. #:	C02370128	3	Specify: * Rush TA Rea	quests Require Lab Ap	pproval				
	Liskeard LF GW	mation/Report To:	ASSESSED TO SECURITY OF THE PAR		国的共和国企业			Client	ah #:		No.
Company Nan		madolineport ro.			Phone N	lumbor		Client L	- Control of the Cont		
Contact Nan					Fax Num			705-68	2-2632		
Addres	ss:				E-mail:						
Сору	to:							-			
		Sample	Information								
					(pleas	A e enter the ar which anal		equired	below a		ck off
	Sample Identifier	Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Field Filtered	GW as per quote	ÞН	EN.	pu		
OW-23-II		08/30/2		5	~	X	216	1 3 2	~		-
OW-24-I			13.	5	7	- Land Market	Syre		00		
		Barral.		5	X	X	461	8.7			-
OW-24-II		08129	23	6	7	X	7.71	9,7			->-
9W-24-III			3			X				_	
OW-25-I		08/29	23	5	7	х	7.70	9.1			-
OW-25-II		09/19	17.3	5	Y	х	7.84			See .	de
9₩-25-#1	100000000000000000000000000000000000000				ries.	X					
OW-30-I		Selast	0.5	5		x	7,93	00			
OW-30-II		08/291		6	4						.2
		08/291				X	7.96	_			*
OW-30-III		081291	23	3	Y	X	7.27	10.3			-
9VV-10-III		The Hand		_		×					-
Ð W-25-IV						X	is.				
OW-31-I		04/191	13	5	Y	X	7.66	13.4	i		•
OW-31-II		08/29/	7	\$	Y	х	7.19	1 221			-
NL GW Dup-1		08/19/1	3	5	Y	х	1	18,12	6.98		•
NL GW Dup-2		os irah	3	5	4	х	7.27		- Minima		
Sampled By {	1}: (Name)	(Signature)			Tall.	Date:			T.	(mm	/dd/yy)
Relinquished by {		(Signature)				Date:					/dd/yy)
Note: {1} Submission of sample	s to SGS is acknowledgement that you have been vork. Signatures may appear on this form or be ret	provided direction on	sample collect	ion/handling	and transpor	rtation of samples	(2) Subm	ission of s	amples to	SGS is c	onsidere
unlimited number of addresses t	or no additional cost. Fax is available upon reque mpany under its General Conditions of Service accessib	st. {4} Completion of v	vork may requi	re the subcor	ntracting of s	samples between	the London	and Lake	field labor	atories	

SC	2	Req	uest for Laborat	ory Servic	es and Cl	HAIN OF	CUSTO	DY (Ge	eneral)				
<u> </u>		SGS Environmental Services - Lakefield: 1	185 Concession St., Lake	field, ON K0L 2H	10 Phone: 705-	652-2000 T	oll Free: 877-	747-7658	Fax: 705-65	2-6365 Web: v	www.ca.sgs	i.com {4}	
		SGS Environmental Services - London: 65				-672-4500 T	oll Free: 877-	848-8060	Fax: 519-67	2-0361 Web:	www.ca.sgs	s.com {4}	
			Laboratory Info	ormation Sec									
Received Dat	e (mm/dd/yyyy):				LAB LIMS	#:			2				
Received Tim	ne (After Hours Only	/):::			Temperatu	re Upon F	Receipt (°C	;):		duletonat o positivisti	NE CONTRACTOR		
	Company	WSP E & I	Billing & Repo	rting intorma	ation	Quote #			2021 124	16	COLUMN TO SERVICE STATE OF THE		
Invoice/Receipt to {3}:		Dominique Gagnon				Guote #			2021 124				
cei	Attention	131 Fielding Rd				Attached	d Paramet	er List:			YES		NO
3/Re	Address:	Lively, Ontario							Turnarou	and Time			
oice		P3Y 1L7				ls *Rush	Turnarou	ınd Time	AND DESCRIPTIONS			YES	□ NO
<u> </u>	Email:	APInvoice.Canada@woodplc.com, meg.russell@ws	p.com, dominique.gagno	n@wsp.com		Specify:	rumaroc	and min	rioquire				
Project N	Name/Number:	TY131010.2023.1000.1142.5730-00 New Liskeard GW		C023701288	3		- Requests Requ	ire Lab App	oroval				
			nation/Report To:							Client Lab)#:		
С	ompany Name:	WSP E & I				Phone	Number			705-682-	2632		
	Contact Name:	Dominique Gagnon, Meg Russell				Fax Nu	mber:						
	Address:					E-mail:							
	Copy to:	meg.russell@wsp.com, dominique.											
			Sample I	nformation									
						(plea		the an	alysis re	Requeste equired b lies to ea	elow a		k off
		ample Identifier	Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Field Filtered		GW as per quote	pn	26mp			
NI GW Du	n-3		03/30/	10	6	V	100	X	6-96	2.65	/		
NL GW Dup ひいってら	- 111		Adinain	2		y		×	Acres and				10. 101
6 W-10			39 643	5	6	-			7,27	1		4	
0ω-10	11.		681581\$	3	5	4		×	7.56	11.21			•
					W.								
				30						-			
			LARST						34				
					8/2 2/2							1	
						181,4							
										<u></u>			
	Complet Du (d)	(Alama)	(Cianatura)					Detai		,		/mm/	ddhad
	Sampled By {1}:	(Hame)	(Signature)				±	Date:		<u>'</u>		(mm/c	

CA15277-OCT23 R1

TY131010.2023.1000.1142.5730-00, New Liskeard SW

Prepared for

WSP E & I Canada Ltd

First Page

CLIENT DETAILS	S	LABORATORY DETAI	LS
Client	WSP E & I Canada Ltd	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	131 Fielding Road, Lively	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, P3Y 1L7		
	Phone: 705-665-0159. Fax:		
Contact	Dominique Gagnon	Telephone	705-652-2000
Telephone	705-665-0159	Facsimile	705-652-6365
Facsimile		Email	Maarit.Wolfe@sgs.com
Email	Dominique.Gagnon@wsp.com; meg.russell@wsp.com	SGS Reference	CA15277-OCT23
Project	TY131010.2023.1000.1142.5730-00, New Liskeard SW	Received	10/18/2023
Order Number		Approved	11/03/2023
Samples	Surface Water (7)	Report Number	CA15277-OCT23 R1
		Date Reported	11/03/2023

COMMENTS

Temperature of Sample upon Receipt: 10 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

BOD spike low, accepted based on all other QC

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-4
QC Summary	5-11
Legend	12
Annexes	13

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00, New Liskeard SW

Project Manager: Dominique Gagnon

ATRIX: WATER			Sample Number	7	8	9	10	11	12	13	
			Sample Name	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW Dup	
			Sample Matrix	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	
			Sample Date	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023	
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	
eneral Chemistry											
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑	< 4↑	6	6	5	< 4↑	< 4↑	
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.20	0.43	0.32	< 0.05	0.47	0.28	< 0.05	
Total Suspended Solids	mg/L	2		13	7	22	67	30	31	30	
Alkalinity	mg/L as CaCO3	2		71	324	330	339	128	130	342	
Conductivity	uS/cm	2		160	624	720	1830	288	290	1840	
Total Dissolved Solids	mg/L	30		111	340	400	923	217	< 30	900	
Chemical Oxygen Demand	mg/L	8		50	15	21	14	37	42	22	
Ammonia+Ammonium (N)	as N mg/L	0.04		< 0.04	< 0.04	< 0.04	< 0.04	0.04	0.04	< 0.04	
etals and Inorganics											
Sulphate	mg/L	2		< 2	3	5	19	14	11	19	
Nitrite (as N)	as N mg/L	0.003		< 0.003	< 0.003	0.004	<0.03↑	0.007	0.008	<0.03↑	
Nitrate (as N)	as N mg/L	0.006		0.185	0.019	0.016	0.020	0.875	0.902	0.016	
Arsenic (total)	mg/L	0.0002		0.0007	0.0005	0.0005	0.0005	0.0008	0.0007	0.0006	
Barium (total)	mg/L	0.00008		0.0162	0.0178	0.0218	0.0540	0.0308	0.0307	0.0520	
Boron (total)	mg/L	0.002		0.008	0.014	0.014	0.015	0.013	0.013	0.014	
Cadmium (total)	mg/L	0.000003		0.000006	0.000008	0.000009	0.000022	0.000016	0.000014	0.000022	
Chromium (total)	mg/L	0.00008		0.00185	0.00061	0.00068	0.00144	0.00411	0.00356	0.00200	
Copper (total)	mg/L	0.0002		0.0024	0.0021	0.0026	0.0069	0.0041	0.0040	0.0047	
Iron (total)	mg/L	0.007		0.756	0.242	0.261	0.920	1.60	1.55	1.02	
Lead (total)	mg/L	0.00009		0.00040	0.00022	0.00024	0.00062	0.00075	0.00082	0.00050	
Phosphorus (total)	mg/L	0.003		0.025	0.016	0.022	0.046	0.057	0.051	0.047	
Zinc (total)	mg/L	0.002		0.006	0.007	0.004	0.007	0.006	0.008	0.006	

CA15277-OCT23 R1

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00, New Liskeard SW

Project Manager: Dominique Gagnon

MATRIX: WATER			Sample Number	7	8	9	10	11	12	13
			Sample Name	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW Dup
			Sample Matrix	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
			Sample Date	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result
Other (ORP)										
рН	No unit	0.05		7.74	8.20	8.10	8.08	7.86	7.92	8.07
Chloride	mg/L	1		7	18	43	410	12	11	420
Mercury (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	0.00006	< 0.00001	< 0.00001	< 0.00001
Phenols										
4AAP-Phenolics	mg/L	0.001		0.002	0.002	0.001	0.003	0.002	0.001	0.004

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0501-OCT23	mg/L as	2	< 2	0	20	104	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	Duplicate I		S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0182-OCT23	mg/L	0.04	<0.04	ND	10	100	90	110	98	75	125

20231103 5 / 13

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5003-NOV23	mg/L	1	<1	ND	20	103	80	120	104	75	125
Sulphate	DIO5003-NOV23	mg/L	2	<2	ND	20	103	80	120	107	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrite (as N)	DIO0614-OCT23	mg/L	0.003	<0.003	6	20	98	90	110	99	75	125
Nitrate (as N)	DIO0614-OCT23	mg/L	0.006	<0.006	0	20	100	90	110	82	75	125
Nitrite (as N)	DIO0675-OCT23	mg/L	0.003	<0.003	16	20	99	90	110	102	75	125

20231103 6 / 13

QC SUMMARY

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0038-OCT23	mg/L	2	< 2	14	30	103	70	130	69	70	130

Chemical Oxygen Demand

Method: HACH 8000 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		N	latrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chemical Oxygen Demand	EWL0474-OCT23	mg/L	8	<8	0	20	114	80	120	108	75	125
Chemical Oxygen Demand	EWL0475-OCT23	mg/L	8	<8	7	20	98	80	120	106	75	125

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0501-OCT23	uS/cm	2	< 2	0	20	96	90	110	NA		

20231103 7 / 13

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (dissolved)	EHG0044-OCT23	mg/L	0.00001	< 0.00001	ND	20	91	80	120	87	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ery Limits %)
						(76)	(%)	Low	High	(%)	Low	High
Arsenic (total)	EMS0192-OCT23	mg/L	0.0002	<0.0002	1	20	98	90	110	105	70	130
Barium (total)	EMS0192-OCT23	mg/L	0.00008	<0.00008	2	20	94	90	110	94	70	130
Boron (total)	EMS0192-OCT23	mg/L	0.002	<0.002	6	20	93	90	110	93	70	130
Cadmium (total)	EMS0192-OCT23	mg/L	0.000003	<0.000003	3	20	98	90	110	99	70	130
Chromium (total)	EMS0192-OCT23	mg/L	0.00008	<0.00008	11	20	96	90	110	105	70	130
Copper (total)	EMS0192-OCT23	mg/L	0.0002	<0.0002	1	20	98	90	110	99	70	130
Iron (total)	EMS0192-OCT23	mg/L	0.007	<0.007	6	20	93	90	110	125	70	130
Lead (total)	EMS0192-OCT23	mg/L	0.00009	<0.00009	3	20	94	90	110	91	70	130
Phosphorus (total)	EMS0192-OCT23	mg/L	0.003	<0.003	ND	20	92	90	110	NV	70	130
Zinc (total)	EMS0192-OCT23	mg/L	0.002	<0.002	5	20	99	90	110	104	70	130

20231103

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0501-OCT23	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-IENVISFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC (M)	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0175-OCT23	mg/L	0.001	0.001	0	10	99	80	120	89	75	125

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	trix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0577-OCT23	mg/L	30	<30	3	20	97	80	120	NA		
Total Dissolved Solids	EWL0620-OCT23	mg/L	30	<30	0	20	105	80	120	NA		

20231103

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	· •
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0531-OCT23	mg/L	2	< 2	1	10	96	90	110	NA		
Total Suspended Solids	EWL0534-OCT23	mg/L	2	< 2	0	10	94	90	110	NA		
Total Suspended Solids	EWL0564-OCT23	mg/L	2	< 2	1	10	94	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Re	л.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0180-OCT23	mg/L	0.05	<0.05	ND	10	101	90	110	108	75	125
Total Kjeldahl Nitrogen (N)	SKA0200-OCT23	mg/L	0.05	<0.05	5	10	99	90	110	104	75	125
Total Kjeldahl Nitrogen (N)	SKA0214-OCT23	mg/L	0.05	<0.05	ND	10	103	90	110	93	75	125

20231103 10 / 13

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20231103

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20231103 12 / 13

SI	GS						TODY (General)				
	40	SGS Environmental Services - Lakefield: 185 Conces SGS Environmental Services - London: 657 Consortiu									
			aboratory Infe			-4500 TOILFIEE.	5/7-046-0000 Fax. 519-0	372-0361 Web. ww	w.ca.sgs.com	II (4)	
Received [Date (mm/dd/yy	10 10 1677	14	~	LAB LIMS	#:	CA 153	277-	60	23	
	Time (After Hou	urs Only)::	Billing & Repo	rting Inform	Temperatu	re Upon Rece	eipt (°C):	0,10,	11_		
0	Company:	WSP E & I	sining a Kepu	rung miorin	auon	Quote #:	202	1 1246	LEADER FOR STREET		
pt t	Attention:	Dominique Gagnon				Attached Pa	rameter List:		YES		NO
Invoice/Receipt to {3}:		131 Fielding Rd				Attached re] 1E2		NO
lice/	Address:	Lively, Ontario P3Y 1L7			1.0		us in the arms in the later of the later	naround Time	AND NOTES		
N -	Fmail:	APInvoice.Canada@wsp.com, meg.russell@wsp.com, d	dominique gag	non@wsp.co	m		rnaround Time Red	quired?		YES	
Project N		TY131010.2023.1000.1142.5730-00 - New P	P.O. #:	C023701288		Specify: * Rush TA Reque	sts Require Lab Approval				
		Liskeard SW Client Information	n/Report To:					Client La	b#:		
Com	pany Name:				不是他知识的地名	Phone Nu	mber:	705-682			
77.00		Dominique Gagnon, Meg Russell				Fax Numb		703-002	-2032		
-	Address:					E-mail:	· · ·				
		meg.russell@wsp.com, dominique.gagnon@	wsp.com	77.07						- 1	
				Information							Tale Last
			70.00		20		Analysenter the analys		below ar		ck off
		Sample Identifier	Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Comprehensive SW-Column 3				proj	
SW-1	DH = 8	3.42 , Osmorning Temp= 8.26	10/17/13	10:45	9	X					
SW-2	014-	7.81 Tems = 6.64	10/13/13	9:20	9	х					
SW-3	04 -	7 75 Ten = 613	10/13/23	a. 05	C/	х					- 5/5
SW-4	PII	1113, 19np - 8163	10/11/03	8:20	q	х					54.5
	PIT-	6.69, leng= 7.46	14/11/25	0.50							15.25
SW-5	pH =	7.63, lemp - 9.66	10/14/23	8.00	9	Х					
SW-6	DH =	8.07, Temb= 11.04	10/17/23	7:35	9	Х					
SW DUP	PIt =	6.64 Temp = 7.46	10/17/23	8:30	9	x					
					'						
										7.7	
										1 7	
			1	- 1							
						i jera Bir					
			17.64							-	
										*	
Sa	ampled By {1}:	(Name) Mikayla Bechard	(Signature)	ml	[ad]	/	Date:	0,17	23	(mm/d	dd/yy)
Relino	quished by {2):	(Name) Mikayla Becharle	(Signature)	Moll	Plan	1	Date:	DILT	43	(mm/c	dd/yy)

Note: {1} Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handing and transportation of samples (2) submission or samples to SGS is acknowledgement that you have been provided direction on sample collection/handing and transportation of samples (2) submission or samples to SGS is acknowledgement that you have been provided direction on all entertained on file in the contract, or in an alternative format (e.g. shipping documents). {3} Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. {4} Completion of work may require the subcontracting of samples between the London and Lakefield laboratories.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA15351-OCT23 R1

TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Prepared for

WSP E & I Canada Ltd

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	WSP E & I Canada Ltd	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	131 Fielding Road	Address	185 Concession St., Lakefield ON, K0L 2H0
	Lively, ON		
	P3Y 1L7. Canada		
Contact	Megan Russell	Telephone	705-652-2143
Telephone	705-665-0159	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	Dominique.Gagnon@wsp.com; meg.russell@wsp.com	SGS Reference	CA15351-OCT23
Project	TY131010.2023.1000.1142.5730-00 New Liskeard LF GW	Received	10/20/2023
Order Number		Approved	10/30/2023
Samples	Ground Water (29)	Report Number	CA15351-OCT23 R1
		Date Reported	10/30/2023

COMMENTS

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

raised RL for NO2 due to SM

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mod

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

1 / 24

Member of the SGS Group (SGS SA)

CA15351-OCT23 R1

FINAL REPORT

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-13
QC Summary	14-20
Legend	21
Annexes	22-24

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

IATRIX: WATER			Sample Number	7	8	9	10	11	12	13	14
			Sample Name	OW-1R-I	OW-1-R-III	OW-10-I	OW-10-II	OW-11-I	OW-11-II	OW-12-I	OW-12-II
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
			Sample Date	17/10/2023	17/10/2023	16/10/2023	16/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
eneral Chemistry											
Alkalinity	mg/L as CaCO3	2		1090	1030	285	288	259	450	354	568
Conductivity	uS/cm	2		2620	2480	701	724	587	1060	909	1310
Total Dissolved Solids	mg/L	30		1510	1510	440	503	323	649	554	757
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		34.3	31.7	0.43	0.38	< 0.05	0.84	0.20	0.84
Ammonia+Ammonium (N)	as N mg/L	0.04		32.4	29.3	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Organic Nitrogen	mg/L	0.05		1.90	2.43	0.40	0.36	< 0.05	0.83	0.18	0.83
Total Reactive Phosphorous (o-phosphate as P)	mg/L	0.03		0.06	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dissolved Organic Carbon	mg/L	1		23	20	1	2	< 1	3	3	8
etals and Inorganics											
Sulphate	mg/L	2		100	94	100	110	43	110	85	67
Nitrite (as N)	as N mg/L	0.03		< 0.03	0.08	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		< 0.06	0.88	< 0.06	< 0.06	0.28	< 0.06	0.07	< 0.06
Fluoride	mg/L	0.06		0.18	0.14	0.39	0.07	0.36	0.12	0.36	0.06
Hardness (dissolved)	mg/L as CaCO3	0.05		905	896	430	444	327	569	484	658
Aluminum (dissolved)	mg/L	0.001		0.004	0.005	< 0.001	0.001	< 0.001	0.310	< 0.001	0.020
Arsenic (dissolved)	mg/L	0.0002		0.0007	0.0004	< 0.0002	< 0.0002	< 0.0002	0.0002	< 0.0002	0.0002
Barium (dissolved)	mg/L	0.00008		0.135	0.168	0.0331	0.0190	0.0345	0.0293	0.0621	0.0427
Beryllium (dissolved)	mg/L	0.000007		< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000060	< 0.000007	< 0.00000
Bismuth (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (dissolved)	mg/L	0.002		2.12	1.74	0.259	0.030	0.353	0.404	0.457	0.343
Calcium (dissolved)	mg/L	0.01		164	182	110	138	79.6	147	120	186

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

ATRIX: WATER		Sample Number	7	8	9	10	11	12	13	14
		Sample Name	OW-1R-I	OW-1-R-III	OW-10-I	OW-10-II	OW-11-I	OW-11-II	OW-12-I	OW-12-II
		Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
		Sample Date	17/10/2023	17/10/2023	16/10/2023	16/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023
Parameter	Units RL		Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics (continued)										
Cadmium (dissolved)	mg/L 0.000003		0.000010	0.000034	< 0.000003	< 0.000003	0.000004	0.000010	0.000007	< 0.000003
Chromium (dissolved)	mg/L 0.00008		0.00131	0.00065	< 0.00008	< 0.00008	< 0.00008	0.00057	0.00009	0.00024
Cobalt (dissolved)	mg/L 0.000004		0.00941	0.0103	0.000012	0.000105	0.000026	0.000534	0.000015	0.000284
Copper (dissolved)	mg/L 0.0002		0.0038	0.0151	0.0012	0.0014	0.0011	0.0024	0.0012	0.0012
Iron (dissolved)	mg/L 0.007		0.156	0.035	0.217	0.073	< 0.007	0.470	< 0.007	0.421
Potassium (dissolved)	mg/L 0.009		131	117	6.07	1.03	7.52	4.17	9.71	4.00
Magnesium (dissolved)	mg/L 0.001		120	107	37.8	24.3	31.0	48.9	44.6	47.0
Manganese (dissolved)	mg/L 0.00001		0.935	1.87	0.0205	0.0179	0.00211	0.0820	0.00040	0.0629
Molybdenum (dissolved)	mg/L 0.00004		0.00106	0.00107	0.00006	0.00017	0.00034	0.00022	0.00044	0.00017
Sodium (dissolved)	mg/L 0.01		192	169	4.98	2.32	13.9	39.2	22.3	70.2
Nickel (dissolved)	mg/L 0.0001		0.0571	0.0531	0.0002	0.0007	0.0010	0.0044	0.0035	0.0087
Phosphorus (dissolved)	mg/L 0.003		0.010	0.006	< 0.003	< 0.003	< 0.003	0.043	< 0.003	< 0.003
Lead (dissolved)	mg/L 0.00009		0.00028	0.00101	< 0.00009	< 0.00009	< 0.00009	0.00089	< 0.00009	< 0.00009
Selenium (dissolved)	mg/L 0.00004		0.00022	0.00031	< 0.00004	0.00005	< 0.00004	0.00008	< 0.00004	0.00008
Silicon (dissolved)	mg/L 0.02		7.47	7.17	3.43	2.32	3.59	4.78	5.32	4.13
Silver (dissolved)	mg/L 0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L 0.00008		1.84	1.14	1.41	0.219	2.27	0.320	2.43	0.620
Sulfur (dissolved)	mg/L 3		42	36	41	44	17	42	29	25
Thallium (dissolved)	mg/L 0.000005		0.000246	0.000553	< 0.000005	< 0.000005	< 0.000005	0.000006	0.000005	< 0.00000
Tin (dissolved)	mg/L 0.00006		0.00035	0.00027	< 0.00006	< 0.00006	0.00006	< 0.00006	< 0.00006	< 0.00006
Titanium (dissolved)	mg/L 0.00007		0.00016	0.00021	< 0.00007	< 0.00007	< 0.00007	0.00491	< 0.00007	0.00061
Uranium (dissolved)	mg/L 0.000002		0.00198	0.00182	0.000015	0.000247	0.000145	0.000816	0.000253	0.000461

SGS

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

ATRIX: WATER			Sample Number	7	8	9	10	11	12	13	14
			Sample Name	OW-1R-I	OW-1-R-III	OW-10-I	OW-10-II	OW-11-I	OW-11-II	OW-12-I	OW-12-II
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
			Sample Date	17/10/2023	17/10/2023	16/10/2023	16/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics (continued)											
Vanadium (dissolved)	mg/L	0.00001		0.00025	0.00078	< 0.00001	0.00006	0.00003	0.00046	0.00006	0.00004
Zinc (dissolved)	mg/L	0.002		0.003	0.004	< 0.002	< 0.002	< 0.002	0.003	< 0.002	< 0.002
ther (ORP)											
рН	No unit	0.05		7.84	7.89	8.11	8.00	8.05	7.98	8.10	7.95
Chloride	mg/L	1		240	250	2	2	12	37	49	58
			Sample Name Sample Matrix Sample Date	OW-13-I Ground Water 18/10/2023	OW-16-I Ground Water 18/10/2023	OW-16-II Ground Water 18/10/2023	OW-17-1 Ground Water 17/10/2023	OW-17-II Ground Water 17/10/2023	OW-23-II Ground Water 17/10/2023	OW-24-I Ground Water 18/10/2023	OW-24-I Ground Wa 18/10/202
Parameter	Units	RL		Result	Result		Result	Result	Result	Result	
		1 1		rtoouit	Nosuit	Result	rtoouit		rtoodit	Nosuit	Result
eneral Chemistry		112		roout	Nosuit	Result	rtodati		rooun	rtosuit	Result
eneral Chemistry Alkalinity	mg/L as CaCO3	2		394	325	169	239	281	221	258	Result
Alkalinity	mg/L as CaCO3	2		394	325	169	239	281	221	258	358
Alkalinity Conductivity	mg/L as CaCO3	2 2		394 819	325 567	169 497	239 455	281 629	221 580	258 505	358 668
Alkalinity Conductivity Total Dissolved Solids	mg/L as CaCO3 uS/cm mg/L	2 2 30		394 819 520	325 567 393	169 497 306	239 455 274	281 629 397	221 580 349	258 505 323	358 668 380
Alkalinity Conductivity Total Dissolved Solids Total Kjeldahl Nitrogen (N)	mg/L as CaCO3 uS/cm mg/L as N mg/L	2 2 30 0.05		394 819 520 0.62	325 567 393 2.34	169 497 306 0.22	239 455 274 0.26	281 629 397 0.19	221 580 349 0.40	258 505 323 < 0.05	358 668 380 0.11
Alkalinity Conductivity Total Dissolved Solids Total Kjeldahl Nitrogen (N) Ammonia+Ammonium (N)	mg/L as CaCO3 uS/cm mg/L as N mg/L as N mg/L	2 2 30 0.05 0.04		394 819 520 0.62 0.41	325 567 393 2.34 1.74	169 497 306 0.22 < 0.04	239 455 274 0.26 0.06	281 629 397 0.19 < 0.04	221 580 349 0.40 < 0.04	258 505 323 < 0.05 0.04	358 668 380 0.11 < 0.04

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

ATRIX: WATER			Sample Number	15	16	17	18	19	20	21	22
			Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-23-II	OW-24-I	OW-24-II
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
			Sample Date	18/10/2023	18/10/2023	18/10/2023	17/10/2023	17/10/2023	17/10/2023	18/10/2023	18/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics											
Sulphate	mg/L	2		77	< 2	81	17	66	79	23	34
Nitrite (as N)	as N mg/L	0.03		0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		0.24	< 0.06	0.11	< 0.06	< 0.06	0.10	0.09	0.13
Fluoride	mg/L	0.06		0.24	1.56	1.03	0.33	1.24	1.28	0.30	0.65
Hardness (dissolved)	mg/L as CaCO3	0.05		505	90.1	111	276	404	129	326	418
Aluminum (dissolved)	mg/L	0.001		0.001	0.016	0.006	0.002	0.675	0.008	0.378	0.022
Arsenic (dissolved)	mg/L	0.0002		< 0.0002	0.0003	0.0010	0.0002	0.0010	0.0005	0.0003	0.0002
Barium (dissolved)	mg/L	0.00008		0.0397	0.0363	0.0300	0.0315	0.0565	0.0279	0.0303	0.0529
Beryllium (dissolved)	mg/L	0.000007		< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000063	< 0.000007	0.000029	< 0.00000
Bismuth (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (dissolved)	mg/L	0.002		0.122	0.468	0.199	0.030	0.142	0.384	0.036	0.046
Calcium (dissolved)	mg/L	0.01		131	14.6	21.1	74.5	83.9	20.0	89.0	92.5
Cadmium (dissolved)	mg/L	0.000003		< 0.000003	0.000003	0.000007	< 0.000003	0.000027	0.000018	0.000009	0.000005
Chromium (dissolved)	mg/L	0.00008		0.00010	0.00057	0.00020	0.00136	0.00423	0.00031	0.00211	0.00019
Cobalt (dissolved)	mg/L	0.000004		0.00104	0.000112	0.000015	0.000107	0.00146	0.000060	0.000574	0.000133
Copper (dissolved)	mg/L	0.0002		0.0010	0.0011	0.0043	0.0013	0.0049	0.0016	0.0042	0.0029
Iron (dissolved)	mg/L	0.007		< 0.007	0.069	0.008	0.642	1.62	0.007	1.07	0.035
Potassium (dissolved)	mg/L	0.009		6.23	4.82	7.90	3.58	4.98	4.08	2.18	5.70
Magnesium (dissolved)	mg/L	0.001		43.5	13.0	14.1	21.9	47.2	19.1	25.2	45.5
Manganese (dissolved)	mg/L	0.00001		0.0375	0.0153	0.00025	0.0348	0.0766	0.00461	0.0495	0.0289
Molybdenum (dissolved)	mg/L	0.00004		0.00059	0.00673	0.0220	0.00152	0.00936	0.0346	0.00148	0.00575
Sodium (dissolved)	mg/L	0.01		3.03	113	69.2	4.36	64.4	88.5	8.69	15.7

CA15351-OCT23 R1

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

ATRIX: WATER		Sample Number	15	16	17	18	19	20	21	22
		Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-23-II	OW-24-I	OW-24-II
		Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
		Sample Date	18/10/2023	18/10/2023	18/10/2023	17/10/2023	17/10/2023	17/10/2023	18/10/2023	18/10/2023
Parameter	Units RL		Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics (continued)										
Nickel (dissolved)	mg/L 0.0001		0.0013	0.0005	0.0007	0.0004	0.0041	0.0008	0.0022	0.0012
Phosphorus (dissolved)	mg/L 0.003		< 0.003	0.120	< 0.003	0.021	0.108	< 0.003	0.051	< 0.003
Lead (dissolved)	mg/L 0.00009		< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00179	< 0.00009	0.00082	0.00009
Selenium (dissolved)	mg/L 0.00004		< 0.00004	0.00005	0.00028	< 0.00004	0.00009	0.00012	0.00006	0.00006
Silicon (dissolved)	mg/L 0.02		5.24	7.35	3.10	8.60	5.15	2.96	7.15	5.65
Silver (dissolved)	mg/L 0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L 0.00008		0.683	0.653	0.567	0.564	3.56	0.827	0.352	1.58
Sulfur (dissolved)	mg/L 3		27	< 3	30	6	24	28	7	12
Thallium (dissolved)	mg/L 0.000005		0.000031	< 0.000005	0.000006	< 0.000005	0.000017	< 0.000005	0.000007	0.000006
Tin (dissolved)	mg/L 0.00006		< 0.00006	0.00014	< 0.00006	0.00006	0.00007	0.00009	0.00007	0.00008
Titanium (dissolved)	mg/L 0.00007		0.00010	0.00128	0.00010	0.00010	0.0202	0.00008	0.0186	0.00101
Uranium (dissolved)	mg/L 0.000002		0.000379	0.000028	0.00251	0.000028	0.00384	0.00161	0.000497	0.00142
Vanadium (dissolved)	mg/L 0.00001		0.00014	0.00083	0.00145	0.00013	0.00281	0.00034	0.00177	0.00039
Zinc (dissolved)	mg/L 0.002		< 0.002	< 0.002	0.004	< 0.002	0.006	0.002	0.004	0.002

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

ATRIX: WATER			Sample Number	15	16	17	18	19	20	21	22
			Sample Name	OW-13-I	OW-16-I	OW-16-II	OW-17-1	OW-17-II	OW-23-II	OW-24-I	OW-24-II
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate
			Sample Date	18/10/2023	18/10/2023	18/10/2023	17/10/2023	17/10/2023	17/10/2023	18/10/2023	18/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
ther (ORP)											
pH	No unit	0.05		8.00	8.23	8.17	8.15	8.21	8.35	8.09	8.06
Chloride	mg/L	1		2	9	5	< 1	4	12	< 1	3
ATRIX: WATER			Sample Number	23	24	25	26	27	28	29	30
			Sample Name	OW-25-I	OW-25-II	OW-25-III	OW-30-I	OW-30-II	OW-30-III	OW-10-III	OW-25-IV
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Wat
			Sample Date	18/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023	16/10/2023	18/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
eneral Chemistry											
Alkalinity	mg/L as CaCO3	2		233	155	347	232	226	185	204	181
Conductivity	uS/cm	2		424	703	668	722	576	370	533	389
Total Dissolved Solids	mg/L	30		246	420	391	477	400	217	343	220
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.40	0.10	0.14	0.24	0.26	0.14	0.20	0.24
Ammonia+Ammonium (N)	as N mg/L	0.04		0.35	< 0.04	< 0.04	0.05	< 0.04	< 0.04	< 0.04	0.04
Organic Nitrogen	mg/L	0.05		0.05	0.09	0.13	0.19	0.25	0.11	0.18	0.20
Total Reactive Phosphorous (o-phosphate as P)	mg/L	0.03		0.06	< 0.03	< 0.03	0.05	0.10	< 0.03	< 0.03	< 0.03
Dissolved Organic Carbon	mg/L	1		3	1	2	2	2	2	1	2
etals and Inorganics											
Sulphate	mg/L	2		< 2	180	49	140	96	17	84	17
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		< 0.06	0.16	< 0.06	0.11	< 0.06	< 0.06	< 0.06	< 0.06
Fluoride	mg/L	0.06		0.65	1.19	0.95	1.26	0.79	0.22	0.57	1.84

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

ATRIX: WATER			Sample Number	23	24	25	26	27	28	29	30
			Sample Name	OW-25-I	OW-25-II	OW-25-III	OW-30-I	OW-30-II	OW-30-III	OW-10-III	OW-25-IV
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
			Sample Date	18/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023	16/10/2023	18/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
etals and Inorganics (continued)											
Hardness (dissolved)	mg/L as CaCO3	0.05		185	122	631	195	150	211	228	62.7
Aluminum (dissolved)	mg/L	0.001		0.001	0.005	1.05	0.004	0.009	0.002	0.002	0.003
Arsenic (dissolved)	mg/L	0.0002		< 0.0002	0.0020	0.0014	0.0004	0.0007	< 0.0002	< 0.0002	0.0002
Barium (dissolved)	mg/L	0.00008		0.0381	0.0231	0.0804	0.0452	0.0252	0.0521	0.0210	0.0138
Beryllium (dissolved)	mg/L	0.000007		< 0.000007	< 0.000007	0.000077	< 0.000007	< 0.000007	0.000018	< 0.000007	< 0.000007
Bismuth (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (dissolved)	mg/L	0.002		0.138	0.208	0.037	0.431	0.175	0.026	0.265	0.339
Calcium (dissolved)	mg/L	0.01		39.8	22.2	151	26.0	23.8	55.7	54.8	13.3
Cadmium (dissolved)	mg/L	0.000003		< 0.000003	0.000013	0.000045	0.000008	0.000004	0.000003	< 0.000003	0.000013
Chromium (dissolved)	mg/L	0.00008		0.00013	0.00024	0.00535	0.00133	0.00025	0.00012	< 0.00008	0.00009
Cobalt (dissolved)	mg/L	0.000004		0.000014	0.000016	0.00742	0.000093	0.000016	0.000027	0.000181	0.000048
Copper (dissolved)	mg/L	0.0002		0.0021	0.0034	0.0091	0.0013	0.0043	0.0010	0.0008	0.0016
Iron (dissolved)	mg/L	0.007		0.190	< 0.007	2.50	< 0.007	0.009	0.864	< 0.007	0.078
Potassium (dissolved)	mg/L	0.009		4.13	7.96	5.86	9.47	6.95	3.28	6.24	2.95
Magnesium (dissolved)	mg/L	0.001		20.8	16.1	61.5	31.5	22.0	17.6	22.2	7.15
Manganese (dissolved)	mg/L	0.00001		0.0116	0.00027	0.238	0.00639	0.00134	0.0691	0.0274	0.00950
Molybdenum (dissolved)	mg/L	0.00004		0.00201	0.0375	0.00470	0.0328	0.0170	0.00047	0.00047	0.0389
Sodium (dissolved)	mg/L	0.01		33.0	112	18.5	97.4	75.3	4.77	39.3	76.3
Nickel (dissolved)	mg/L	0.0001		0.0004	0.0008	0.0080	0.0014	0.0007	0.0002	0.0005	0.0003
Phosphorus (dissolved)	mg/L	0.003		0.030	< 0.003	0.121	< 0.003	0.004	0.006	< 0.003	< 0.003
Lead (dissolved)	mg/L	0.00009		< 0.00009	< 0.00009	0.00261	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Selenium (dissolved)	mg/L	0.00004		< 0.00004	0.00041	0.00006	0.00014	0.00005	< 0.00004	< 0.00004	< 0.00004

CA15351-OCT23 R1

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

MATRIX: WATER			Sample Number	23	24	25	26	27	28	29	30
			Sample Name	OW-25-I	OW-25-II	OW-25-III	OW-30-I	OW-30-II	OW-30-III	OW-10-III	OW-25-IV
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
			Sample Date	18/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023	16/10/2023	18/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
letals and Inorganics (continued)											
Silicon (dissolved)	mg/L	0.02		7.55	3.01	7.38	2.60	4.01	5.95	2.84	4.11
Silver (dissolved)	mg/L	0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Strontium (dissolved)	mg/L	0.00008		0.876	0.590	2.87	1.40	0.580	0.886	2.10	0.498
Sulfur (dissolved)	mg/L	3		< 3	71	27	56	37	5	30	6
Thallium (dissolved)	mg/L	0.000005		< 0.000005	< 0.000005	0.000027	0.000011	0.000005	< 0.000005	< 0.000005	< 0.000005
Tin (dissolved)	mg/L	0.00006		< 0.00006	0.00007	< 0.00006	0.00014	0.00014	< 0.00006	< 0.00006	0.00015
Titanium (dissolved)	mg/L	0.00007		0.00009	0.00008	0.03209	0.00009	0.00076	0.00009	< 0.00007	0.00008
Uranium (dissolved)	mg/L	0.000002		0.000040	0.00490	0.00461	0.000527	0.00120	0.000038	0.000035	0.000129
Vanadium (dissolved)	mg/L	0.00001		0.00007	0.00204	0.00346	0.00028	0.00042	0.00010	0.00013	0.00005
Zinc (dissolved)	mg/L	0.002		0.002	0.003	0.010	< 0.002	0.004	< 0.002	< 0.002	< 0.002
ther (ORP)			1								
рН	No unit	0.05		8.22	8.12	8.13	8.29	8.26	7.95	8.21	8.27
Chloride	mg/L	1		< 1	7	< 1	3	1	< 1	< 1	9

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

//ATRIX: WATER			Sample Number	31	32	33	34	35
			Sample Name	OW-31-I	OW-31-II	NL GW Dup-1	NL GW Dup-2	NL GW Dup-3
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
			Sample Date	18/10/2023	18/10/2023	16/10/2023	18/10/2023	18/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result
eneral Chemistry								
Alkalinity	mg/L as CaCO3	2		135	121	288	185	258
Conductivity	uS/cm	2		805	648	726	369	427
Total Dissolved Solids	mg/L	30		534	429	480	214	269
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.13	0.13	0.21	< 0.05	0.40
Ammonia+Ammonium (N)	as N mg/L	0.04		< 0.04	< 0.04	< 0.04	0.04	0.35
Organic Nitrogen	mg/L	0.05		0.14	0.11	0.19	< 0.05	0.05
Total Reactive Phosphorous (o-phosphate	mg/L	0.03		0.05	0.06	0.05	< 0.03	0.08
as P) Dissolved Organic Carbon	mg/L	1		1	2	2	2	2
	mg/L			<u>'</u>				
etals and Inorganics				280	400	440	40	
Sulphate	mg/L	2			180	110	18	< 2
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		0.40	< 0.06	< 0.06	< 0.06	< 0.06
Fluoride	mg/L	0.06		0.74	1.19	0.06	0.22	0.65
Hardness (dissolved)	mg/L as CaCO3	0.05		259	108	442	211	188
Aluminum (dissolved)	mg/L	0.001		0.180	0.011	0.001	0.004	0.001
Arsenic (dissolved)	mg/L	0.0002		0.0003	0.0006	< 0.0002	< 0.0002	0.0002
Barium (dissolved)	mg/L	0.00008		0.0382	0.0373	0.0194	0.0541	0.0384
Beryllium (dissolved)	mg/L	0.000007		< 0.000007	< 0.000007	< 0.000007	0.000010	< 0.000007
Bismuth (dissolved)	mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (dissolved)	mg/L	0.002		0.202	0.215	0.028	0.028	0.137
Calcium (dissolved)	mg/L	0.01		48.3	18.2	137	55.7	40.6

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

MATRIX: WATER Sample Number 31 32 33 34 35
Sample Name OW-31-I OW-31-II NL GW Dup-1 NL GW Dup-2 NL GW Dup-3
Sample Matrix Ground Water Ground Water Ground Water Ground Water Ground Water
Sample Date 18/10/2023 18/10/2023 16/10/2023 18/10/2023 18/10/2023 18/10/2023
Parameter Units RL Result Result Result Result Result Result
letals and Inorganics (continued)
Cadmium (dissolved) mg/L 0.000003 0.000007 0.000004 < 0.000003 < 0.000003 < 0.000003
Chromium (dissolved) mg/L 0.00008 0.00122 0.00012 < 0.00008 0.00011 0.00012
Cobalt (dissolved) mg/L 0.000004 0.000055 0.000056 0.000115 0.000024 0.000012
Copper (dissolved) mg/L 0.0002 0.0050 0.0028 0.0039 0.0019 0.0014
Iron (dissolved) mg/L 0.007 0.340 0.012 0.075 0.860 0.190
Potassium (dissolved) mg/L 0.009 9.83 5.77 1.02 3.28 4.07
Magnesium (dissolved) mg/L 0.001 33.7 15.3 24.4 17.5 21.1
Manganese (dissolved) mg/L 0.00001 0.0197 0.00869 0.0187 0.0711 0.0113
Molybdenum (dissolved) mg/L 0.00004 0.0134 0.0151 0.00024 0.00047 0.00212
Sodium (dissolved) mg/L 0.01 79.6 103 2.26 4.64 32.8
Nickel (dissolved) mg/L 0.0001 0.0028 0.0014 0.0010 0.0003 0.0002
Phosphorus (dissolved) mg/L 0.003 0.012 < 0.003 < 0.003 0.005 0.029
Lead (dissolved) mg/L 0.00009 0.00028 < 0.00009 < 0.00009 < 0.00009
Selenium (dissolved) mg/L 0.00004 0.00004 0.00005 < 0.00004 < 0.00004
Silicon (dissolved) mg/L 0.02 3.21 3.24 2.27 5.92 7.28
Silver (dissolved) mg/L 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005
Strontium (dissolved) mg/L 0.00008 1.17 0.746 0.218 0.868 0.882
Sulfur (dissolved) mg/L 3 102 72 44 5 < 3
Thallium (dissolved) mg/L 0.000005 0.000008 < 0.000005 < 0.000005 < 0.000005
Tin (dissolved) mg/L 0.00006 0.00013 0.00009 < 0.00006 0.00012 < 0.00006
Titanium (dissolved) mg/L 0.00007 0.00005 0.00045 0.00007 < 0.00007 0.00007
Uranium (dissolved) mg/L 0.000002 0.00217 0.00110 0.000248 0.000039 0.000046

CA15351-OCT23 R1

Client: WSP E & I Canada Ltd

Project: TY131010.2023.1000.1142.5730-00 New Liskeard LF GW

Project Manager: Megan Russell

MATRIX: WATER			Sample Number	31	32	33	34	35
			Sample Name	OW-31-I	OW-31-II	NL GW Dup-1	NL GW Dup-2	NL GW Dup-3
			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
			Sample Date	18/10/2023	18/10/2023	16/10/2023	18/10/2023	18/10/2023
Parameter	Units	RL		Result	Result	Result	Result	Result
Metals and Inorganics (continued)								
Vanadium (dissolved)	mg/L	0.00001		0.00151	0.00101	0.00006	0.00011	0.00008
Zinc (dissolved)	mg/L	0.002		0.005	< 0.002	0.003	0.002	< 0.002
Other (ORP)								
рН	No unit	0.05		7.99	8.03	8.04	7.89	8.13
Chloride	mg/L	1		< 1	3	3	< 1	1

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0551-OCT23	mg/L as	2	< 2	0	20	102	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch				Matrix Spike / Ref.							
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0225-OCT23	mg/L	0.04	<0.04	ND	10	100	90	110	99	75	125
Ammonia+Ammonium (N)	SKA0240-OCT23	mg/L	0.04	<0.04	0	10	100	90	110	96	75	125

20231030 14 / 24

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	RL Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Chloride	DIO5081-OCT23	mg/L	1	<1	1	20	101	80	120	102	75	125	
Sulphate	DIO5081-OCT23	mg/L	2	<2	ND	20	104	80	120	105	75	125	
Sulphate	DIO5083-OCT23	mg/L	2	<2	ND	20	107	80	120	103	75	125	

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-IENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrite (as N)	DIO0659-OCT23	mg/L	0.03	<0.03	ND	20	99	90	110	104	75	125
Nitrate (as N)	DIO0659-OCT23	mg/L	0.06	<0.06	ND	20	99	90	110	102	75	125
Nitrite (as N)	DIO0661-OCT23	mg/L	0.03	<0.03	ND	20	100	90	110	105	75	125
Nitrate (as N)	DIO0661-OCT23	mg/L	0.06	<0.06	ND	20	100	90	110	104	75	125
Nitrite (as N)	DIO0662-OCT23	mg/L	0.03	<0.03	ND	20	100	90	110	103	75	125
Nitrate (as N)	DIO0662-OCT23	mg/L	0.06	<0.06	ND	20	100	90	110	102	75	125

20231030 15 / 24

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method			LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0216-OCT23	mg/L	1	<1	ND	20	100	90	110	99	75	125
Dissolved Organic Carbon	SKA0227-OCT23	mg/L	1	<1	1	20	100	90	110	92	75	125

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0551-OCT23	uS/cm	2	< 2	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0651-OCT23	mg/L	0.06	<0.06	0	10	103	90	110	91	75	125

20231030 16 / 24

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover		Spike Recovery		ory Limits %)
							(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0217-OCT23	mg/L	0.00005	<0.00005	ND	20	97	90	110	91	70	130
Aluminum (dissolved)	EMS0217-OCT23	mg/L	0.001	<0.001	ND	20	91	90	110	129	70	130
Arsenic (dissolved)	EMS0217-OCT23	mg/L	0.0002	<0.0002	ND	20	94	90	110	96	70	130
Barium (dissolved)	EMS0217-OCT23	mg/L	0.00008	<0.00008	2	20	92	90	110	97	70	130
Beryllium (dissolved)	EMS0217-OCT23	mg/L	0.000007	<0.000007	ND	20	90	90	110	101	70	130
Boron (dissolved)	EMS0217-OCT23	mg/L	0.002	<0.002	ND	20	98	90	110	93	70	130
Bismuth (dissolved)	EMS0217-OCT23	mg/L	0.00001	<0.00001	ND	20	96	90	110	84	70	130
Calcium (dissolved)	EMS0217-OCT23	mg/L	0.01	<0.01	0	20	96	90	110	98	70	130
Cadmium (dissolved)	EMS0217-OCT23	mg/L	0.000003	<0.000003	ND	20	97	90	110	94	70	130
Cobalt (dissolved)	EMS0217-OCT23	mg/L	0.000004	<0.000004	ND	20	95	90	110	94	70	130
Chromium (dissolved)	EMS0217-OCT23	mg/L	0.00008	<0.00008	ND	20	93	90	110	101	70	130
Copper (dissolved)	EMS0217-OCT23	mg/L	0.0002	<0.0002	ND	20	98	90	110	101	70	130
Iron (dissolved)	EMS0217-OCT23	mg/L	0.007	<0.007	ND	20	92	90	110	100	70	130
Potassium (dissolved)	EMS0217-OCT23	mg/L	0.009	<0.009	2	20	107	90	110	96	70	130
Magnesium (dissolved)	EMS0217-OCT23	mg/L	0.001	<0.001	3	20	103	90	110	103	70	130
Manganese (dissolved)	EMS0217-OCT23	mg/L	0.00001	<0.00001	ND	20	93	90	110	105	70	130
Molybdenum (dissolved)	EMS0217-OCT23	mg/L	0.00004	<0.00004	ND	20	102	90	110	94	70	130
Sodium (dissolved)	EMS0217-OCT23	mg/L	0.01	<0.01	1	20	105	90	110	87	70	130
Nickel (dissolved)	EMS0217-OCT23	mg/L	0.0001	<0.0001	ND	20	95	90	110	97	70	130
Lead (dissolved)	EMS0217-OCT23	mg/L	0.00009	<0.00009	ND	20	94	90	110	98	70	130

20231030 17 / 24

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	-	Spike Recovery	Recove	ry Limits 6)
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (dissolved)	EMS0217-OCT23	mg/L	0.003	<0.003	ND	20	92	90	110	NV	70	130
Selenium (dissolved)	EMS0217-OCT23	mg/L	0.00004	<0.00004	ND	20	94	90	110	89	70	130
Sulfur (dissolved)	EMS0217-OCT23	mg/L	3	<1	ND	20	107	90	110	NV	70	130
Silicon (dissolved)	EMS0217-OCT23	mg/L	0.02	<0.02	ND	20	93	90	110	NV	70	130
Tin (dissolved)	EMS0217-OCT23	mg/L	0.00006	<0.00006	ND	20	98	90	110	NV	70	130
Strontium (dissolved)	EMS0217-OCT23	mg/L	0.00008	<0.00008	3	20	99	90	110	94	70	130
Titanium (dissolved)	EMS0217-OCT23	mg/L	0.00007	<0.00005	ND	20	100	90	110	NV	70	130
Thallium (dissolved)	EMS0217-OCT23	mg/L	0.000005	<0.000005	ND	20	94	90	110	96	70	130
Uranium (dissolved)	EMS0217-OCT23	mg/L	0.000002	<0.000002	ND	20	95	90	110	103	70	130
Vanadium (dissolved)	EMS0217-OCT23	mg/L	0.00001	<0.00001	ND	20	92	90	110	97	70	130
Zinc (dissolved)	EMS0217-OCT23	mg/L	0.002	<0.002	ND	20	96	90	110	108	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch Units RL Method Duplicate		LC	S/Spike Blank		M	atrix Spike / Ref					
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recove (5	ry Limits %) High	Spike Recovery (%)	Recover (9	•
pH	EWL0551-OCT23	No unit	0.05	NA	0		101			NA	<u> </u>	

20231030 18 / 24

QC SUMMARY

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-004

Parameter	QC batch	23,		S/Spike Blank		M	latrix Spike / Re	f.				
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Reactive Phosphorous	SKA0194-OCT23	mg/L	0.03	<0.03	0	10	96	90	110	86	75	125

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	of.
	Reference			Blank	RPD	RPD AC (%)		Recove	•	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0529-OCT23	mg/L	30	<30	13	20	87	80	120	NA		
Total Dissolved Solids	EWL0546-OCT23	mg/L	30	<30	1	20	105	80	120	NA		
Total Dissolved Solids	EWL0548-OCT23	mg/L	30	<30	ND	20	101	80	120	NA		
Total Dissolved Solids	EWL0579-OCT23	mg/L	30	<30	6	20	100	80	120	NA		

20231030 19 / 24

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0202-OCT23	mg/L	0.05	<0.05	1	10	103	90	110	100	75	125
Total Kjeldahl Nitrogen (N)	SKA0228-OCT23	mg/L	0.05	<0.05	3	10	100	90	110	113	75	125
Total Kjeldahl Nitrogen (N)	SKA0243-OCT23	mg/L	0.05	<0.05	1	10	97	90	110	87	75	125

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20 / 24

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20231030 21 / 24

00	-
JU	J

Request for Laboratory Services and CHAIN OF CUSTODY (General)

SGS Environmental Services - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Toll Free: 877-747-7658 Fax: 705-652-6365 Web: www.ca.sgs.com (4) SGS Environmental Services - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Web: www.ca.sgs.com (4)

IReceive	nd Data (mm/dd/s	007.0.000	Laboratory In	formation Se	ction		716	:25	X: 010-072-0	JJOT WED. W	ww.ca.sgs.co	/// (4)	2.100
	ed Date (mm/dd/yy	001 Z 0 Z0Z3		Ne			-11:	253	102				
Receive	ed Time (After Hou	rs Only):	Billing & Rep	orting Inform	Temperatu ation	ure Upon	Receipt (°	C):	X		504(SEC.E.)	生活 至 7	
\$	Company:	WSP E&I Canada Limited				Quote	#:	-500-360-360-3	2021 1	246	120 AB. 400 AB.	2000 1000 1000 100	Br. Br. Igo.
Invoice/Receipt to {3}:	Attention:	Megan Russell				Attach	ed Parame	atar List			YES	☑ N	- NO
/Rec {3}:		131 Fielding Road				Attach	- arann	eter List	•				
oice/	Address:	Lively, ON,					4.8.4		Turnar	ound Tim			
Inv	Email:	P3Y 1L7 APInvoice.Canada@wsp.com, meg.russell@v					h Turnard	ound Tin	ne Requir	red?		YES	☑ N
	Liliali.		vsp.com, dominique.gag	non@wsp.cor	n	Specify	:						
Projec	t Name/Number:	New Liskeard GW TY131010.2023.1000.1142.5730-00	P.O. #:	C025701288	3	* Rush TA	Requests Re	equire Lab A	Approval	275			
		Client I	nformation/Report To:	11111						Client L	.ab #:		
Co	ompany Name:	WSP E&I Canada Limited				Phone	Numbe	r:		705-682-	-2632		
(Contact Name:	Megan Russell				Fax N	umber:			705-682-	2260		
	Address:	131 Fielding Road, Lively, ON, P3Y 1L7				E-mail	l:			meg.rus	ssell@wsp	.com	
	Copy to:	meg.russell@wsp.com; dominique.g				1-6-							
			Sample	Information		是基集			53.53				
										Reques			
			1.00	h mili	. 147	(ple	ase ente						ck off
			Date	T			Willia	en anai	ysis app	olies to e	eacn san	іріе)	
		Sample Identifier	Sampled	Time Sampled	# of Bottles		121					1 9 1	
			(mm/dd/yy)			0	am. te 20						
			in the second			Itere	Quo						1
						Field filtered	NL GW param. As per Quote 2021 1246		12				
OW-1F			10/17/23	16:40	5	X	X						
OW-1-			10/17/23	1630	5	X	X						
OW-10			10/16/23	13:10	5	X	X						
OW-10			10/16/23	12:55	5	X	X						
OW-11			10/18/23	8.15	5	X	X						
OW-11			19/18/23	8:25	5	1	X						
OW-12			10/18/23	7:45	5	X	X						
OW-12			10/18/23	7.55	5	X	X						
OW-13			10/18/23	13:40	5	X	X						
OW-16			10/18/23	11:50	5	X	X						
OW-16	Militares e		10/10/23	11:45	5	X	X						
OW-16 OW-17		(*)	12/19/100	10.10	-	- M	71						
OW-17			10/11/3	10.40	5	1	~						
OW-17			10/17/23	18-45	5	X	1					714	2.4
SVV-17	-111		14 75		(TRRIby)	_	-						
	Sampled By {1}:	(Name) Mikayla Rephad	(Signature)	nl	1	1		D-:	10	119	23		
	nquished by {2):	The fire Department	(Signature)	Made	hy	1		Date:	10	110	72	(mm/d	(5,5)
{1}	Submission of same	ples to SGS is acknowledgement that you have been	en provided direction on sa	mple collection	/handling and	d transpor	tation of sa	mples 12	Submiss	ion of same	oles to SGS	(mm/d	
number o	f addresses for no a	dditional cost. Fax is available upon request. (4) C	retained on file in the contr completion of work may red	act, or in an alt	ernative form	nat (e.g. sl amples be	hipping doc	uments).	(3) Result	ts may be s	ent by ema	il to an unl	limited
This doo	cument is issued by the	e Company under its General Conditions of Service acce	essible at http://www.sgs.com indemnification and jurisd	/terms_and_cond	ditions.htm. (F	tinted cop	ies are avail	able upon	request.) A	ttention is d	rawn to the I	mitation of I	liability,

334349181050 RTN

SGS

Request for Laboratory Services and CHAIN OF CUSTODY (General)

SGS Environmental Services - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Toll Free: 877-747-7658 Fax: 705-652-6365 Web: www.ca.sgs.com [4]

		SGS Environme	ental Services - London: 657 Consor	tium Court, Londor Laboratory In			2-4500 Toll I	Free: 877-8	48-8060 Fa	ax: 519-672-0	361 Web: v	ww.ca.sgs.c	com {4}	0.725
Receiv	ed Date (mm/dd/yy	/yy):/	1	autoratory in	ionnation oc	LAB LIMS	#:	6H-3170H-62989						
Receiv	ed Time (After Hou	ırs Only)::				Temperati		Receipt (°C):					
	Company	WSP E&I Canada Limited		Billing & Rep	orting Inform	ation	Quote #			0004.4	0.10			**************************************
pt to		Megan Russell		-			Quote #	7:		2021 1	246			-
Invoice/Receipt to {3}:		131 Fielding Road					Attache	ed Param	eter List	:		YES		NO
ice/R {3	Address:	Lively, ON,		- 3						Turnard	ound Tim	ie		
Invo		P3Y 1L7					Is *Rus	h Turnar	ound Tin	ne Requir	ed?		YES	☑ No
	Email:		com, meg.russell@wsp.com,	dominique.gag	non@wsp.con	n	Specify:							
Projec	ct Name/Number:	New Liskeard GW TY131010.2023.1000.1142.5	730-00	P.O. #:	C025701288	3	* Rush TA	Requests R	equire Lab /	Approval				
			Client Information	n/Report To:		1000			1.1		Client L	_ab #:		
C	ompany Name:	WSP E&I Canada Limited					Phone	Numbe	er:		705-682	-2632		
	Contact Name:	Megan Russell					Fax Nu	ımber:			705-682	-2260		
	Address:	131 Fielding Road, Lively,	ON, P3Y 1L7			ily.	E-mail	:			meg.ru	ssell@wsp	p.com	
k 1	Copy to:	meg.russell@wsp.cor	m; dominique.gagnon@	wsp.com										
				Sample	Information									
									A	nalysis	Reques	ted		
						Ē	(plea	se ente	r the a	nalysis r	equired	below	and che	ck off
				Date	-			whi	ch anal	ysis app	lies to	each sar	nple)	
		Sample Identifier		Sampled	Time Sampled	# of Bottles		121						
- Aust				(mm/dd/yy)			D.	am.				1		
					No.	-	filtere	V par						
							Field filtered	NL GW param. As per Quote 2021 1246						
DW-23	S-I			_	destina			247						
DW-23	3-11			10/17/23	16:00	5	X	X						
DW-24	-1			10/18/23	13:00	5	X	X						
DW-24	-11			10/18/23	13:10	5	X	X						
DW-24	- 			- Calabaran		-								
DW-25	-1			10/18/23	16:40	.5	X	X						
DW-25	-11			10/18/23	17:00	5	X	R						
)W-25	-111			10/18/23	17:20	5	X	X						
)W-30	-1			10/18/23	14:50	5	X	X						
)W-30				10/18/23	15:00	5	X	X						
OW-30				10/18/23	925	5	X	à						
	OW-10-III			10/10/23	13:00	5	K	X						
W-2! OW-25-IV				10/ /23	17:45	5	X	1						
DW-31-I				10/18/23	9:50	5	X	X						
W-31-II				10/18/23	10:05	5	X	X.						
	Sampled By {1}: (Name)	0-1-1	(6:	21						1 0	0.3		
	rquished by {2):	Nikayia	Bechard,	(Signature) (Signature)	1100	1 Phy	/		Date:	10	19	23	(mm/c	
			ent that you have been provided		nple collection/	handling and	transports	ation of sa	Date:	Submission	n of same	23	(mm/d	Id/yy)

(1) Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/nandling and transportation of samples. (2) Submission of samples to SGS is acknowledgement that you have been provided direction of samples to SGS is acknowledgement that you have been the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. (4) Completion of work may require the subcontracting of samples between the London and Lakefield laboratories.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

-	
C	
-7	
U	

Request for Laboratory Services and CHAIN OF CUSTODY (General)

SGS Environmental Services - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Toll Free: 877-747-7658 Fax: 705-652-6365 Web: www.ca.sgs.com [4] SGS Environmental Services - London: 657 Consortium Court, London, ON, N6E 288 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Web: www.ca.sgs.com [4]

			Laboratory Inf	ormation Se	ction								
Receive	ed Date (mm/dd/yy	yy)://			LAB LIMS	#:							
Receive	ed Time (After Hou	rs Only):			Temperatu	ıre Unon	Receipt (°	C).					
			Billing & Repo	rting Inform		ne open	receipt (<u> </u>					
\$		WSP E&I Canada Limited		Y = 11 Y 6		Quote #	# :	71	2021 1	246	FIL		
eipt	Attention:	Megan Russell				Attache	ed Parame	atar Liet:			YES	2	NO
Invoice/Receipt to {3}:		131 Fielding Road				, ittuoile	ou i ui ui ii	TOT LIST.					
ice/F	Address:	Lively, ON,							Turnard	ound Tim	е		
nvo		P3Y 1L7				ls *Rus	h Turnaro	und Tim	e Requir	ed?		YES	☑ NO
-	Email:	APInvoice.Canada@wsp.com, meg.russell@wsp	o.com, dominique.gagr	on@wsp.con	n	Specify:							
Projec	ct Name/Number:	New Liskeard GW TY131010.2023.1000.1142.5730-00	P.O. #:	C025701288	3	* Rush TA	Requests Re	quire Lab A	pproval				
P_{ij}		Client Info	ormation/Report To:							Client L	.ab #:	4 100	
C	ompany Name:	WSP E&I Canada Limited				Phone	Numbe	r:		705-682-	-2632		
	Contact Name:	Megan Russell				Fax Nu	umber:			705-682-	-2260		
	Address:	131 Fielding Road, Lively, ON, P3Y 1L7				E-mail	: .			meg.rus	ssell@wsp	.com	
	Copy to:	meg.russell@wsp.com; dominique.gag	non@wsp.com										
		据自己的区域的自己的现在分词 使被 经等的 医单层的 医多种	Sample	nformation					an a				
			Date	_		(plea		r the an	alysis r		ted below a each san		ck off
		Sample Identifier	Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Field filtered	NL GW param. As per Quote 2021 1246		\$= 				
NL GV	V Dup-1		10/16/23	12:55	5	Ĭ.	A As A						
NL GV	V Dup-2		10/18/23	9:25	3	X	1						
NL GV	V Dup-3		10/18/23	16:40	5	X	X						
										127			
									1 .	-			- /AP
	L. W.								- 1				
												1,0	
												30	
				2								V.W	
													100
					- 11 -								(0)
- 15													
	Sampled By {1}:	(Name) M. Kayla Bechard	(Signature)	Mari	Lu		,	Date:	10	119	23	(mm/c	dd/yy)
_	nquished by {2):	(Name) KONG Red Apples to SGS is acknowledgement that you have been	(Signature)	Man	1//		1-0	Date:	10	119	23	(mm/c	

(1) Submission of samples to SGs is acknowledgement that you have been provided direction on sample collection/nanding and transportation or samples. (2) Submission or samples to SGs is acknowledgement that you have been provided direction on sample collection/nanding and transportation or samples. (2) Submission or samples to SGs is acknowledgement that you have been the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. (4) Completion of work may require the subcontracting on the subcontracting on the subcontracting of the subcontractin

indemnification and jurisdiction issues defined therein

Appendix F

Summary of Groundwater Geochemical Analyses

Groundwater Geochemical Results OW-10-I

Parameters	Huita	GD14(G (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS (1)	June	July	Sep	Мау	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	259	253	259	253	267	256	253	266	271	262	248	305	309	276	263
Chloride	mg/L	250 AO ⁽³⁾	3.26	3.27	3.38	3.25	2.59	3.05	2.38	2.87	3.17	2.64	3.95	3.53	3.28	2.89	2.54
Dissolved Organic Carbon	mg/L	5 AO	2.4	1.6	1.4	1.3	3.0	2.4	2.2	1.5	1.3	1.2	1.8	1.6	1.3	2.1	1.7
Fluoride	mg/L	1.5 MAC (4)	<0.10	<0.25	0.26	0.18	<0.25	<0.25	<0.25	<0.10	<0.25	<0.25	0.32	0.26	0.17	0.31	0.18
Sulphate	mg/L	500 AO	186	192	166	137	200	153	147	124	119	162	108	92.1	113	93.1	123
Hardness	mg/L	80-100 OG	440	455	400	361	465	412	370	363	351	377	344	353	379	364	393
Nitrate	mg/L	10 MAC	<0.10	<0.25	<0.10	<0.10	<0.25	<0.25	<0.25	<0.10	<0.25	<0.25	<0.05	<0.10	<0.05	<0.05	<0.10
Nitrite	mg/L	1 MAC	<0.10	<0.25	<0.10	<0.10	<0.25	<0.25	<0.25	<0.10	<0.25	<0.25	<0.05	<0.10	<0.05	<0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.39	<0.10	0.13	<0.10	0.29	0.18	0.23	0.11	0.12	<0.10	<0.10	<0.10	<0.10	0.11	0.16
Orthophosphate	mg/L		<0.20	<0.05	<0.20	<0.20	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.10	<0.20	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.16	8.05	7.82	8.15	7.74	7.65	7.96	7.58	8.12	7.93	7.84	8.21	7.65	8.07	7.51
Electrical Conductivity	μS/cm		802	821	809	741	868	779	655	742	739	728	650	706	713	709	733
Total Ammonia	mg/L		0.06	0.07	0.03	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	0.06
Total Dissolved Solids	mg/L	500 AO	512	568	500	434	548	464	414	446	414	440	408	408	442	406	440
Total Kjeldahl Nitrogen (TKN)	mg/L		0.45	<0.10	0.16	<0.10	0.29	0.2	0.23	0.11	0.12	<0.10	<0.10	0.12	<0.10	0.11	0.22
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	0.007	<0.004	<0.004	<0.004	<0.004	<0.004	0.015	0.012	0.005	0.005	<0.004	0.005	<0.004	<0.004	0.004
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.027	0.028	0.027	0.027	0.020	0.035	0.019	0.030	0.033	0.032	0.034	0.034	0.032	0.029	0.038
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.143	0.11	0.161	0.139	0.020	0.120	0.021	0.154	0.182	0.160	0.193	0.232	0.197	0.255	0.225
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		117	122	105	93.4	143	110	115	95.4	93.4	97.6	85.2	90.2	96.7	93.3	101
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.005	<0.003	<0.003
Iron	mg/L	0.3 AO	0.104	0.134	0.177	0.129	0.049	0.778	<0.010	0.075	0.073	0.141	0.159	0.169	0.10	0.149	0.177
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		36.0	36.5	33.4	31.1	26.1	33.3	20.2	30.4	28.6	32.3	31.8	31.0	33.4	31.9	34.1
Manganese	mg/L	0.05 AO	0.021	0.021	0.02	0.024	0.020	0.044	0.002	0.014	0.012	0.022	0.031	0.020	0.021	0.020	0.022
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		4.21	4.17	4.35	4.01	1.37	4.48	1.07	4.45	4.46	4.19	5.42	5.32	4.46	4.77	5.31
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		2.74	2.76	2.96	3.24	1.96	3.04	1.88	2.83	3.13	3.27	3.54	3.45	2.74	3.52	3.57
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	3.4	3.25	3.63	4.15	2.10	3.87	2.51	4.76	4.76	4.16	5.85	5.09	4.06	4.84	4.83
Strontium	mg/L		0.92	0.868	0.91	0.878	0.20	1.08	0.147	0.93	0.987	1.04	1.26	1.24	1.12	1.15	1.22
Sulphur	mg/L		55.6	64.4	60.5	49.2	68.0	59.6	39.0	40.4	37.6	52.1	35.2	28.7	38.5	30.4	43.0
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	0.002	0.003	0.004	<0.002	<0.002	0.002	0.003	<0.002	<0.002	0.002	<0.002	0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.006	0.005	<0.005	0.006	0.005	0.005	0.006	0.008	0.007	<0.005	0.006	<0.005	0.009	<0.005	<0.005
Notes:			<u> </u>						<u> </u>								

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 1 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-10-I

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	261	264	273	289	297	317	288	296	298	291	288	287	275	282	285
Chloride	mg/L	250 AO ⁽³⁾	2.46	2.93	2.65	2.66	2.93	2.53	2.56	2.84	2.92	2.0	2.0	2.0	4	2	2
Dissolved Organic Carbon	mg/L	5 AO	1.7	1.8	1.0	1.6	1.3	1.4	1.4	1.8	1.9	1.4	2.0	2.0	3.0	1.2	1.0
Fluoride	mg/L	1.5 MAC (4)	0.21	0.23	0.17	0.25	<0.05	<0.05	0.20	0.23	0.20	0.31	0.35	0.34	0.32	0.33	0.39
Sulphate	mg/L	500 AO	152	110	96.7	92.8	88.9	105	88.8	82.4	78.8	120	75	110	110	91	100
Hardness	mg/L	80-100 OG	401	367	352	365	324	351	313	344	340	436	386	386	415	369	430
Nitrate	mg/L	10 MAC	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	0.12	<0.10	0.3	0.13	0.15	0.22	<0.10	0.16	< 0.5	< 0.5	0.06	0.58	0.06	0.40
Orthophosphate	mg/L		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.53	7.65	7.44	7.47	7.74	7.60	7.78	7.82	7.76	8.13	8.21	8.04	8.13	7.95	8.11
Electrical Conductivity	μS/cm		730	749	762	763	609	630	662	670	668	687	673	729	698	678	701
Total Ammonia	mg/L		<0.02	0.04	<0.02	<0.02	0.02	<0.02	<0.02	0.05	<0.02	0.06	< 0.04	< 0.04	0.05	0.1	< 0.04
Total Dissolved Solids	mg/L	500 AO	476	406	420	400	398	438	372	410	420	440	351	480	466	431	440
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.16	<0.10	0.3	0.15	0.15	0.22	<0.10	0.16	< 0.5	< 0.05	0.08	0.63	0.16	0.43
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	0.007	0.027	0.024	0.039	0.011	0.024	<0.004	0.003	0.028	< 0.001	0.002	< 0.001	< 0.001
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Barium	mg/L	1 MAC	0.034	0.031	0.033	0.033	0.028	0.029	0.028	0.030	0.033	0.0391	0.0344	0.0343	0.0312	0.0315	0.0331
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	0.162	0.256	0.283	0.227	0.320	0.251	0.228	0.276	0.350	0.285	0.231	0.339	0.178	0.204	0.259
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000005	< 0.000003	0.000007	< 0.000003	< 0.000003	< 0.000003
Calcium	mg/L		104	93.7	92.1	93.6	82.6	90.9	78.9	86	85.4	122	104	101	110	94.8	110
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00031	0.00015	0.00012	0.00012	0.00025	< 0.00008
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000023	0.000017	0.000016	0.000026	0.000018	0.000012
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	0.0013	0.0007	< 0.0002	0.0012	0.0008	0.0012
Iron	mg/L	0.3 AO	0.097	<0.010	0.087	0.181	0.236	0.201	0.166	0.212	<0.010	0.185	0.180	0.214	0.203	0.274	0.217
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		34.2	32.2	29.7	31.8	28.7	30.1	28.2	31.4	30.8	32	30.4	32.7	33.9	32.2	37.8
Manganese	mg/L	0.05 AO	0.021	0.021	0.020	0.018	0.019	0.018	0.011	0.019	0.019	0.0215	0.0206	0.0209	0.0359	0.0201	0.0205
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00008	0.00008	0.00009	0.00006	0.00007	0.00006
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0002	< 0.0001	0.0001	0.0002	0.0002	0.0002
Potassium	mg/L		4.95	4.80	4.96	4.86	4.40	4.78	4.47	5.10	5.05	6.11	5.26	5.46	5.67	5.32	6.07
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.00004	< 0.00004	0.00006	< 0.00004	< 0.00004	< 0.00004
Silicon	mg/L		3.81	2.38	3.31	3.38	3.47	3.26	2.68	3.89	3.95	4.26	4.96	4.34	3.43	3.65	3.43
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	4.04	4.76	4.93	4.86	4.78	4.68	4.71	5.43	5.17	4.54	5.45	4.25	4.67	4.82	4.98
Strontium	mg/L		1.17	1.16	1.15	1.16	1.2	1.17	0.998	1.31	1.32	1.31	1.15	1.25	1.23	1.23	1.41
Sulphur	mg/L		50.5	35.6	31.4	30.0	25.7	36.5	27.8	27.6	24.5	51	24	39	40	32	41
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00008	0.00009	< 0.00006	< 0.00006	0.00009	< 0.00006
Titanium	mg/L		0.003	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	0.00018	< 0.00005	< 0.00005	0.00011	0.00068	< 0.00007
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000022	0.000015	0.00002	0.000023	0.000017	0.000015
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00005	< 0.00001	0.00002	< 0.00001	0.00004	< 0.00001
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	0.018	<0.005	<0.005	<0.005	0.002	0.003	< 0.002	< 0.002	0.002	< 0.002
Notes:																	

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 2 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-10-II

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Office	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	249	258	269	247	262	261	253	256	270	247	255	271	279	268	240
Chloride	mg/L	250 AO ⁽³⁾	2.06	2.37	2.43	2.14	2.78	2.73	2.38	2.38	2.65	2.14	1.67	2.05	2.15	2.21	1.84
Dissolved Organic Carbon	mg/L	5 AO	2.1	1.7	2.2	2.0	3.0	2.3	2.2	2.9	3.5	1.9	2.4	2.9	2.6	3.2	2.9
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	< 0.05	<0.25	<0.10	<0.10	<0.25	<0.25	<0.25	<0.10	<0.25	<0.25	<0.05	<0.10	<0.05	0.09	<0.10
Sulphate	mg/L	500 AO	142	218	162	126	135	200	147	191	177	150	199	184	135	187	177
Hardness	mg/L	80-100 OG	393	499	409	363	384	485	370	436	447	362	414	441	376	450	447
Nitrate	mg/L	10 MAC	<0.05	<0.25	<0.10	<0.10	<0.25	<0.25	<0.25	<0.10	<0.25	<0.25	<0.05	<0.10	<0.05	0.06	<0.10
Nitrite	mg/L	1 MAC	<0.05	<0.25	<0.10	<0.10	<0.25	<0.25	<0.25	<0.10	<0.25	<0.25	<0.05	<0.10	<0.05	< 0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.48	<0.10	<0.10	0.12	0.16	0.10	0.23	0.70	0.32	<0.10	<0.10	0.29	<0.10	0.13	0.23
Orthophosphate	mg/L		<0.10	<0.50	<0.20	<0.20	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.10	<0.20	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.16	8.00	7.73	8.10	8.03	7.93	7.96	7.81	8.20	8.14	8.18	8.05	7.78	7.94	7.76
Electrical Conductivity	μS/cm		716	863	814	715	744	871	655	836	853	684	799	818	694	815	791
Total Ammonia	mg/L		0.04	0.07	0.1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	0.04
Total Dissolved Solids	mg/L	500 AO	436	602	508	426	426	546	414	504	530	418	512	522	450	504	596
Total Kjeldahl Nitrogen (TKN)	mg/L		0.52	<0.10	0.16	0.12	0.16	0.10	0.23	0.70	0.32	<0.10	<0.10	0.33	<0.10	0.13	0.27
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	<0.004	<0.004	<0.004	0.007	0.015	0.010	0.010	0.005	0.026	0.005	<0.004	<0.004	0.004
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.017	0.020	0.019	0.014	0.029	0.022	0.019	0.021	0.028	0.017	0.019	0.021	0.016	0.021	0.025
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	0.023	0.033	0.029	0.016	0.141	0.026	0.021	0.025	0.037	0.019	0.03	0.031	0.018	0.054	0.030
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		122	154	126	113	100	150	115	135	138	112	127	135	117	139	138
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	0.112	<0.010	<0.010	<0.010	0.501	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		21.5	27.9	22.9	19.7	32.5	26.8	20.2	24.1	24.9	19.9	23.5	25.3	20.4	25.1	24.8
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002	0.021	<0.002	0.002	0.010	0.149	<0.002	0.005	0.008	<0.002	<0.002	<0.002
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	0.006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		0.96	1.71	1.18	1.04	4.35	1.78	1.07	1.17	1.75	0.87	1.02	1.4	0.85	1.36	1.22
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		1.97	2.03	2.04	2.13	2.82	2.33	1.88	2.12	2.24	2.11	2.3	2.29	1.79	2.30	2.57
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	2.4	2.18	2.25	2.21	4.30	2.27	2.51	2.20	2.25	2.17	1.99	2.22	1.99	2.14	2.25
Strontium	mg/L		0.167	0.212	0.181	0.138	0.943	0.209	0.147	0.193	0.219	0.159	0.19	0.201	0.145	0.208	0.205
Sulphur	mg/L		41.7	73.0	60	44.8	43.9	71.3	39.0	59.8	58.7	49.0	62.5	60.6	44.9	55.1	63.6
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	0.002	0.002	0.004	<0.002	0.002	0.004	0.003	0.004	<0.002	0.003	0.002	0.003
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium 	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.018	0.006	0.005	<0.005	<0.005	<0.005	0.006	0.011	0.005	<0.005	0.009	0.006	<0.005	0.006	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 3 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-10-II

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Ullits	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	242	233	240	244	267	308	262	301	293	280	DRY	257	274	257	288
Chloride	mg/L	250 AO ⁽³⁾	1.69	2.64	1.64	1.56	1.64	1.44	1.54	1.37	1.55	< 1		< 1	1	2	2
Dissolved Organic Carbon	mg/L	5 AO	2.7	2.8	2.1	2.0	2.5	3.8	2.8	4.1	4.0	2.7		5.0	2.0	2.7	2.0
Fluoride	mg/L	1.5 MAC (4)	<0.10	<0.25	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.06		0.07	0.07	< 0.06	0.07
Sulphate	mg/L	500 AO	120	187	231	135	154	110	132	109	143	95		78	110	160	110
Hardness	mg/L	80-100 OG	348	428	453	384	365	362	333	382	422	422		328	407	426	444
Nitrate	mg/L	10 MAC	<0.10	<0.25	<0.25	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	< 0.06		< 0.06	0.06	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.10	<0.25	<0.25	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.14	0.17	<0.10	0.18	0.18	0.17	0.17	0.24	0.39	< 0.5		0.07	0.06	0.12	0.36
Orthophosphate	mg/L		<0.20	<0.50	<0.50	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.83	7.57	7.57	7.65	7.82	7.62	7.69	7.73	7.69	8.16		8.08	8.09	8.17	8.00
Electrical Conductivity	μS/cm		640	819	907	750	642	614	692	714	772	638		601	678	755	724
Total Ammonia	mg/L		<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05		0.07	< 0.04	0.05	< 0.04
Total Dissolved Solids	mg/L	500 AO	380	508	558	444	478	450	422	486	550	409		377	489	563	503
Total Kjeldahl Nitrogen (TKN)	mg/L		0.14	0.19	<0.10	0.18	0.18	0.17	0.17	0.24	0.39	< 0.5		0.14	0.09	0.17	0.38
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.03		< 0.03	< 0.03	< 0.03	< 0.003
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.007	0.007	0.020	0.014	0.040	0.112	0.019	0.014	0.015		0.005	0.003	0.001	0.001
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002		< 0.0002	< 0.0002	0.0003	< 0.0002
Barium	mg/L	1 MAC	0.016	0.019	0.024	0.022	0.017	0.015	0.013	0.019	0.022	0.0197		0.0172	0.0174	0.0206	0.019
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007		< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.012	0.045	0.054	0.030	0.074	0.033	0.025	0.051	0.064	0.050		0.048	0.021	0.024	0.03
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000003		< 0.000003	< 0.000003	< 0.000003	< 0.000003
Calcium	mg/L		109	132	140	119	113	113	102	118	130	138		102	127	130	138
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00029		0.00029	0.00014	0.00056	< 0.00008
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000038		0.000054	0.000043	0.000068	0.000105
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0013		0.0004	0.0015	0.0008	0.0014
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	<0.010	0.152	0.016	0.013	<0.010	0.013		< 0.007	< 0.007	0.066	0.073
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009		< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		18.5	24.0	25.0	21.0	20.2	19.4	19.1	21.3	23.7	18.8		17.7	22.0	24.8	24.3
Manganese	mg/L	0.05 AO	<0.002	0.003	0.004	<0.002	0.006	0.061	<0.002	0.003	0.002	0.00059		0.00104	0.00159	0.00931	0.0179
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00016		0.00017	0.00016	0.00024	0.00017
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0006		0.0006	0.0007	0.0008	0.0007
Potassium	mg/L		0.88	1.19	1.18	0.88	0.93	0.92	1.01	1.15	1.09	1.14		0.96	1.09	1.19	1.03
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.00009		0.00009	0.0001	0.00009	0.00005
Silicon	mg/L		2.51	0.94	2.17	2.08	2.39	2.1	1.87	3.08	2.67	2.78		2.68	2.42	2.43	2.32
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	2.06	2.14	2.17	2.04	1.79	2.01	1.82	2.15	1.99	1.94		1.86	1.96	1.86	2.32
Strontium	mg/L		0.151	0.198	0.214	0.158	0.179	0.159	0.128	0.185	0.213	0.156		0.154	0.178	0.214	0.219
Sulphur	mg/L		40.6	61.1	69.5	42.0	41.9	42.7	41.3	35.3	42.7	43		26	41	56	44
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005		< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006		< 0.00006	< 0.00006	0.00038	< 0.00006
Titanium	mg/L		0.002	0.002	0.003	0.003	<0.002	<0.002	0.01	0.002	<0.002	0.00051		0.00019	0.00009	0.00008	< 0.00007
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000188		0.000211	0.000242	0.000256	0.000247
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00012		0.00007	0.00005	0.00011	0.00006
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	0.007	<0.005	<0.005	<0.005	< 0.002		0.006	0.002	< 0.002	< 0.002

- Notes:
 (1) MECP Ontario Drinking Water Standards.
- (2) Operational Guideline (OG) within ODWS.
- (3) Aesthetic Objective (AO) within ODWS.
- (4) Maximum Acceptable Concentration (MAC) within ODWS.
- (5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
- (6) ODWS exceedances indicated by **bold** entries.

Page 4 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-10-III

Parameters	He!t-	- During (1)	2017		2018			2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS (1)	Sept	May	July	Oct	Мау	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	231	228	196	183	200	195	196	207	212	237	210	205	202	213	197	211	201	197	204
Chloride	mg/L	250 AO ⁽³⁾	8.69	1.08	1.10	0.90	0.98	0.89	0.78	0.94	0.96	0.86	1.04	0.91	1.01	< 1	< 1	< 1	< 1	< 1	< 1
Dissolved Organic Carbon	mg/L	5 AO	8.6	0.9	2.1	2.0	1.7	1.3	0.5	1.7	1.3	1.8	1.3	1.7	1.5	1.1	1.0	2.0	< 1	< 1	1
Fluoride	mg/L	1.5 MAC (4)	0.42	0.75	0.54	0.47	0.48	0.48	0.29	0.54	0.57	0.52	0.51	0.44	0.56	0.58	0.58	0.54	0.54	0.59	0.57
Sulphate	mg/L	500 AO	177	82.1	80.2	81.8	88.3	83.7	83.4	80.5	81.9	81.8	82.2	83.8	83.9	83	84	81	81	87	84
Hardness	mg/L	80-100 OG	267	208	200	201	208	197	190	207	180	186	192	190	219	227	195	209	216	205	228
Nitrate	mg/L	10 MAC	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.06	< 0.06	0.06	< 0.06	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.26	0.10	<0.10	0.16	0.21	0.14	<0.10	0.23	<0.10	0.18	0.35	<0.10	0.14	< 0.5	< 0.5	0.06	< 0.05	< 0.05	0.18
Orthophosphate	mg/L		<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	8.22	8.00	8.08	7.94	7.82	7.93	7.78	7.86	7.98	7.62	7.84	8.04	7.98	8.22	8.21	8.14	8.14	8.45	8.21
Electrical Conductivity	μS/cm		813	546	538	528	528	577	602	596	478	461	532	534	536	531	538	534	530	537	533
Total Ammonia	mg/L		0.07	0.05	0.04	0.08	0.04	0.08	0.05	<0.02	0.03	0.03	0.03	0.04	<0.02	0.06	0.15	< 0.04	0.06	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	432	294	302	310	276	286	296	302	298	294	310	328	296	300	340	294	340	309	343
Total Kjeldahl Nitrogen (TKN)	mg/L		0.33	0.15	<0.10	0.24	0.25	0.22	<0.10	0.23	<0.10	0.21	0.38	<0.10	0.14	< 0.5	0.28	0.08	0.05	0.07	0.20
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	0.138	<0.050	0.159	0.06	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003
Metals																					
Aluminum	mg/L	0.1 OG	0.009	0.007	0.005	0.011	<0.004	0.006	0.013	0.019	0.016	0.033	0.041	0.019	0.680	0.004	0.009	0.004	0.002	0.050	0.002
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002	0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Barium	mg/L	1 MAC	0.046	0.026	0.024	0.029	0.038	0.021	0.023	0.026	0.019	0.018	0.017	0.019	0.031	0.0273	0.0255	0.0213	0.0214	0.0216	0.0210
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.24	0.262	0.251	0.277	0.249	0.060	0.242	0.259	0.330	0.249	0.194	0.262	0.249	0.364	0.257	0.243	0.208	0.221	0.265
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	< 0.000003	< 0.000003	0.000008	< 0.000003	< 0.000003	< 0.000003
Calcium	mg/L		63.9	48.8	47.2	47.7	50.0	46.6	45.0	49.0	42.3	44.3	44.3	44.1	53.4	58.6	46.2	51.2	54.5	49.3	54.8
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	0.007	0.00021	0.00014	0.00022	0.00017	0.00047	< 0.00008
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.00022	0.00031	0.000244	0.000263	0.000335	0.000181
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	0.0016	0.0003	< 0.0002	0.0009	0.0008	0.0008
Iron	mg/L	0.3 AO	0.04	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.022	0.017	0.033	0.043	0.021	1.61	0.016	0.033	< 0.007	0.021	0.076	< 0.007
Lead	mg/L	0.01 MAC	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		26.2	20.8	20.0	19.8	20.1	19.5	18.9	20.6	18.0	18.2	19.8	19.4	20.7	19.7	19.3	19.8	19.3	19.9	22.2
Manganese	mg/L	0.05 AO	0.137	0.036	0.026	0.041	0.048	0.027	0.029	0.026	0.020	0.023	0.015	0.023	0.111	0.0218	0.0316	0.0213	0.0217	0.0291	0.0274
Molybdenum	mg/L		0.074	<0.002	<0.002	<0.002	0.008	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00039	0.00081	0.00051	0.00027	0.00019	0.00047
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.01	<0.003	<0.003	<0.003	<0.003	<0.003	0.0003	0.0005	0.0004	0.0003	0.0005	0.0005
Potassium	mg/L		7.73	5.82	5.36	6.33	6.95	5.45	5.66	6.16	4.94	5.16	5.51	5.37	5.63	6.92	5.51	5.79	6.03	5.88	6.24
Selenium	mg/L		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.00004	< 0.00004	0.00011	< 0.00004	< 0.00004	< 0.00004
Silicon	mg/L		4.35	2.79	3.08	2.71	3.57	2.17	2.94	2.03	2.96	2.93	1.98	2.93	3.43	3.99	2.86	3.23	3.17	3.22	2.84
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	47.5	36.4	34.0	36.2	36.1	35.2	35.8	36.1	32.2	33.9	34.8	34.4	34.6	35.9	34.7	35.0	36.7	34.3	39.3
Strontium	mg/L		2.25	1.65	1.74	1.84	1.69	1.76	1.80	1.8	1.81	1.74	1.22	1.79	1.84	1.97	1.72	1.82	1.98	1.92	2.1
Sulphur	mg/L		57	27.3	25.3	30.5	27.2	27.9	27.0	26.0	24.2	35.5	26.4	27.8	24.7	38	28	28	28	29	30
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00008	0.00009	0.00007	< 0.00006	0.00012	< 0.00006
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.009	0.00009	0.00025	0.00019	< 0.00007	0.00185	< 0.00007
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000047	0.000058	0.000048	0.000044	0.000033	0.000035
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	0.00051	0.00039	0.00008	0.00013	0.00024	0.00013
Zinc	mg/L	5 AO	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.013	0.002	< 0.002	0.006	0.002	< 0.002	< 0.002
<u></u>		J																			

Notes:
(1) MECP Ontario Drinking Water Standards.

(1) MECP Ontain Drinking water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by **bold** entries.

WSP Project No.: TY131010 Page 5 of 55

Groundwater Geochemical Results OW-13-I

Parameters	Huita	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	Мау	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG (2)	363	364	363	328	374	360	393	386	Insufficient	387	323	379	365	363	330
Chloride	mg/L	250 AO ⁽³⁾	3.49	3.49	3.69	3.35	3.28	3.29	3.67	4.34	volume	2.72	2.52	3.36	2.85	2.85	2.83
Dissolved Organic Carbon	mg/L	5 AO	3.3	1.5	1.3	1.9	2.0	1.5	1.4	3.2	to sample	1.1	1.9	2.0	1.7	2.4	2.0
Fluoride	mg/L	1.5 MAC (4)	<0.10	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25		<0.25	<0.25	<0.10	<0.25	0.27	<0.25
Sulphate	mg/L	500 AO	101	113	102	96.9	104	107	125	108		115	102	111	107	98.6	107
Hardness	mg/L	80-100 OG	474	487	445	396	470	440	480	456		452	445	508	414	454	459
Nitrate	mg/L	10 MAC	<0.10	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25		<0.25	<0.25	0.13	<0.25	0.13	0.26
Nitrite	mg/L	1 MAC	<0.10	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25		<0.25	<0.25	<0.10	<0.25	<0.05	<0.25
Organic Nitrogen	mg/L	0.15 OG	0.68	<0.10	0.13	0.39	0.39	0.14	0.15	0.72		<0.10	<0.10	0.52	0.31	0.20	<0.10
Orthophosphate	mg/L		<0.20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.20	<0.50	<0.10	<0.50
рН	pH Units	6.5-8.5 OG	8.02	8.05	7.80	7.99	8.05	7.93	7.97	7.92		8.17	8.06	8.02	7.87	7.92	7.79
Electrical Conductivity	μS/cm		814	880	878	805	885	859	833	902		845	748	880	772	853	822
Total Ammonia	mg/L		0.06	0.42	0.03	<0.02	<0.02	<0.02	<0.02	0.06		<0.02	<0.02	0.06	<0.02	<0.02	0.04
Total Dissolved Solids	mg/L	500 AO	508	558	510	488	498	498	494	538		498	514	486	472	436	582
Total Kjeldahl Nitrogen (TKN)	mg/L		0.74	0.47	0.16	0.39	0.39	0.14	0.15	0.78		<0.10	<0.10	0.58	0.31	0.20	0.10
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	0.005	<0.004	<0.004	0.004	<0.004	<0.004	0.009	<0.004		800.0	0.004	0.006	0.007	<0.004	<0.004
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.04	0.038	0.035	0.039	0.039	0.040	0.041	0.040		0.043	0.039	0.039	0.037	0.037	0.044
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.114	0.099	0.114	0.107	0.108	0.104	0.135	0.103		0.114	0.111	0.13	0.123	0.119	0.116
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		121	126	115	96.1	121	111	124	119		116	113	132	101	118	119
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.016		<0.003	<0.003	<0.003	0.071	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	0.197	<0.010	0.139	<0.010		<0.010	0.014	0.053	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.004	<0.001	<0.001
Magnesium	mg/L		41.7	41.9	38.4	38.0	40.7	39.6	41.3	38.5		39.5	39.5	43.4	39.2	38.8	39.3
Manganese	mg/L	0.05 AO	0.003	<0.002	<0.002	<0.002	0.012	<0.002	0.018	0.002		0.005	0.003	0.009	0.009	<0.002	<0.002
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	0.003	0.006	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		5.96	6.09	5.63	5.49	5.70	5.77	5.98	6.25		5.65	5.5	6.08	5.34	5.74	5.77
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		5.43	4.53	4.57	5.08	4.54	4.85	4.76	4.45		5.11	5.01	4.69	3.64	5.52	5.27
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	2.74	2.58	2.53	2.66	2.58	2.49	2.62	2.77		2.36	2.39	3.03	2.51	2.55	2.69
Strontium	mg/L		0.657	0.625	0.526	0.574	0.657	0.6	0.633	0.609		0.627	0.652	0.64	0.575	0.638	0.638
Sulphur	mg/L		29.7	38.0	33.5	34.7	35.1	37.4	32.5	33.2		35.2	35.0	33.2	33.0	32.7	38.5
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	0.003		0.002	0.002	<0.002	0.002	<0.002	0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.008	0.007	0.006	0.007	0.007	<0.005	0.011	0.008		<0.005	0.007	<0.005	0.086	<0.005	0.007

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 6 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-13-I

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	386	332	345	379	376	407	Insufficient	256	368	115	356	376	376	383	394
Chloride	mg/L	250 AO ⁽³⁾	3.06	3.24	2.30	2.42	2.36	2.05	volume	2.07	2.63	1	< 1	1	2	2	2
Dissolved Organic Carbon	mg/L	5 AO	1.6	2.0	1.6	1.7	2.1	2.8	to sample	3.0	1.8	3.1	2.0	2.0	8.0	4.3	2.0
Fluoride	mg/L	1.5 MAC (4)	<0.25	<0.25	<0.25	<0.05	<0.05	< 0.05		0.22	< 0.05	0.18	0.24	0.21	0.24	0.27	0.24
Sulphate	mg/L	500 AO	93.6	92.7	111	113	96.6	90.6		99	99.2	99	100	90	96	85	77
Hardness	mg/L	80-100 OG	432	452	447	471	421	425		434	437	532	459	495	506	468	505
Nitrate	mg/L	10 MAC	<0.25	0.38	<0.25	<0.25	0.10	0.12		0.21	<0.05	0.06	0.17	< 0.06	< 0.06	0.24	0.24
Nitrite	mg/L	1 MAC	<0.25	<0.25	<0.25	<0.25	<0.10	<0.10		<0.05	0.19	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	0.30	0.16	0.16	0.13	0.16		0.25	0.12	< 0.5	< 0.5	< 0.05	1.52	0.49	0.21
Orthophosphate	mg/L		<0.50	<0.50	<0.50	<0.50	<0.20	<0.20		<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.76	7.82	7.72	7.84	7.89	7.87		8.01	7.76	8.21	8.13	8.04	8.13	7.94	8.00
Electrical Conductivity	μS/cm		814	852	919	954	725	720		596	821	20	818	837	822	840	819
Total Ammonia	mg/L		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		0.1	<0.02	0.05	< 0.04	0.04	0.14	2.43	0.41
Total Dissolved Solids	mg/L	500 AO	392	436	512	534	492	360		536	518	457	480	500	540	526	520
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.30	0.16	0.16	0.13	0.16		0.35	0.12	< 0.5	0.05	0.05	1.66	2.92	0.62
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050		<0.050	<0.050	< 0.03	< 0.03	< 0.03	0.27	0.05	< 0.003
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.006	0.007	0.021	0.015	0.049		0.012	<0.004	0.004	< 0.001	0.003	0.002	0.004	0.001
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	<0.003	< 0.0002	< 0.0002	< 0.0002	0.0009	0.0008	< 0.0002
Barium	mg/L	1 MAC	0.040	0.035	0.038	0.046	0.034	0.033		0.036	0.04	0.0445	0.0398	0.0472	0.0371	0.0378	0.0397
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	0.118	0.126	0.122	0.131	0.181	0.110		0.13	0.132	0.183	0.136	0.100	0.125	0.096	0.122
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	0.000007	0.000011	0.000004	0.000007	0.000004	< 0.000003
Calcium	mg/L		110	116	117	121	108	111		110	112	146	120	129	133	120	131
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	<0.003	0.00022	0.00023	0.00022	0.00017	0.00053	0.00010
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	0.000194	0.000045	0.000031	0.000803	0.00035	0.00104
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	0.004	<0.003	<0.003		0.005	<0.003	0.0005	0.0008	0.0006	0.0047	0.001	0.001
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	0.022	<0.010	<0.010		0.028	<0.010	0.012	< 0.007	0.009	0.221	0.555	< 0.007
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		38.2	39.5	37.7	41.1	36.8	35.8		38.6	38.1	40.6	38.8	42.3	42.4	40.7	43.5
Manganese	mg/L	0.05 AO	0.007	0.002	<0.002	0.012	<0.002	<0.002		0.003	<0.002	0.0149	0.00183	0.00196	0.0378	0.0387	0.0375
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	0.00148	0.00078	0.0008	0.00255	0.00119	0.00059
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	<0.003	0.0009	0.0008	0.0009	0.0039	0.0012	0.0013
Potassium	mg/L		5.47	5.75	5.81	5.41	5.01	4.9		5.57	5.31	7.03	5.62	6.14	12.2	6.74	6.23
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004		<0.004	<0.004	< 0.00004	< 0.00004	0.00007	0.00009	0.00035	< 0.00004
Silicon	mg/L		5.41	3.84	4.61	5.28	5.34	4.49		5.08	5.23	6.58	5.72	5.56	5.45	5.32	5.24
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	2.50	2.52	2.50	2.29	2.15	2.22		2.38	2.17	2.59	2.30	2.36	3.08	2.48	3.03
Strontium	mg/L		0.614	0.645	0.631	0.645	0.625	0.55		0.661	0.655	0.724	0.601	0.676	0.685	0.648	0.683
Sulphur	mg/L		34.6	33.2	36.4	35	29.8	32.1		33.5	29.4	44	36	38	38	34	27
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	0.000017	0.000021	0.000009	0.000008	< 0.000005	0.000031
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	< 0.00006	0.00011	0.00009	0.00009	0.00013	< 0.00006
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	0.00013	0.00006	0.00018	0.00042	0.00037	0.0001
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	0.000518	0.000606	0.000526	0.0008	0.000622	0.000379
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	0.00015	0.00012	0.0001	0.00094	0.0009	0.00014
Zinc	mg/L	5 AO	<0.005	0.007	0.007	<0.005	<0.005	<0.005		800.0	<0.005	< 0.002	0.003	0.008	0.007	0.004	< 0.002

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 7 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-1R-I

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG (2)	908	951	917	951	912	670	899	986	948	899	965	956	1060	917	876
Chloride	mg/L	250 AO ⁽³⁾	245	261	228	274	268	173	254	247	250	245	248	253	259	222	210
Dissolved Organic Carbon	mg/L	5 AO	19.1	22.0	21.1	23.2	19.6	14.3	21.5	21.5	10.4	17.8	27.5	23.5	23.5	24.8	23.8
Fluoride	mg/L	1.5 MAC (4)	<0.5	<1.0	<0.25	<0.5	<1.0	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5	<0.5	<0.25	<0.5	<1.0
Sulphate	mg/L	500 AO	244	257	240	207	206	162	177	192	194	169	145	165	154	139	135
Hardness	mg/L	80-100 OG	972	910	774	885	980	676	806	933	857	859	876	825	886	809	834
Nitrate	mg/L	10 MAC	<0.5	<1.0	1.0	<0.5	<1.0	0.6	1.3	<1.0	<1.0	1.2	<0.5	<0.5	0.36	<0.5	<1.0
Nitrite	mg/L	1 MAC	<0.5	<1.0	<0.25	<0.5	<1.0	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5	<0.5	<0.25	<0.5	<1.0
Organic Nitrogen	mg/L	0.15 OG	0.9	1.6	1.5	2.3	5.2	2.59	2.0	<0.10	3.0	3.1	<0.10	3.3	0.4	0.4	1.2
Orthophosphate	mg/L		<1.0	<2.0	<0.50	<1.0	<2.0	<1.0	<1.0	<2.0	<2.0	<1.0	<1.0	<1.0	<0.50	<1.0	<2.0
рН	pH Units	6.5-8.5 OG	7.82	7.67	7.3	7.6	7.97	7.98	7.81	7.72	7.66	7.99	8.01	7.84	7.9	7.85	7.72
Electrical Conductivity	μS/cm		2620	2780	2730	2850	2730	2040	2280	2810	2730	2420	2610	2520	2550	2510	2470
Total Ammonia	mg/L		13	15.5	13	12	12	6.39	14.7	13.4	12.7	15.9	16.6	12.4	15.2	16.4	16.0
Total Dissolved Solids	mg/L	500 AO	1510	1660	1600	1630	1450	1180	1340	1580	1520	1400	1550	1400	1500	1380	1570
Total Kjeldahl Nitrogen (TKN)	mg/L		13.9	17.1	14.5	14.3	17.2	8.98	16.7	13.4	15.7	19	16.6	15.7	15.6	16.8	17.2
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	<0.004	<0.004	0.004	0.006	0.014	0.011	0.015	0.005	0.008	0.008	<0.004	<0.004	<0.004
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.072	0.07	0.062	0.079	0.070	0.067	0.057	0.073	0.079	0.079	0.079	0.082	0.074	0.080	0.082
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	1.26	1.79	1.55	1.67	1.53	1.21	1.62	1.57	1.97	1.43	1.70	1.63	1.50	1.46	1.82
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		188	178	146	163	188	132	148	179	162	161	161	164	165	151	156
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	0.008	0.006	<0.003	0.005	0.003	0.007	0.011	0.01	<0.003	0.012	0.005	0.014
Cobalt	mg/L		0.005	0.007	0.004	0.005	0.005	0.003	0.007	0.005	0.007	0.004	0.006	0.005	0.006	0.006	0.005
Copper	mg/L	1 AO	0.004	0.004	<0.003	0.003	0.005	0.003	0.004	<0.003	<0.003	0.005	0.009	0.004	0.009	0.011	0.009
Iron	mg/L	0.3 AO	<0.010	0.021	0.125	0.157	<0.010	<0.010	0.084	0.080	0.172	<0.010	<0.010	0.012	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		122	113.0	99.4	116	124	84	106	118	110	111	115	101	115	105	108
Manganese	mg/L	0.05 AO	0.686	0.728	0.569	0.788	0.64	0.429	0.736	0.644	0.712	0.51	0.632	0.533	0.581	0.60	0.504
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		0.033	0.043	0.027	0.043	0.036	0.03	0.039	0.036	0.045	0.033	0.048	0.037	0.043	0.045	0.045
Potassium	mg/L		89.8	89.6	80.2	78.9	89.6	56.8	83.4	87.6	100	77.3	91	81.9	80.3	88.2	97.0
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.010	0.01	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		7.14	7.68	6.07	8.14	6.01	6.19	6.44	6.15	7.70	8.1	8.94	7.57	5.42	7.92	8.33
Silver	mg/L	200 : 5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	187	179	168	187	186	127	173	196	190	160	176	158	170	166	178
Strontium	mg/L		2.05	2.13	1.57	2.25	2.12	2.69	1.07	2.80	1.80	2.31	1.95	1.83	1.41	1.65	1.57
Sulphur	mg/L		75.6	87.1	76.4	88.9	66.8	60.4	46.6	60.5	57.6	55.5	52.9	46.1	50.3	46.1	50.4
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L	0.000	0.002	0.002	<0.002	0.004	0.003	0.004	0.003	<0.002	0.004	0.003	0.003	<0.002	0.003	<0.002	0.002
Uranium	mg/L	0.02 MAC	0.002	0.003	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.007	0.007	<0.005	0.006	0.007	0.006	0.007	0.006	0.007	<0.005	0.012	0.005	0.005	<0.005	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 8 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-1R-I

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Offics	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	956	929	988	1000	979	1060	1080	1030	1010	1100	1050	1040	975	928	1090
Chloride	mg/L	250 AO ⁽³⁾	192	178	209	221	278	208	218	202	193	210	180	230	280	240	240
Dissolved Organic Carbon	mg/L	5 AO	21.7	21.9	20.5	23.7	23.8	26.2	28.5	31.4	26.1	25.1	24.0	24.0	22.0	29.0	23.0
Fluoride	mg/L	1.5 MAC (4)	<1.0	<1.0	<1.0	<0.13	<0.07	<0.07	<0.05	<0.05	<0.05	0.14	0.17	0.16	0.13	0.15	0.18
Sulphate	mg/L	500 AO	153	159	172	156	179	133	122	123	111	95	92	110	98	110	100
Hardness	mg/L	80-100 OG	848	841	869	872	789	800	158	819	796	860	719	777	832	851	905
Nitrate	mg/L	10 MAC	<1.0	<1.0	<1.0	<1.0	<0.5	<0.5	<0.14	<0.14	<0.14	0.64	< 0.06	0.46	0.30	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<1.0	<1.0	<1.0	<1.0	<0.5	<0.5	<0.11	<0.11	3.2	0.06	0.07	0.12	< 0.3	< 0.3	< 0.03
Organic Nitrogen	mg/L	0.15 OG	4.5	3.2	3.7	3.8	1.6	2.1	1.6	0.8	4.3	1.6	1.7	9.6	0.46	1.97	1.90
Orthophosphate	mg/L		<2.0	<2.0	<2.0	<2.0	<1.0	<1.0	<0.26	<0.26	<0.26						0.06
рН	pH Units	6.5-8.5 OG	7.72	7.18	7.57	7.72	7.63	7.73	7.44	7.44	7.34	7.95	7.76	7.87	7.84	8.14	7.84
Electrical Conductivity	μS/cm		2450	2760	2910	2910	2250	2190	2670	2520	2430	2450	2610	2530	2500	2300	2620
Total Ammonia	mg/L		12.6	23.3	16.5	15.9	16.9	18.2	22.8	20.6	17.3	29.8	29.8	28.4	30.7	33.3	32.4
Total Dissolved Solids	mg/L	500 AO	1300	1400	1450	1510	1510	1420	1520	1470	1440	1400	1460	1260	1480	1540	1510
Total Kjeldahl Nitrogen (TKN)	mg/L		17.1	26.5	20.2	19.7	18.5	20.3	24.4	21.4	21.6	31.5	31.5	38	31.2	35.2	34.3
Total Phosphorus	mg/L		< 0.05	0.06	<0.05	<0.050	<0.050	<0.050	0.076	<0.050	<0.050	0.21	< 0.03	0.12	0.04	< 0.03	0.01
Metals																	
Aluminum	mg/L	0.1 OG	0.010	0.011	0.015	0.005	0.020	0.027	0.041	0.020	0.011	0.068	0.123	0.132	0.009	0.003	0.004
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	0.0005	0.0005	0.0011	0.0014	0.001	0.0007
Barium	mg/L	1 MAC	0.083	0.111	0.097	0.10	0.076	0.081	0.12	0.080	0.097	0.114	0.113	0.113	0.103	0.124	0.135
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.001	<0.001	0.000017	0.000017	0.000023	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	1.76	1.51	1.93	1.85	2.65	1.99	2.93	2.12	1.9	2.71	2.12	2.03	1.47	1.87	2.12
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00001	0.000009	0.000012	0.000013	0.000004	0.00001
Calcium	mg/L		163	157	165	158	146	152	27.9	145	144	174	122	144	155	147	164
Chromium	mg/L	0.05 MAC	0.012	0.004	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	0.00124	0.00103	0.0012	0.0009	0.00083	0.00131
Cobalt	mg/L		0.006	0.011	0.010	0.008	0.006	0.006	0.008	0.004	0.007	0.0103	0.0102	0.00989	0.0104	0.00966	0.00941
Copper	mg/L	1 AO	0.009	0.005	<0.003	<0.003	<0.003	<0.003	0.015	0.010	<0.003	0.0103	0.0053	0.0037	0.0017	0.002	0.0038
Iron	mg/L	0.3 AO	<0.010	0.350	0.093	0.453	0.306	0.112	0.188	0.041	0.032	0.235	0.271	2.71	0.862	0.329	0.156
Lead	mg/L	0.01 MAC	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00034	0.00052	0.00071	0.00023	0.0002	0.00028
Magnesium	mg/L		107	109	111	116	103	102	21.4	111	106	103	101	101	108	118	120
Manganese	mg/L	0.05 AO	0.729	1.51	0.813	0.700	0.598	0.559	0.774	0.581	0.547	1.13	0.874	0.798	0.972	0.877	0.935
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00083	0.00104	0.00101	0.00094	0.00095	0.00106
Nickel	mg/L		0.044	0.053	0.052	0.046	0.045	0.046	0.058	0.045	0.051	0.0557	0.0559	0.0525	0.0578	0.0569	0.0571
Potassium	mg/L		93.2	112	109	102	84.4	82	18.5	95.3	94	141	127	108	127	124	131
Selenium	mg/L	0.05 MAC	<0.004	0.011	0.013	0.006	0.006	<0.004	<0.004	<0.004	0.009	0.0003	0.00028	0.00027	0.00032	0.00037	0.00022
Silicon	mg/L		8.42	7.61	7.64	7.78	8.96	7.06	7.92	7.25	8.09	9.63	9.52	10.1	8.57	7.73	7.47
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	165	173	188	182	160	163	35.6	177	169	169	164	155	181	187	192
Strontium	mg/L		1.23	0.927	1.36	1.4	1.58	1.73	1.58	1.53	1.86	1.12	1.07	1.65	1.09	1.67	1.84
Sulphur	mg/L		54.3	52.9	60.8	51.2	43.0	46.5	8.37	43.0	36	47	36	38	38	40	42
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.000314	0.000306	0.000181	0.000323	0.000132	0.000246
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00032	0.00027	0.00036	0.0003	0.00063	0.00035
Titanium	mg/L		0.003	<0.002	0.002	<0.002	0.002	<0.002	0.010	<0.002	<0.002	0.00161	0.00333	0.00401	0.00047	0.00021	0.00016
Uranium	mg/L	0.02 MAC	0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0015	0.00202	0.00187	0.00188	0.00187	0.00198
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00043	0.00037	0.00045	0.0004	0.00034	0.00025
Zinc	mg/L	5 AO	<0.005	<0.005	0.007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.002	< 0.002	0.006	0.006	0.002	0.003

(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 9 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-1R-III

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	820	977	882	764	976	978	876	1010	1010	898	959	1040	873	919	922
Chloride	mg/L	250 AO ⁽³⁾	163	261	215	164	271	277	176	235	311	158	218	220	135	202	208
Dissolved Organic Carbon	mg/L	5 AO	15.7	24.8	20.4	16.2	23.7	28.8	17.5	27.8	29.9	16.5	24.6	30.7	19.1	25.0	25.6
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	<0.5	<1.0	<0.25	<0.25	<1.0	<0.25	<0.25	<1.0	<1.0	<0.5	<0.5	<1.0	<0.25	<0.5	<1.0
Sulphate	mg/L	500 AO	235	230	207	131	177	171	202	180	196	127	118	114	97.7	112	113
Hardness	mg/L	80-100 OG	870	898	731	683	927	821	779	894	915	741	802	840	630	773	843
Nitrate	mg/L	10 MAC	0.95	<1.0	1.17	9.87	3.70	7.18	0.66	<1.0	2.4	5.1	<0.5	<1.0	6.48	1.2	3.7
Nitrite	mg/L	1 MAC	<0.5	<1.0	<0.25	<0.25	<1.0	<0.25	<0.25	<1.0	<1.0	1.5	<0.5	<1.0	<0.25	<0.5	<1.0
Organic Nitrogen	mg/L	0.15 OG	1.3	0.2	3.7	1.7	2.9	2.5	1.9	0.3	1.4	0.7	1.3	3.5	1.0	<0.10	0.4
Orthophosphate	mg/L		<1.0	<2.0	<0.50	<0.50	<2.0	<0.50	<0.50	<2.0	<2.0	<1.0	<1.0	<2.0	<0.50	<1.0	<2.0
рН	pH Units	6.5-8.5 OG	7.91	7.72	7.37	7.81	7.87	7.94	7.82	7.63	7.69	8.01	7.99	7.77	7.81	7.90	7.69
Electrical Conductivity	μS/cm		2270	2880	2570	2210	2840	2920	2080	2840	3130	2080	2480	2680	1980	2490	2580
Total Ammonia	mg/L		11.8	17.6	10.3	11.5	14.7	21.1	9.8	17.2	23.4	13.5	16.2	20.3	17.7	22.6	25.3
Total Dissolved Solids	mg/L	500 AO	1370	1650	1530	1160	1540	1610	1230	1600	1700	1170	1410	1390	1120	1370	1620
Total Kjeldahl Nitrogen (TKN)	mg/L		13.1	17.8	14	13.2	17.6	23.6	11.7	17.5	24.8	14.2	17.5	23.8	18.7	22.0	25.7
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.004	0.004	0.014	<0.004	<0.004	0.027	0.035	0.025	0.016	0.015	0.012	0.015	0.118	0.018
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.079	0.103	0.087	0.095	0.099	0.125	0.097	0.121	0.107	0.092	0.104	0.118	0.093	0.122	0.133
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	1.08	1.73	1.37	1.31	1.44	1.52	1.37	1.60	2.21	1.22	1.55	1.56	1.39	1.56	1.94
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		188	175	152	131	190	149	169	180	170	154	153	165	121	145	156
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	0.005	0.007	0.004	0.005	<0.003	0.006	0.007	0.008	<0.003	0.008	0.005	0.008
Cobalt	mg/L		0.006	0.009	0.005	0.005	0.007	0.005	0.006	0.007	0.010	0.006	0.01	0.012	0.007	0.010	0.012
Copper	mg/L	1 AO	0.01	0.012	0.01	0.012	0.01	0.012	0.011	0.009	0.010	0.011	0.006	0.005	0.017	0.020	0.016
Iron	mg/L	0.3 AO	<0.010	0.043	<0.010	<0.010	<0.010	<0.010	<0.010	0.013	0.096	<0.010	0.187	0.172	<0.010	0.05	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	0.003	<0.001
Magnesium	mg/L		97.2	112.0	85.4	86.4	110	109	86.6	108	119	86.5	102	104	79.7	99.7	110
Manganese	mg/L	0.05 AO	1.04	1.22	0.85	0.764	1.09	0.81	0.898	1.08	1.28	0.815	1.28	1.39	0.875	1.23	1.45
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002
Nickel	mg/L		0.03	0.049	0.026	0.033	0.044	0.04	0.032	0.040	0.059	0.035	0.053	0.043	0.042	0.057	0.068
Potassium	mg/L		81.2	101	72.4	78.1	94.9	107	72.3	110	127	77.5	95.2	98.9	72.2	102	112
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		6.58	7.55	5.92	6.43	5.57	6.59	5.84	6.13	8.47	6.57	7.95	6.54	4.24	7.91	6.96
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	150	199	152	155	177	204	142	202	222	147	162	173	127	155	182
Strontium	mg/L		0.985	1.03	0.845	0.802	1.06	1.05	0.876	0.889	1.00	0.846	0.889	0.971	0.623	0.866	1.02
Sulphur	mg/L		70.1	81.0	70.4	50	56.1	56.1	53.9	57.2	63.8	41.8	42.3	36.5	33.1	38.7	43.0
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		0.002	<0.002	<0.002	0.003	0.003	0.005	0.003	<0.002	0.004	0.003	0.003	<0.002	0.002	0.002	0.002
Uranium	mg/L	0.02 MAC	0.002	0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	<0.005	0.006	0.008	0.006	0.006	0.025	0.014	0.008	0.006	0.010	0.011	0.011	0.022	0.014

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 10 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-1R-III

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG (2)	858	956	922	985	898	1060	799	1110	1010	906	975	983	797	1020	1030
Chloride	mg/L	250 AO ⁽³⁾	105	195	191	159	180	154	85.5	180	191	160	200	240	99	250	250
Dissolved Organic Carbon	mg/L	5 AO	10.4	19.1	18.0	21.9	17.9	22.8	14.9	29.8	26.6	20.8	21.0	22.0	18.0	28.3	20.0
Fluoride	mg/L	1.5 MAC (4)	<0.5	<1.0	<1.0	<0.13	<0.07	<0.07	<0.05	<0.05	<0.05	0.08	0.09	0.14	0.08	0.11	0.14
Sulphate	mg/L	500 AO	126	147	213	115	118	92	74.3	92.6	103	94	98	90	91	99	94
Hardness	mg/L	80-100 OG	686	864	887	720	622	740	107	747	729	768	842	788	712	832	896
Nitrate	mg/L	10 MAC	<0.5	<1.0	1.9	<1.0	<0.5	<0.5	3.55	<0.14	<0.14	1.34	1.64	7.67	0.40	< 0.06	0.88
Nitrite	mg/L	1 MAC	<0.5	<1.0	<1.0	<1.0	<0.5	<0.5	0.72	<0.11	3.19	1.13	0.32	0.09	0.11	0.05	0.08
Organic Nitrogen	mg/L	0.15 OG	3.6	0.10	0.7	3.2	1.20	2.2	3.7	37.7	3.8	1.4	< 0.5	6.02	0.86	2.53	2.43
Orthophosphate	mg/L		<1.0	<2.0	<2.0	<2.0	<1.0	<1.0	<0.13	<0.26	1.3						< 0.03
рН	pH Units	6.5-8.5 OG	7.62	7.19	7.47	7.65	7.69	7.69	7.50	7.40	7.37	7.97	7.85	7.89	7.85	7.77	7.89
Electrical Conductivity	μS/cm		2000	2740	2810	2610	1890	2040	1800	2550	2350	1980	2420	2510	1850	2520	2480
Total Ammonia	mg/L		13.8	19.5	15.9	25.3	14.2	18.9	15.5	0.02	23.6	23.2	18.8	26.1	18.1	32.3	29.3
Total Dissolved Solids	mg/L	500 AO	1150	1390	1500	1290	1290	1290	990	1400	1370	1140	1320	1470	1130	1430	1510
Total Kjeldahl Nitrogen (TKN)	mg/L		17.4	19.6	16.6	28.5	15.4	21.1	19.2	37.7	27.4	24.6	18.9	32.2	18.9	34.9	31.7
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.006
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.006	0.009	0.018	0.020	0.024	0.032	0.009	0.004	0.013	0.005	0.003	0.002	0.003	0.005
Arsenic	mg/L	0.01 MAC	<0.003	0.004	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	0.0004	0.0004	0.0004	0.0004	0.0008	0.0004
Barium	mg/L	1 MAC	0.111	0.088	0.171	0.116	0.104	0.114	0.125	0.113	0.115	0.141	0.162	0.138	0.120	0.158	0.168
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	0.000008	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	1.23	1.92	1.63	1.58	1.70	1.37	1.72	2.08	1.9	1.93	1.61	1.51	1.10	1.49	1.74
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000013	0.000029	0.00002	0.000034	0.000083	0.000034
Calcium	mg/L		137	163	187	130	136	164	22.2	131	135	172	188	160	176	166	182
Chromium	mg/L	0.05 MAC	0.012	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.005	0.00085	0.00067	0.00075	0.00057	0.00102	0.00065
Cobalt	mg/L		0.007	0.007	0.011	0.010	0.007	0.009	0.006	0.012	0.012	0.00933	0.0088	0.0113	0.00484	0.0107	0.0103
Copper	mg/L	1 AO	0.012	0.003	0.016	0.016	0.007	0.005	0.013	0.010	0.005	0.011	0.0146	0.0105	0.0088	0.0044	0.0151
Iron	mg/L	0.3 AO	<0.010	0.104	<0.010	<0.010	0.068	0.122	0.011	0.142	0.075	0.017	0.043	0.031	0.013	0.177	0.035
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	0.001	<0.001	0.001	<0.001	0.001	<0.001	0.00042	0.00055	0.00056	0.00030	0.00108	0.00101
Magnesium	mg/L		83.4	111	102	96	68.7	80.2	12.5	102	95.1	82.2	90.9	94.6	66.1	101	107
Manganese	mg/L	0.05 AO	0.984	0.725	1.67	1.43	1.02	1.34	1.11	1.45	1.16	1.54	1.41	1.58	0.905	1.74	1.87
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	0.00076	0.00093	0.00109	0.00077	0.00098	0.00107
Nickel	mg/L		0.041	0.049	0.051	0.062	0.035	0.041	0.035	0.067	0.06	0.0444	0.0436	0.0544	0.0274	0.0505	0.0531
Potassium	mg/L		82.2	101	99.5	109	68.3	75.2	14.5	121	107	108	98.9	101	79.4	112	117
Selenium	mg/L	0.05 MAC	<0.004	0.013	0.013	0.005	<0.004	<0.004	<0.004	<0.004	0.008	0.00027	0.00043	0.0003	0.00038	0.00043	0.00031
Silicon	mg/L		7.36	7.91	6.63	7.15	7.38	6.41	5.76	8.18	8.49	8.84	8.58	8.57	7.42	7.58	7.17
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	134	180	150	156	111	136	19.1	174	157	106	120	145	95.8	147	169
Strontium	mg/L		0.748	1.20	1.05	0.848	0.87	0.9	0.706	0.85	0.905	0.872	1.04	0.983	0.873	1.04	1.14
Sulphur	mg/L		45.5	53.0	76.6	36.3	27.6	33.1	5.05	34.1	29.5	44	33	29	32	36	36
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.000384	0.000476	0.000461	0.000233	0.0006	0.000553
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00017	0.00026	0.00032	0.00012	0.0004	0.00027
Titanium	mg/L		0.002	<0.002	0.003	<0.002	<0.002	<0.002	0.011	<0.002	<0.002	0.00061	0.00026	0.00015	0.00016	0.00027	0.00021
Uranium	mg/L	0.02 MAC	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00103	0.00186	0.00167	0.00139	0.00183	0.00182
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00061	0.00068	0.00049	0.00041	0.00053	0.00078
Zinc	mg/L	5 AO	<0.005	0.005	0.007	<0.005	0.010	0.008	0.012	<0.005	<0.005	0.006	0.003	0.006	0.047	0.005	0.004
		·	·														_

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 11 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-11-I

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	231	235	245	225	228	236	240	250	227	234	243	243	250	228	229
Chloride	mg/L	250 AO ⁽³⁾	7.22	9.65	9.1	8.67	9.88	6.56	7.65	11.6	7.76	4.67	9.71	9.53	9.53	11.6	9.21
Dissolved Organic Carbon	mg/L	5 AO	1.1	2.0	0.7	0.7	1.4	1.1	0.9	1.5	0.8	0.6	1.2	2.1	2.4	1.9	1.2
Fluoride	mg/L	1.5 MAC (4)	0.2	<0.10	0.36	0.33	<0.10	<0.25	<0.10	<0.10	<0.25	<0.25	0.28	0.31	0.47	0.37	0.21
Sulphate	mg/L	500 AO	81.2	58.7	55.7	72.3	71.5	70.3	95.4	68.6	94.3	104	62.5	68.1	74	62.8	48.6
Hardness	mg/L	80-100 OG	279	287	265	265	286	281	282	273	270	273	262	271	252	269	278
Nitrate	mg/L	10 MAC	0.25	0.11	0.25	0.53	0.54	<0.25	0.34	0.19	0.35	0.28	0.14	0.2	0.32	0.22	0.22
Nitrite	mg/L	1 MAC	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.25	<0.10	<0.10	<0.25	<0.25	< 0.05	<0.05	< 0.05	< 0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.48	0.29	0.11	0.17	0.59	0.22	0.29	0.84	0.13	<0.10	<0.10		0.61	0.34	<0.10
Orthophosphate	mg/L		<0.10	<0.20	<0.10	<0.20	<0.20	<0.50	<0.20	<0.20	<0.50	< 0.50	<0.10	<0.10	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.23	8.21	7.95	8.34	8.15	8.07	8.02	8.10	8.32	8.33	8.24	7.71	7.85	8.03	7.93
Electrical Conductivity	μS/cm		594	584	607	599	590	601	590	631	653	615	582	606	601	589	563
Total Ammonia	mg/L		0.04	0.08	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	0.04
Total Dissolved Solids	mg/L	500 AO	320	332	318	-	334	324	336	320	354	342	318		350	318	378
Total Kjeldahl Nitrogen (TKN)	mg/L		0.52	0.37	0.14	0.17	0.59	0.22	0.29	0.84	0.13	<0.10	<0.10		0.61	0.34	<0.10
Total Phosphorus	mg/L		<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	<0.004	0.043	<0.004	0.008	0.012	0.058	0.009	0.013	<0.004	0.007	0.005	<0.004	0.005
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.032	0.032	0.031	0.030	0.030	0.035	0.029	0.034	0.039	0.037	0.032	0.038	0.033	0.034	0.038
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	0.264	0.241	0.279	0.257	0.231	0.296	0.343	0.253	0.306	0.301	0.258	0.324	0.322	0.282	0.309
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		65.8	67.8	62.4	62.7	68.4	67.7	66.9	65.6	64.6	63.7	61.8	64.6	59.5	63.8	66.9
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.006	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	0.043	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.011	0.041	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		27.8	28.5	26.4	26.3	27.9	27.2	28.0	26.6	26.5	27.7	26.2	26.7	25.0	26.7	26.9
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	0.008	0.005	0.009	0.026	0.005	0.004	<0.002	0.045	0.196	0.003	0.008	<0.002
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	<0.003	<0.003	<0.003
Potassium	mg/L		6.5	6.6	6.31	6.1	7.09	6.96	6.29	6.52	7.38	6.45	6.21	6.61	5.91	6.11	6.59
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		2.83	3.02	3.17	2.68	2.81	3.45	3.09	3.65	3.07	3.06	3.4	3.13	2.79	3.29	3.3
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	15.6	14.1	13.1	15.3	17.8	16.0	16.1	14.3	16.7	15.9	13.6	14.0	14.8	13.9	11.4
Strontium	mg/L		2.07	1.88	1.75	1.81	1.82	2.01	1.72	1.84	2.29	2.18	1.94	2.1	1.9	2.12	1.92
Sulphur	mg/L		23.9	18.8	19	25.7	24.6	56.9	26.5	19.7	29.8	35.2	19.7	21.7	28.4	20.4	14.2
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	0.002	0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.008	<0.005	0.005	0.007	<0.005	0.006	<0.005	<0.005	<0.005	<0.005	0.007	0.006	<0.005	<0.005	<0.005
<u></u>		<u> </u>		•										•			

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 12 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-11-I

Parameters	Unito	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	234	228	234	239	255	280	245	386	261	258	255	246	252	246	259
Chloride	mg/L	250 AO ⁽³⁾	9.69	10.6	7.61	9.79	10.4	8.26	9.42	11.6	9.76	16	13	12	16	12	12
Dissolved Organic Carbon	mg/L	5 AO	0.9	1.5	1.1	3.2	3.6	2.2	2.9	2.5	2.4	< 1.0	2.0	2.0	1	< 1	< 1
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	0.33	0.31	0.23	0.28	0.36	0.28	0.29	0.27	0.31	0.36	0.34	0.43	0.37	0.33	0.36
Sulphate	mg/L	500 AO	53.8	57.4	59.3	59.2	48.0	49.5	65	60.6	37.6	54	59	50	42	54	43
Hardness	mg/L	80-100 OG	265	293	270	280	258	262	252	276	272	313	278	295	326	296	327
Nitrate	mg/L	10 MAC	0.18	0.27	0.19	0.18	0.11	0.07	0.13	0.15	<0.05	0.12	0.11	0.12	< 0.06	0.13	0.28
Nitrite	mg/L	1 MAC	<0.05	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	0.43	0.16	0.65	0.30	0.12	<0.10	0.20	0.10	< 0.5	< 0.5	0.05	< 0.05	0.06	< 0.05
Orthophosphate	mg/L		<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.86	7.97	7.73	7.80	7.94	7.70	7.81	7.78	7.88	8.26	8.14	8.09	8.11	8.60	8.05
Electrical Conductivity	μS/cm		543	626	637	636	511	507	580	829	576	564	597	569	582	577	587
Total Ammonia	mg/L		<0.02	0.04	<0.02	<0.02	0.10	<0.02	0.03	<0.02	<0.02	0.04	0.05	0.06	0.06	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	304	304	318	332	316	324	344	360	318	340	306	320	280	340	323
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.47	0.16	0.65	0.40	0.12	<0.10	0.20	0.1	< 0.5	0.07	0.11	0.06	0.07	< 0.05
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	0.055	0.079	<0.050	<0.050	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.006	0.008	<0.004	0.014	0.023	0.011	0.020	<0.004	0.002	0.001	0.002	< 0.001	< 0.001	< 0.001
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Barium	mg/L	1 MAC	0.032	0.034	0.034	0.036	0.030	0.030	0.041	0.034	0.036	0.0353	0.0376	0.0347	0.0339	0.0349	0.0345
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	0.255	0.280	0.310	0.326	0.386	0.360	0.284	0.315	0.376	0.354	0.348	0.306	0.276	0.277	0.353
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.000003	< 0.000003	0.000007	0.000007	0.00001	0.000004
Calcium	mg/L		63.4	69.5	65.1	66.2	60.5	62.8	58.7	64.5	64.4	80.6	65.1	72.7	81.1	70.8	79.6
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0002	0.00019	0.00026	0.00014	0.00025	< 0.00008
Cobalt	mg/L		<0.001	<0.001	0.002	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	0.000025	0.000163	0.000254	0.000061	0.000026	0.000026
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0004	0.0003	0.0002	0.0017	0.0011	0.0011
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	0.064	0.017	0.011	0.052	<0.010	0.008	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		26.0	29.0	26.2	27.9	26.0	25.5	25.6	27.8	27	27.2	28	27.6	29.9	29	31
Manganese	mg/L	0.05 AO	0.002	<0.002	0.035	0.007	0.042	0.007	0.006	0.004	0.003	0.00058	0.00483	0.00575	0.00221	0.00034	0.00211
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00042	0.00023	0.00031	0.00027	0.00022	0.00034
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0007	0.0013	0.001	0.0017	0.0011	0.0010
Potassium	mg/L		5.92	6.58	6.58	6.52	5.91	6.2	5.78	6.31	6.49	6.98	6.52	6.86	7.36	6.92	7.52
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.00004	< 0.00004	0.00007	< 0.00004	< 0.00004	< 0.00004
Silicon	mg/L		3.48	2.01	3.06	2.93	3.36	3.47	3.14	3.56	4.24	4.43	3.52	3.92	3.4	3.42	3.59
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	12.6	13.9	12.9	14.5	12.2	12.1	13.6	12.4	11.2	11.2	13.6	12.9	16.2	13.6	13.9
Strontium	mg/L		1.93	2.15	1.98	2.167	2.27	1.96	1.73	2.11	1.99	2.03	2.01	2.12	2.18	2.24	2.27
Sulphur 	mg/L		23.3	22.2	21.5	25.3	18.0	19.3	24	19.2	13.6	22	24	21	27	25	17
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	0.00008	0.00008	< 0.00006	0.00011	0.00006
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00008	< 0.00005	0.00022	< 0.00007	< 0.00007	< 0.00007
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0002	0.00032	0.000304	0.000318	0.00028	0.000145
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00013	0.00006	0.0001	0.00006	0.00009	0.00003
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.013	<0.005	< 0.002	0.006	0.004	0.036	0.009	< 0.002

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 13 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-11-II

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	Мау	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG (2)	395	470	436	411	485	412	422		434	433	435	507	418	480	460
Chloride	mg/L	250 AO ⁽³⁾	20.1	22.3	21.0	29.9	28.6	29.6	23.9		27.0	24.1	25.9	26.9	23.8	22.8	22.3
Dissolved Organic Carbon	mg/L	5 AO	5.0	4.5	4.8	7.2	5.6	5.3	5.1		5.9	5.1	6.8	6.4	5.9	6.9	5.0
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	<0.10	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25		<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Sulphate	mg/L	500 AO	51.2	44.9	42.1	58.8	41.2	79.2	81.9		78.9	<0.50	58.9	55.4	58.5	55.2	65.4
Hardness	mg/L	80-100 OG	395	454	409	417	486	457	424		449	409	454	477	395	493	505
Nitrate	mg/L	10 MAC	0.12	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25		<0.25	<0.25	<0.25	<0.25	0.27	<0.25	<0.25
Nitrite	mg/L	1 MAC	<0.10	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25		<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Organic Nitrogen	mg/L	0.15 OG	0.87	0.71	0.59	1.1	1.5	0.53	2.32		0.58	0.44	0.51	1.04	2.0	1.06	0.31
Orthophosphate	mg/L		<0.20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	67.2	<0.50	<0.50	<0.50	<0.50	<0.50
рН	pH Units	6.5-8.5 OG	8.13	8.00	7.76	8.16	8.11	8.05	8.06		8.22	8.3	8.29	8.11	8.02	8.06	8.03
Electrical Conductivity	μS/cm		857	986	961	950	1060	987	891		1040	900	936	1080	841	1040	1040
Total Ammonia	mg/L		0.14	0.12	0.06	<0.02	0.06	<0.02	<0.02		<0.02	<0.02	0.11	0.07	<0.02	0.26	0.17
Total Dissolved Solids	mg/L	500 AO	506	528	516	534	552	532	504		568	512	570	574	470	582	676
Total Kjeldahl Nitrogen (TKN)	mg/L		1.01	0.83	0.65	1.1	1.56	0.53	2.32		0.58	0.44	0.62	1.11	2.0	1.32	0.48
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	0.004	<0.004	<0.004	<0.004	0.019	<0.004	0.008	0.011	0.011	0.006	<0.004	0.008	0.004	0.006	0.006
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.021	0.022	0.024	0.023	0.027	0.023	0.024	0.034	0.039	0.023	0.03	0.031	0.020	0.036	0.036
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	0.365	0.361	0.346	0.295	0.317	0.326	0.400	0.352	0.431	0.334	0.449	0.469	0.314	0.472	0.468
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		96.6	117	103	104	124	119	104		116	101	115	123	99	127	130
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	0.027	<0.003	<0.003	0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.005	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	0.193	0.068	<0.010	0.195	<0.010	0.055	<0.010	<0.010	<0.010	0.475	0.492	<0.010	0.316	0.207
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		37.4	39.3	36.8	38.1	42.9	38.8	39.8		38.7	38.1	40.5	41.3	36.0	42.6	43.8
Manganese	mg/L	0.05 AO	0.162	0.124	0.028	0.046	0.042	0.005	0.124	<0.002	0.045	0.006	0.122	0.239	0.022	0.265	0.098
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	0.004	0.005	0.007	<0.003	0.005	0.004	0.003	0.005	<0.003	<0.003	0.003	0.004
Potassium	mg/L		5.99	4.96	4.43	6.11	5.79	4.76	5.59		5.85	5.89	7.79	6.29	4.54	6.47	7.06
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	0.004	<0.004	0.007	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		4.24	4.26	3.76	4.42	4.40	4.12	4.05	3.99	4.52	3.94	4.95	4.71	2.82	5.52	5.30
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	32.4	41.1	36.4	34.1	38.1	39.2	28.6		36.8	32.2	37.8	36.8	26.9	35.3	38.6
Strontium	mg/L		0.199	0.204	0.231	0.192	0.226	0.193	0.204	0.267	0.352	0.211	0.266	0.254	0.182	0.279	0.277
Sulphur	mg/L		14.8	15.6	15.8	21.4	13.0	26.6	21.5	22.0	24.2	28.3	20.1	18.7	19.1	20.1	24.6
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.014	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.008	0.007	<0.005	0.006	0.006	<0.005	0.005	0.006	<0.005	<0.005	0.030	<0.005	<0.005	<0.005	0.011

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 14 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-11-II

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Ullits	ODWS	Мау	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG (2)	373	465	504	431	515	514	498	478	587	375	490	467	429	472	450
Chloride	mg/L	250 AO ⁽³⁾	18.9	21.8	19.2	26.5	25.8	23.0	19.2	20.5	17.2	32	22	22	52	45	37
Dissolved Organic Carbon	mg/L	5 AO	7.0	5.0	5.0	8.5	6.6	5.2	6.8	7.8	6.6	5.2	5.0	4.0	7.0	7.2	3.0
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	<0.25	<0.25	<0.25	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	0.25	0.20	0.16	0.19	0.22	0.12
Sulphate	mg/L	500 AO	72.2	58.7	60.7	74.1	44.0	35.8	41.2	31.5	32	69	49	52	130	96	110
Hardness	mg/L	80-100 OG	387	507	491	451	650	460	534	476	551	454	465	427	561	552	569
Nitrate	mg/L	10 MAC	<0.25	0.56	<0.25	<0.25	<0.25	<0.25	<0.05	<0.05	<0.05	1.8	0.22	< 0.06	< 0.06	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.05	<0.05	0.48	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.61	0.86	0.55	0.63	0.62	0.53	0.72	0.47	0.42	< 0.5	0.50	0.39	0.77	0.61	0.83
Orthophosphate	mg/L		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.10	<0.10	<0.10						< 0.03
pH	pH Units	6.5-8.5 OG	7.85	7.74	7.85	7.95	7.96	7.78	7.83	7.84	7.72	8.18	8.17	8.17	7.97	8.25	7.98
Electrical Conductivity	μS/cm		815	1110	1180	1080	911	842	979	930	1120	813	993	950	1110	1100	1060
Total Ammonia	mg/L		<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	494	564	596	578	588	546	572	572	624	494	560	569	700	731	649
Total Kjeldahl Nitrogen (TKN)	mg/L		0.61	0.90	0.55	0.63	0.62	0.53	0.72	0.47	0.42	< 0.5	0.54	0.41	0.79	0.63	0.84
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	0.07	<0.050	<0.050	0.08	< 0.03	< 0.03	< 0.03	< 0.03	0.043
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	0.007	0.013	0.015	0.029	0.068	0.013	0.015	0.024	0.002	0.001	0.001	0.041	0.31
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002	< 0.0002	< 0.0002	0.0002	0.0002	0.0002
Barium	mg/L	1 MAC	0.021	0.027	0.034	0.029	0.029	0.025	0.027	0.029	0.034	0.0218	0.0341	0.0252	0.0296	0.0365	0.0293
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.00006
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	0.357	0.423	0.453	0.447	0.660	0.524	0.426	0.630	0.510	0.428	0.441	0.313	0.483	0.415	0.404
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000004	0.00001	0.000003	< 0.000003	0.000006	0.00001
Calcium	mg/L		98.8	131	129	115	168	119	136	121	140	123	121	110	149	143	147
Chromium	mg/L	0.05 MAC	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00027	0.00017	0.00028	0.00025	0.00035	0.00057
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000126	0.000102	0.000183	0.000191	0.000199	0.000534
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	0.0016	0.0015	0.0005	0.0015	0.0012	0.0024
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	0.101	0.057	0.022	0.097	<0.010	0.019	0.008	0.021	0.020	0.063	0.470
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00089
Magnesium	mg/L		34.1	43.8	41.0	39.8	56.0	39.6	47.1	42.3	48.9	35.4	39.8	37	46.1	47.6	48.9
Manganese	mg/L	0.05 AO	0.026	0.030	0.019	0.006	0.036	0.039	0.033	0.044	0.011	0.00242	0.00153	0.0172	0.0163	0.0143	0.082
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00074	0.00072	0.00064	0.00093	0.0007	0.00022
Nickel	mg/L		<0.003	0.004	0.004	0.004	0.004	0.003	0.003	<0.003	<0.003	0.0029	0.003	0.0022	0.0064	0.0045	0.0044
Potassium	mg/L	0.05.110	4.71	8.07	6.56	6.63	11.1	5.23	6.69	6.07	4.93	4.81	5.82	4.57	6.72	7.31	4.17
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.00008	0.0001	0.00011	0.00011	0.00008	0.00008
Silicon	mg/L		4.60	5.17	4.58	3.65	5.82	4.64	4.04	5.38	5.80	4.64	5.39	4.95	5.05	5.39	4.78
Silver	mg/L	200 40	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	25.5	36.0	34.6	32.3	48.1	29.2	34.6	28.6	31.5	23.8	29.4	26.7	47.9	36.8	39.2
Strontium	mg/L		0.187	0.279	0.296	0.252	0.297	0.252	0.248	0.262	0.314	0.201	0.248	0.241	0.300	0.339	0.32
Sulphur	mg/L		23.6	21.6	19.5	25.3	19.9	16.3	15.2	13	11.4	29	15	16	45	32	42
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000005	0.000006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	0.00026	0.00008	< 0.00006	0.00011	< 0.00006
Titanium		ı I	<0.002	<0.002	<0.002	<0.002 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00094	0.00011	< 0.00005	< 0.00007	0.00202	0.00491
Uranium	mg/L	0.02 1440	40 000			<0.007	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.00058	0.000969	0.000787	0.000901	0.000811	0.000816
Vanadium	mg/L	0.02 MAC	<0.002	<0.002	<0.002			-0.000	40 000	-0.000	40 000	0.00040	0.00004	0.0004.4	0.00000		0.00046
Vanadium Zinc		0.02 MAC 5 AO	<0.002 <0.002 <0.005	<0.002 <0.002 <0.005	<0.002 <0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 0.005	0.00012 0.003	0.00024 0.003	0.00014 0.003	0.00009 0.002	0.00023 0.005	0.00046 0.003

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 15 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-12-I

Parameters	Unito	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS (7	June	July	Sep	Мау	July	Sep	May	July	Sep	Мау	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	262	272	279	265	814	265	284	279	259	289	266	317	292	266	261
Chloride	mg/L	250 AO ⁽³⁾	50.6	37.3	39.7	48.4	38.4	32.0	50.1	36.7	32.4	39.1	37.1	41.5	35.0	37.4	31.6
Dissolved Organic Carbon	mg/L	5 AO	1.8	2.7	2.0	1.7	2.6	1.9	2.0	1.9	2.0	1.7	2.7	2.6	2.2	3.5	2.3
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	0.17	<0.25	0.44	0.41	<0.50	<0.25	<0.25	0.31	<0.25	<0.25	0.38	0.26	0.37	0.47	0.35
Sulphate	mg/L	500 AO	84	67.8	70.9	78.5	73.9	68.9	98.5	79.7	67.1	97.2	72.6	82.5	65.6	69.8	60.9
Hardness	mg/L	80-100 OG	365	355	355	348	367	341	358	340	318	361	331	375	325	349	377
Nitrate	mg/L	10 MAC	0.14	<0.25	0.11	<0.10	<0.50	<0.25	<0.25	<0.10	<0.25	<0.25	0.09	<0.10	<0.05	0.08	<0.10
Nitrite	mg/L	1 MAC	<0.10	<0.25	<0.10	<0.10	<0.50	<0.25	<0.25	<0.10	<0.25	<0.25	<0.05	<0.10	<0.05	<0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.52	0.26	0.45	0.30	0.47	0.28	0.12	0.26	0.32	0.12	0.14	0.35	0.37	0.68	0.27
Orthophosphate	mg/L		<0.20	<0.50	<0.20	<0.20	<1.00	<0.50	<0.50	<0.20	<0.50	<0.50	<0.10	<0.20	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.2	8.23	8.06	8.23	7.98	7.96	8.06	8.12	8.28	8.22	8.13	8.03	7.85	7.91	7.80
Electrical Conductivity	μS/cm		784	771	817	797	287	738	766	784	751	792	728	859	692	743	720
Total Ammonia	mg/L		0.05	0.07	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04
Total Dissolved Solids	mg/L	500 AO	468	482	472	462	440	416	446	412	382	400	458	484	426	424	442
Total Kjeldahl Nitrogen (TKN)	mg/L		0.57	0.33	0.48	0.30	0.47	0.28	0.12	0.26	0.32	0.12	0.14	0.35	0.37	0.68	0.31
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.007	0.045	0.007	0.008	0.006	0.005	0.007	<0.004	0.012
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.057	0.053	0.053	0.052	0.055	0.056	0.062	0.056	0.060	0.057	0.056	0.07	0.059	0.053	0.070
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	0.332	0.351	0.407	0.309	0.360	0.390	0.422	0.391	0.439	0.366	0.359	0.452	0.407	0.376	0.486
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		86.5	83.3	83.7	81.0	86.4	81.3	83.0	80.6	75.6	84.8	78.0	90.0	76.5	82.5	89.9
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	0.011	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		36.1	35.6	35.5	35.3	36.7	33.6	36.7	33.6	31.4	36.3	33.2	36.6	32.6	34.8	37.1
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	0.003	0.005	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	0.003	0.004
Potassium	mg/L		8.19	8.75	8.7	8.0	9.28	8.59	8.00	8.59	8.90	8.12	7.95	8.23	7.02	7.89	8.87
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		3.8	3.81	3.97	3.75	3.93	4.18	3.97	4.36	4.26	4.11	4.35	4.58	3.11	4.55	5.15
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	17.2	15.7	16.5	17.2	17.5	15.4	16.7	16.1	14.8	15.9	14.9	15.2	12.9	14.4	16.4
Strontium	mg/L		1.91	1.98	1.91	1.71	1.99	1.96	1.99	1.89	2.14	2.11	1.95	2.15	1.95	2.14	2.27
Sulphur	mg/L		24.9	24.0	27.3	28.6	25.2	23.5	26.6	22.4	22.6	28.9	22.6	26.1	29.7	23.2	27.4
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.006	0.006	0.006	0.005	0.006	<0.005	0.005	<0.005	0.005	<0.005	0.007	<0.005	<0.005	0.006	0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 16 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-12-I

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	286	264	300	310	308	340	319	351	328	307	302	305	328	357	354
Chloride	mg/L	250 AO ⁽³⁾	38.8	38.3	40.8	41.9	41.2	40.5	43.4	44.4	39	48	40	46	49	49	49
Dissolved Organic Carbon	mg/L	5 AO	2.6	3.1	2.3	2.9	2.5	2.9	3.3	3.1	3.2	3.2	2	3	2	3	3
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	0.33	<0.25	<0.25	<0.05	0.28	0.28	<0.05	<0.05	<0.05	0.45	0.43	0.5	0.38	0.37	0.36
Sulphate	mg/L	500 AO	74.6	77.3	90.2	85.4	79.0	78.9	79.7	90.6	71.5	84	80	84	78	84	85
Hardness	mg/L	80-100 OG	361	395	418	409	372	367	364	429	417	458	381	432	460	467	484
Nitrate	mg/L	10 MAC	<0.10	<0.25	<0.25	<0.25	<0.10	<0.10	<0.05	<0.05	<0.05	0.15	0.08	0.06	< 0.06	< 0.06	0.07
Nitrite	mg/L	1 MAC	<0.10	<0.25	<0.25	<0.25	<0.10	<0.10	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.30	0.41	0.31	0.32	0.24	0.36	0.48	0.31	0.28	< 0.5	< 0.5	0.25	0.39	0.29	0.18
Orthophosphate	mg/L		<0.20	<0.50	<0.50	<0.50	<0.20	<0.20	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.80	7.92	7.68	7.71	8.00	7.91	7.93	8.00	7.79	8.22	8.13	8.11	8.14	7.93	8.10
Electrical Conductivity	μS/cm		752	831	935	934	709	723	843	912	835	783	806	821	856	919	909
Total Ammonia	mg/L		<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.04	< 0.04	0.06	< 0.04	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	448	474	488	510	502	500	550	570	540	457	460	503	594	671	554
Total Kjeldahl Nitrogen (TKN)	mg/L		0.30	0.45	0.31	0.32	0.24	0.36	0.48	0.31	0.28	< 0.5	0.12	0.31	0.35	0.30	0.20
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	0.14	<0.050	<0.050	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.009	0.007	0.013	0.012	0.018	0.017	0.008	0.004	0.001	0.002	0.004	< 0.001	0.007	< 0.001
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Barium	mg/L	1 MAC	0.057	0.055	0.068	0.065	0.053	0.050	0.065	0.065	0.065	0.0634	0.0635	0.0666	0.0590	0.0689	0.0621
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	0.383	0.390	0.480	0.425	0.525	0.466	0.500	0.452	0.550	0.557	0.433	0.473	0.371	0.396	0.457
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.000003	0.000005	0.000004	< 0.000003	0.000011	0.000007
Calcium	mg/L		86.2	91.3	102	97.5	87.6	89.4	86.1	102	99.5	120	91.3	105	115	112	120
Chromium	mg/L	0.05 MAC	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00056	0.00023	0.00018	0.00015	0.0002	0.00009
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000046	0.00003	0.000025	0.000019	0.00006	0.000015
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	<0.003	<0.003	0.0018	0.0015	0.0006	0.0011	0.0017	0.0012
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	0.038	<0.010	0.265	< 0.007	0.012	< 0.007	0.033	< 0.007
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		35.5	40.5	39.7	40.3	37.1	34.9	36.2	42.3	40.9	38.4	37.2	41.6	41.9	45.5	44.6
Manganese	mg/L	0.05 AO	<0.002	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	0.00327	0.00076	0.0009	0.00043	0.00127	0.0004
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0008	0.00057	0.00075	0.00063	0.00045	0.00044
Nickel	mg/L		<0.003	0.004	0.004	0.003	0.003	0.003	0.005	<0.003	<0.003	0.003	0.0027	0.0033	0.0031	0.0037	0.0035
Potassium	mg/L		7.82	8.77	9.14	8.03	7.76	7.99	7.64	8.5	8.76	10	8.61	9.28	9.36	9.64	9.71
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.00005	0.00008	0.00011	< 0.00004	0.00007	< 0.00004
Silicon	mg/L		4.51	3.64	4.80	4.42	5.29	4.47	5.78	5.18	5.98	5.86	5.56	5.65	5.08	5.4	5.32
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	15.1	17.2	17.8	16.3	15.4	15.9	15.9	18.6	18	16.1	15.9	17.2	19.4	19.1	22.3
Strontium	mg/L		2.12	2.26	2.31	2.311	2.31	1.95	2.2	2.29	2.46	2.35	2.08	2.35	2.33	2.57	2.43
Sulphur	mg/L		30.8	30.1	31.3	29.1	25.9	27.3	24.6	30.4	26.7	39	29	30	32	34	29
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0001	0.00029	0.00012	0.00006	0.00012	< 0.00006
Titanium	mg/L	0.000	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0001	0.00009	0.00023	< 0.00007	0.00034	< 0.00007
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000333	0.000412	0.000392	0.000476	0.000408	0.000253
Vanadium	mg/L	F 4.0	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00014	0.00007	0.00007	0.00008	0.00012	0.00006
Zinc	mg/L	5 AO	<0.005	0.009	<0.005	<0.005	<0.005	<0.005	0.006	<0.005	0.005	0.002	0.006	0.004	0.002	0.004	< 0.002

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 17 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-12-II

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Offics	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	515	524	530	477	541	535	498	532	519	503	451	533	540	509	489
Chloride	mg/L	250 AO ⁽³⁾	46.5	50.0	45.2	49.1	49.8	49.2	58.2	47.6	52.7	49.5	46.2	49.2	63.2	56.7	54.1
Dissolved Organic Carbon	mg/L	5 AO	7.2	8.5	8.2	7.9	8.6	9.1	7.0	9.5	9.5	6.7	9.1	9.2	9.7	8.7	8.2
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Sulphate	mg/L	500 AO	111	135	122	118	134	127	139	135	130	123	125	132	127	126	126
Hardness	mg/L	80-100 OG	569	580	525	466	600	518	517	528	562	510	530	533	548	572	595
Nitrate	mg/L	10 MAC	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Nitrite	mg/L	1 MAC	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Organic Nitrogen	mg/L	0.15 OG	1.76	1.61	1.78	1.29	1.66	1.71	1.3	2.0	1.69	1.08	1.23	1.55	1.04	1.41	1.24
Orthophosphate	mg/L		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
рН	pH Units	6.5-8.5 OG	8.02	8.10	7.52	7.90	7.98	7.95	8.03	7.92	8.05	8.18	8.16	8.02	7.95	7.91	7.83
Electrical Conductivity	μS/cm		1260	1320	1330	1250	1360	1340	1170	1290	1370	1200	1150	1320	1240	1310	1280
Total Ammonia	mg/L		0.07	0.07	0.05	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	0.03
Total Dissolved Solids	mg/L	500 AO	734	810	766	722	758	766	702	744	780	694	734	716	744	760	916
Total Kjeldahl Nitrogen (TKN)	mg/L		1.83	1.68	1.83	1.29	1.69	1.71	1.3	2.0	1.69	1.08	1.23	1.55	1.06	1.41	1.27
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals		,							T								
Aluminum	mg/L	0.1 OG	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.010	0.475	0.006	0.006	0.004	0.007	0.004	<0.004	0.005
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.044	0.048	0.04	0.039	0.044	0.049	0.038	0.052	0.052	0.037	0.044	0.045	0.037	0.044	0.049
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.124	0.193	0.196	0.138	0.181	0.240	0.147	0.220	0.249	0.139	0.225	0.276	0.139	0.269	0.272
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		171	174	156	133	180	151	155	159	170	152	156	160	164	171	178
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	0.005	<0.003	<0.003	0.004	<0.003	<0.003	0.005	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	<0.003	<0.003
Iron	mg/L	0.3 AO	0.092	0.308	0.171	0.131	0.387	0.042	0.260	0.826	0.179	0.293	0.432	0.222	1.57	0.141	0.168
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		34.6	35.3	32.8	32.6	36.5	34.3	31.6	31.9	33.3	31.6	34.0	32.4	33.6	35.2	36.6
Manganese	mg/L	0.05 AO	0.044	0.035	0.033	0.046	0.041	0.034	0.047	0.068	0.054	0.050	0.047	0.055	0.081	0.077	0.074
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		0.006	0.006	0.003	0.008	0.01	0.014	0.006	0.009	0.009	0.007	0.009	0.006	0.009	0.008	0.009
Potassium	mg/L	0.05 MAC	3.31	4.32	3.88	2.92	3.85	4.62	2.83	4.13	4.27	2.54	3.35	3.64	2.50	3.43	3.84
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		3.66	4.09	3.71	4.16	3.70	4.53	3.42	5.66	4.54	4.02	4.47	4.27	2.68	4.95	4.81
Silver	mg/L	200.40	<0.002	<0.002	<0.002	<0.002 73.3	<0.002	<0.002 73.7	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	80.5	77.6	74.6		73.9		66.8	68.9	71.4	62.6	63.5	60 0.547	60.4	63.9 0.52	68.5
Strontium	mg/L		0.626	0.604	0.517	0.468	0.505	0.539	0.467	0.495	0.586	0.458	0.517		0.434		0.515
Sulphur	mg/L		35.8	46.1	42.2	41.5	40.9	42.8	38.1	38.7	44.8	41.0	42.0	42.1	42.6	42.1	45.3
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Titonium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002 0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L	0.02 MAC	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	0.002 <0.002	0.002 <0.002	0.003 <0.002	0.002 <0.002	0.011 <0.002	0.002 <0.002	<0.002	<0.002	<0.002 <0.002	0.003 <0.002	<0.002	0.002 <0.002
Uranium	mg/L	U.UZ IVIAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium Zinc	mg/L	5 AO	0.002	<0.002	<0.002	<0.002	0.002	<0.002	0.002	0.002	<0.002	<0.002	0.002	<0.002	0.002	0.002	0.002
<u> </u>	mg/L	3 AO	0.000	\0.000	\0.000	\0.000	0.001	<u> </u>	0.000	0.000	\U.UUJ	\0.000	0.007	\0.000	0.003	0.007	0.000

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 18 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-12-II

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	498	496	510	500	529	550	529	547	536	471	530	538	531	558	568
Chloride	mg/L	250 AO ⁽³⁾	51.4	53.1	49.5	51.6	53.6	47.3	50.7	51.7	52.7	66	53	57	59	66	58
Dissolved Organic Carbon	mg/L	5 AO	8.3	6.3	7.2	7.5	8.5	8.2	7.4	8.3	9.0	8.1	7.0	7.0	8.0	8.9	8.0
Fluoride	mg/L	1.5 MAC (4)	<0.25	<0.25	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.07	0.06	0.07	< 0.06	0.08	0.06
Sulphate	mg/L	500 AO	99.2	119	112	105	108	103	78.8	80.8	83.7	78	73	77	81	83	67
Hardness	mg/L	80-100 OG	539	566	547	523	768	498	470	538	531	629	518	547	613	589	658
Nitrate	mg/L	10 MAC	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.05	<0.05	<0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.95	1.21	1.14	1.05	1.26	1.2	1.07	1.11	1.35	0.50	0.80	0.95	1.20	1.07	0.83
Orthophosphate	mg/L		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.79	7.41	7.64	7.78	7.81	7.71	7.68	7.65	7.53	8.00	8.02	8.00	8.02	7.83	7.95
Electrical Conductivity	μS/cm		1180	1360	1410	1320	1090	1060	1200	1220	1230	1060	1220	1220	1240	1290	1310
Total Ammonia	mg/L		<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	<0.02	0.05	0.06	0.07	< 0.04	0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	706	692	748	716	686	714	702	706	752	671	697	620	757	703	757
Total Kjeldahl Nitrogen (TKN)	mg/L		0.95	1.23	1.14	1.05	1.26	1.2	1.07	1.17	1.35	0.6	0.9	1.02	1.22	1.11	0.84
Total Phosphorus	mg/L		< 0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.13	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.004	0.006	0.005	0.024	0.021	0.034	0.021	<0.004	0.001	0.071	0.024	0.001	0.001	0.020
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002	0.0003	0.0002	0.0002	0.0003	0.0002
Barium	mg/L	1 MAC	0.035	0.043	0.044	0.042	0.036	0.035	0.038	0.037	0.043	0.038	0.0424	0.0426	0.0366	0.0450	0.0427
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.160	0.267	0.297	0.220	0.382	0.292	0.247	0.322	0.344	0.268	0.361	0.290	0.260	0.310	0.343
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000003	0.000006	0.000005	< 0.000003	< 0.000003	< 0.000003
Calcium	mg/L		162	168	164	153	226	147	136	156	152	194	151	156	181	164	186
Chromium	mg/L	0.05 MAC	0.006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00042	0.00035	0.00039	0.00031	0.00028	0.00024
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000367	0.000381	0.000305	0.000247	0.000243	0.000284
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	0.006	<0.003	<0.003	0.009	<0.003	<0.003	0.0007	0.0017	< 0.0002	0.0016	0.0006	0.0012
Iron	mg/L	0.3 AO	0.059	0.179	0.119	0.301	0.257	0.208	0.026	0.232	0.052	0.291	0.200	0.208	0.040	0.354	0.421
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	0.00016	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		32.6	35.5	33.3	34.3	49.4	31.9	31.7	36.1	36.9	35.1	34.1	38.4	39.4	43.6	47.0
Manganese	mg/L	0.05 AO	0.045	0.062	0.058	0.048	0.060	0.052	0.032	0.073	0.048	0.0841	0.0777	0.0600	0.0437	0.0477	0.0629
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00017	0.00022	0.00026	0.0002	0.00014	0.00017
Nickel	mg/L		0.008	0.008	0.009	0.007	0.008	0.007	0.009	0.006	0.007	0.0072	0.0083	0.0078	0.009	0.008	0.0087
Potassium	mg/L		2.67	3.74	3.47	2.68	4.4	3.16	2.85	3.52	3.33	2.93	3.28	3.31	3.20	3.84	4.00
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	0.005	<0.004	<0.004	<0.004	<0.004	<0.004	0.00009	0.00005	0.00013	0.00007	0.00008	0.00008
Silicon	mg/L		4.65	3.03	4.20	3.99	4.75	4.08	4.66	4.23	4.59	4.43	5.01	4.68	4.18	4.62	4.13
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	61.7	64.9	63.9	57.8	86.0	57.2	53.9	59.8	58.0	53.7	59.5	55.8	66.6	64.5	70.2
Strontium	mg/L		0.444	0.494	0.516	0.468	0.474	0.487	0.456	0.473	0.531	0.496	0.440	0.520	0.467	0.558	0.620
Sulphur	mg/L		37.3	39.1	37.4	33.8	49.9	35.4	26.3	29.1	27.3	34.0	26.0	27.0	29	28	25
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	< 0.00006	0.00007	0.00006	0.00018	< 0.00006
Titanium	mg/L		<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	0.00007	0.00231	0.00108	< 0.00007	0.00011	0.00061
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000397	0.00059	0.000465	0.000597	0.000445	0.000461
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00011	0.00018	0.00011	0.00006	0.0001	0.00004
Zinc	mg/L	5 AO	<0.005	0.006	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.003	0.005	0.007	< 0.002	< 0.002	< 0.002
																	_

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 19 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-30-I

Parameters		(1)	2014		2015			2016			2017			2018	
General Chemistry	Units	ODWS (1)	Sep	Мау	July	Sept	May	July	Sept	May	July	Sept	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	118	137	124	123	190	163	145	143	145	152	146	125	126
Chloride	mg/L	250 AO ⁽³⁾	41.3	24.4	18.7	17.4	15.0	11.4	10.8	8.89	8.38	7.66	6.93	5.53	4.74
Dissolved Organic Carbon	mg/L	5 AO	8.0	2.7	2.9	2.0	2.1	2.3	1.7	1.3	1.9	3.0	2.3	3.2	2.1
Fluoride	mg/L	1.5 MAC (4)	1.08	1.53	1.31	1.42	0.45	1.34	1.62	1.45	2.04	1.85	2.7	1.9	1.69
Sulphate	mg/L	500 AO	339	225	245	222	203	183	163	175	170	193	177	200	186
Hardness	mg/L	80-100 OG	264	145	146	132	141	115	88.2	102	90.5	128	92.6	109	109
Nitrate	mg/L	10 MAC	<0.25	<0.25	<0.25	0.41	<0.25	0.20	<0.25	<0.25	0.11	0.14	0.07	0.10	<0.10
Nitrite	mg/L	1 MAC	<0.25	<0.25	<0.25	<0.25	<0.25	<0.10	<0.25	<0.25	<0.05	<0.10	<0.05	<0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.65	0.39	0.65	0.61	0.16	0.40	0.17	0.14	<0.10	0.13	<0.10	<0.10	<0.10
Orthophosphate	mg/L		<0.50	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.10	<0.20	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.22	8.34	8.04	7.98	8.12	8.14	8.41	8.16	8.04	8.07	7.75	7.95	7.84
Electrical Conductivity	μS/cm		1070	869	812	810	737	734	713	670	667	750	656	685	673
Total Ammonia	mg/L		1.13	0.29	0.25	0.1	0.10	0.12	0.06	<0.02	0.09	0.02	0.09	<0.02	0.08
Total Dissolved Solids	mg/L	500 AO	652	480	490	452	428	410	386	372	388	410	360	402	418
Total Kjeldahl Nitrogen (TKN)	mg/L		1.78	0.68	0.90	0.71	0.26	0.52	0.23	0.14	<0.10	0.15	0.17	<0.10	0.10
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals	1	,													
Aluminum	mg/L	0.1 OG	0.006	0.129	0.010	0.017	0.010	0.016	0.015	0.005	0.008	0.012	0.010	0.009	0.016
Arsenic	mg/L	0.01 MAC	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.063	0.039	0.032	0.025	0.023	0.023	0.027	0.019	0.019	0.021	0.019	0.023	0.028
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	0.371	0.390	0.375	0.439	0.407	0.420	0.435	0.38	0.440	0.449	0.448	0.454	0.493
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		49.8	26.3	24.3	21.9	25.4	20.0	13.7	16.3	13.8	29.3	15.0	17.6	17.4
Chromium	mg/L	0.05 MAC	<0.003	< 0.003	<0.003	<0.003	<0.003	0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	< 0.003	<0.003	<0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.063	< 0.003	<0.003
Iron	mg/L	0.3 AO	0.126	0.178	0.030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.014	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.004	<0.001	<0.001
Magnesium	mg/L		33.9	19.2	20.8	18.7	18.8	15.9	13.1	14.8	13.6	13.3	13.4	15.9	15.9
Manganese	mg/L	0.05 AO	0.030	0.021	0.013	0.009	0.013	0.006	0.006	0.003	0.003	0.006	0.005	0.003	0.011
Molybdenum	mg/L		0.044	0.069	0.069	0.058	0.035	0.034	0.035	0.042	0.04	0.039	0.042	0.048	0.046
Nickel	mg/L		<0.003	< 0.003	<0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003
Potassium	mg/L		28.2	12.9	11.8	10.5	8.16	8.46	7.20	7.13	6.25	5.48	5.71	6.18	6.18
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		2.9	2.95	2.08	2.58	2.66	3.10	2.74	2.5	2.72	2.67	2.27	2.51	2.35
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	95.7	116	112	117	116	107	104	102	95.1	88.8	89.5	93.3	99.0
Strontium	mg/L		1.07	0.673	0.827	0.78	0.659	0.649	0.695	0.711	0.658	0.625	0.587	0.782	0.76
Sulphur	mg/L		125	84.0	85.4	83.1	56.3	53.1	52.7	60.5	55	53.9	55.4	59.1	65.1
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		0.002	0.010	0.004	0.005	0.003	0.004	0.002	0.002	0.003	<0.002	0.003	0.002	0.003
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	0.009	<0.005	0.009	0.005	<0.005	0.005	<0.005	0.006	<0.005	0.083	<0.005	<0.005
-	1	!		•			•	•	•	•		•	•	•	

- Notes:

 (1) MECP Ontario Drinking Water Standards.

 (2) Operational Guideline (OG) within ODWS.

 (3) Aesthetic Objective (AO) within ODWS.

 (4) Maximum Acceptable Concentration (MAC) within ODWS.

 (5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

 (6) ODWS exceedances indicated by **bold** entries.

Page 20 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-30-I

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Offics	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	141	127	129	144	150	161	174	169	158	171	158	152	180	206	232
Chloride	mg/L	250 AO ⁽³⁾	4.28	3.92	3.14	3.82	3.76	3.13	3.29	3.7	3.36	4.0	3.0	4.0	3	3	3
Dissolved Organic Carbon	mg/L	5 AO	2.3	1.9	1.0	2.7	3.0	2.2	1.8	1.8	2.1	2.0	2.0	1.0	2.0	1.5	2.0
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	1.57	1.74	1.56	1.72	1.69	1.73	1.40	1.61	1.67	1.54	1.47	1.69	1.49	1.54	1.26
Sulphate	mg/L	500 AO	196	205	197	193	192	195	167	175	173	210	190	200	180	210	140
Hardness	mg/L	80-100 OG	110	111	112	113	104	102	105	113	135	137	122	125	146	135	195
Nitrate	mg/L	10 MAC	<0.10	<0.10	<0.10	<0.10	0.11	<0.05	0.10	<0.05	<0.05	0.08	< 0.06	0.06	0.06	< 0.06	0.11
Nitrite	mg/L	1 MAC	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	<0.10	0.15	0.23	0.10	0.14	0.16	<0.10	0.17	< 0.5	< 0.5	0.08	< 0.05	< 0.05	0.19
Orthophosphate	mg/L		<0.20	<0.20	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10	<0.10						0.05
рН	pH Units	6.5-8.5 OG	7.66	8.10	7.57	7.63	7.82	7.25	7.96	8.13	8.09	8.26	8.16	8.20	8.35	8.40	8.29
Electrical Conductivity	μS/cm		680	741	764	776	608	586	678	679	664	702	698	684	696	701	722
Total Ammonia	mg/L		<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05	0.07	< 0.04	< 0.04	< 0.04	0.05
Total Dissolved Solids	mg/L	500 AO	416	424	388	406	414	424	402	408	388	426	451	411	491	491	477
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.12	0.15	0.23	0.10	0.14	0.16	<0.10	0.17	< 0.5	< 0.05	0.07	< 0.25	< 0.05	0.24
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	0.084	<0.050	<0.050	0.074	<0.050	0.053	0.13	< 0.03	< 0.03	0.1	< 0.03	< 0.003
Metals				T							Г			T			
Aluminum	mg/L	0.1 OG	<0.004	0.010	0.008	0.010	0.018	0.019	0.070	0.058	0.456	0.005	0.131	0.037	0.004	0.003	0.004
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0005	0.0005	0.0005	0.0005	0.0004	0.0004
Barium	mg/L	1 MAC	0.025	0.024	0.026	0.027	0.023	0.022	0.021	0.026	0.033	0.0374	0.0322	0.0321	0.0290	0.0307	0.0452
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	0.000026	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L	(5)	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	0.498	0.471	0.427	0.474	0.577	0.466	0.374	0.494	0.455	0.690	0.456	0.454	0.451	0.430	0.431
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000023	0.000014	0.000015	0.000015	0.000027	0.000008
Chromium	mg/L	0.05 MAC	17.4 <0.003	17.1 <0.003	17.6 <0.003	17.2 <0.003	15.6 <0.003	15.6 <0.003	15.7 <0.003	16.8 <0.003	23.1 <0.003	24.1 0.0002	19.8 0.00084	20.5 0.00034	24.9 0.00015	21.1 0.00032	26.0 0.00133
Cahalt	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0002	0.00084	0.00034	0.00015		0.000093
Copper	mg/L mg/L	1 AO	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.010	<0.001	0.003	0.00024	0.000138	0.0003	0.000021	0.000028	0.00093
Copper Iron	mg/L	0.3 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.010	0.003	0.003	< 0.007	0.0009	0.0003	< 0.007	< 0.007	< 0.007
Lead	mg/L	0.3 AO 0.01 MAC	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.004	<0.001	<0.001	< 0.0009	0.00017	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Magnesium	mg/L	0.01 WAC	16.1	16.5	16.5	17.1	15.7	15.4	15.9	17.2	18.7	18.8	17.7	18.0	20.2	20.1	31.5
Manganese	mg/L	0.05 AO	0.004	0.006	0.007	0.002	<0.002	0.005	0.004	0.004	0.032	0.00351	0.00957	0.00458	0.00179	0.00341	0.00639
Molybdenum	mg/L	0.00710	0.044	0.043	0.042	0.043	0.040	0.035	0.025	0.038	0.036	0.0437	0.0436	0.0398	0.0396	0.0346	0.0328
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	0.0004	0.0009	0.0005	0.0006	0.0005	0.0014
Potassium	mg/L		5.91	5.99	6.14	6.8	5.42	5.28	5.82	5.98	6.05	7.76	5.61	5.95	7.22	6.18	9.47
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.00004	< 0.00004	0.00011	< 0.00004	< 0.00004	0.00014
Silicon	mg/L	-	2.86	1.16	2.29	1.8	2.29	2.05	2.33	2.36	2.76	3.07	2.30	2.57	2.80	2.52	2.60
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	97.1	99.2	100	105	91.0	94.3	90.5	98.7	97.7	100	95.3	94.3	107	95.8	97.4
Strontium	mg/L		0.803	0.823	0.850	0.822	0.842	0.784	0.577	0.816	0.847	1.00	0.837	0.899	0.997	1.02	1.40
Sulphur	mg/L		65.2	65.0	64.6	64.1	58.0	62.3	53.5	56.3	53.7	85.0	63.0	63.0	68	69	56
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	0.00001	0.000005	0.000009	0.000006	0.000011
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0001	0.00016	0.00013	0.00009	0.00017	0.00014
Titanium	mg/L		0.004	0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.018	0.00011	0.00535	0.00192	0.00022	< 0.00007	0.00009
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000554	0.000689	0.00056	0.000665	0.000562	0.000527
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00028	0.00053	0.00029	0.0003	0.0003	0.00028
Zinc	mg/L	5 AO	<0.005	<0.005	0.011	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	< 0.002	0.003	0.003	< 0.002	< 0.002	< 0.002
				1	1	1		<u> </u>		1	<u> </u>		1	<u> </u>	1		

Notes:
(1) MECP Ontario Drinking Water Standards.

(1) MECP Ontain Drinking water Standards.
(2) Operational Guideline (OG) within ODWS.
(3) Aesthetic Objective (AO) within ODWS.
(4) Maximum Acceptable Concentration (MAC) within ODWS.
(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
(6) ODWS exceedances indicated by **bold** entries.

Page 21 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-30-II

Parameters		(1)	2014		2015			2016			2017			2018	
General Chemistry	Units	ODWS (1)	Sep	May	July	Sept	May	July	Sept	May	July	Sept	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	224	192	168	174	246	219	207	255	260	241	248	247	219
Chloride	mg/L	250 AO ⁽³⁾	28.7	8.8	8.84	7.55	4.53	4.81	5.24	3.75	3.29	3.65	3.48	2.62	2.58
Dissolved Organic Carbon	mg/L	5 AO	6.1	2.5	3.1	2.2	2.4	2.4	2.0	1.8	2.9	3.5	2.5	5.1	3.0
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	1.03	0.53	0.61	0.61	0.21	0.53	<0.25	<0.25	0.66	0.64	0.75	0.68	0.56
Sulphate	mg/L	500 AO	277	138	165	165	81.8	120	130	64.5	69.1	82.4	90.8	78.9	96.2
Hardness	mg/L	80-100 OG	54.8	93.6	102	107	146	121	124	141	129	123	130	160	150
Nitrate	mg/L	10 MAC	<0.25	0.37	<0.25	<0.25	0.20	<0.10	<0.25	<0.25	0.06	<0.10	0.19	0.14	<0.10
Nitrite	mg/L	1 MAC	<0.25	<0.05	<0.25	<0.25	<0.10	<0.10	<0.25	<0.25	<0.05	<0.10	<0.05	<0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.82	0.38	0.54	0.39	0.25	0.29	0.23	<0.10	<0.10	0.39	0.20	<0.10	0.13
Orthophosphate	mg/L		<0.50	<0.10	<0.50	<0.50	<0.20	<0.20	<0.50	<0.50	<0.10	<0.20	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.49	8.44	8.06	8.00	8.14	8.15	8.39	8.44	8.33	8.25	8.10	8.15	8.03
Electrical Conductivity	μS/cm		1080	718	685	726	578	683	710	596	616	643	620	637	641
Total Ammonia	mg/L		0.33	0.18	0.22	0.10	0.03	0.04	0.03	<0.02	0.06	0.04	<0.02	<0.02	0.07
Total Dissolved Solids	mg/L	500 AO	1300	410	466	434	344	388	398	326	340	346	340	350	400
Total Kjeldahl Nitrogen (TKN)	mg/L		1.15	0.56	0.76	0.49	0.28	0.33	0.26	<0.10	<0.10	0.43	0.20	<0.10	0.20
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals		,		•								•	•		
Aluminum	mg/L	0.1 OG	0.21	0.006	0.007	0.008	0.029	0.014	0.022	<0.004	0.007	0.009	0.007	<0.004	0.007
Arsenic	mg/L	0.01 MAC	<0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003
Barium	mg/L	1 MAC	0.015	0.022	0.023	0.026	0.028	0.028	0.032	0.032	0.029	0.031	0.029	0.035	0.037
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	0.172	0.145	0.162	0.196	0.115	0.170	0.199	0.111	0.151	0.178	0.160	0.165	0.209
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		12.4	17.7	17.3	18.3	28.8	19.4	20.2	27.2	21.1	20.2	23.2	28.3	23.6
Chromium	mg/L	0.05 MAC	<0.003	< 0.003	<0.003	<0.003	< 0.003	0.004	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.004
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	< 0.003	0.043	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003
Iron	mg/L	0.3 AO	0.124	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		5.79	12.0	14.2	15.0	18.0	17.7	17.9	17.8	18.5	17.5	17.5	21.6	22.2
Manganese	mg/L	0.05 AO	0.013	0.029	0.027	0.026	0.072	0.031	0.023	0.004	0.015	0.066	0.016	0.003	0.017
Molybdenum	mg/L		0.094	0.046	0.061	0.052	0.017	0.035	0.039	0.021	0.023	0.028	0.027	0.022	0.028
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	<0.003
Potassium	mg/L		6.17	5.3	6.29	7.19	4.32	6.95	7.11	4.65	5.58	5.49	5.15	5.92	6.92
Selenium	mg/L		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		3.28	3.13	2.69	3.40	3.27	4.21	4.04	3.6	4.07	4.12	2.63	4.19	3.74
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	197	120	112	116	81.9	97.8	97.9	76.6	78.9	74.3	74	74.2	82.4
Strontium	mg/L		0.128	0.208	0.325	0.35	0.251	0.369	0.454	0.356	0.418	0.413	0.354	0.45	0.522
Sulphur	mg/L		100	51.2	54.9	60.1	20.9	34.7	39.2	22.1	22.6	26.8	29.9	24.5	33.7
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		0.008	0.002	0.003	0.003	<0.002	0.003	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	0.005	0.003	0.005	0.004	0.003	0.003	0.002	0.002	0.002	<0.002	0.002	0.002	0.003
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	<0.005	0.036	0.005	<0.005	<0.005	0.019	<0.005	0.006	<0.005	<0.005	<0.005	<0.005

- Notes:

 (1) MECP Ontario Drinking Water Standards.

 (2) Operational Guideline (OG) within ODWS.

 (3) Aesthetic Objective (AO) within ODWS.

 (4) Maximum Acceptable Concentration (MAC) within ODWS.

 (5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

 (6) ODWS exceedances indicated by **bold** entries.

Page 22 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-30-II

Parameters	Units	ODWS (1)	2019			2020				2021			2022		2023		
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	244	228	212	216	221	244	252	226	206	220	207	205	224	184	226
Chloride	mg/L	250 AO ⁽³⁾	1.42	2.36	2.20	2.40	2.40	2.15	1.14	2.47	1.94	2.0	< 1	1.0	1	< 1	1
Dissolved Organic Carbon	mg/L	5 AO	2.9	4.3	1.6	2.4	2.1	2.8	3.2	3.7	3.8	1.8	2.0	2.0	2.0	2.4	2.0
Fluoride	mg/L	1.5 MAC (4)	0.29	0.57	0.51	0.70	0.68	0.72	0.27	0.63	0.65	0.70	0.75	0.76	0.53	0.24	0.79
Sulphate	mg/L	500 AO	28.3	64.2	91.0	93.4	93.4	111.0	33.5	85.1	114	96	98	100	55	18	96
Hardness	mg/L	80-100 OG	182	153	136	135	130	131	244	138	146	156	143	152	169	192	150
Nitrate	mg/L	10 MAC	<0.05	<0.10	<0.10	<0.10	<0.05	<0.05	0.06	<0.05	<0.05	< 0.06	< 0.06	< 0.06	0.09	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.05	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	<0.10	0.15	0.24	0.16	0.16	0.29	0.14	0.18	< 0.5	< 0.5	0.09	0.42	0.14	0.25
Orthophosphate	mg/L		<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10						0.1
рН	pH Units	6.5-8.5 OG	7.95	7.92	7.90	8.00	8.10	7.59	7.88	8.12	8.10	8.20	8.27	8.18	8.17	8.00	8.26
Electrical Conductivity	μS/cm		483	615	676	660	525	529	517	583	613	579	577	602	514	366	576
Total Ammonia	mg/L		<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	0.09	<0.02	< 0.04	< 0.04	< 0.04	< 0.04	0.06	< 0.04
Total Dissolved Solids	mg/L	500 AO	284	308	346	332	338	374	284	368	364	360	334	360	317	217	400
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.10	0.15	0.24	0.16	0.16	0.29	0.23	0.18	< 0.5	0.08	0.09	0.44	0.20	0.26
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.14	< 0.03	< 0.03	0.08	< 0.03	0.004
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.005	0.009	0.024	0.025	0.027	0.040	0.092	0.045	0.027	0.048	0.033	0.005	0.001	0.009
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0006	0.0006	0.0007	0.0006	< 0.0002	0.0007
Barium	mg/L	1 MAC	0.034	0.031	0.031	0.025	0.027	0.027	0.020	0.029	0.026	0.0313	0.0329	0.0331	0.0312	0.0646	0.0252
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	0.000021	< 0.000007	0.000009	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	0.062	0.146	0.172	0.159	0.224	0.188	0.034	0.174	0.198	0.258	0.204	0.192	0.089	0.031	0.175
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000017	0.000005	0.000013	0.000012	< 0.000003	0.000004
Calcium	mg/L		40.2	28.4	22.0	22	21.3	21.1	59.8	23.2	23.1	29.2	24.3	25.8	37	50.6	23.8
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.005	<0.003	<0.003	0.00029	0.00035	0.00046	0.00017	0.0004	0.00025
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000031	0.000073	0.000033	0.000045	0.000053	0.000016
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	0.0021	0.0008	0.0006	0.0017	0.0007	0.0043
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	0.010	0.011	<0.010	0.038	0.125	<0.010	0.016	0.067	0.079	0.008	1.50	0.009
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		19.9	19.9	19.7	19.4	18.7	18.9	23.1	19.5	21.4	20.1	20.1	21.2	18.5	16	22
Manganese	mg/L	0.05 AO	0.009	0.015	0.017	0.010	0.004	0.007	0.004	0.015	0.021	0.00147	0.00577	0.00222	0.0056	0.0786	0.00134
Molybdenum	mg/L		0.007	0.018	0.023	0.021	0.021	0.024	0.003	0.019	0.023	0.0182	0.0177	0.0198	0.0103	0.00119	0.017
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0005	0.0006	0.0005	0.0007	0.0002	0.0007
Potassium	mg/L		3.64	5.26	6.26	6.23	5.25	5.86	2.71	5.76	6.61	7.29	5.97	6.54	5.24	3.1	6.95
Selenium	mg/L		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.00004	0.00004	0.00009	0.00008	< 0.00004	0.00005
Silicon	mg/L		3.93	2.76	3.94	3.29	3.87	3.70	2.37	4.43	4.03	5.22	4.54	4.68	3.88	6.62	4.01
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	38.0	64.3	77.3	71.0	66.8	76.0	33.9	72.9	75.2	68.8	65.0	68.7	50.6	4.20	75.3
Strontium	mg/L		0.36	0.43	0.476	0.405	0.465	0.472	0.146	0.434	0.507	0.521	0.469	0.538	0.462	0.881	0.58
Sulphur	mg/L		8.74	21.5	29.5	23.1	27.4	33.7	9.16	28.3	35.1	44	31	38	16	6	37
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.000007	0.000007	0.000011	0.000008	< 0.000005	0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00006	0.00012	0.00007	< 0.00006	0.00007	0.00014
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	0.00041	0.00177	0.00108	0.00012	0.00009	0.00076
Uranium	mg/L	0.02 MAC	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00122	0.00151	0.00161	0.00165	0.000053	0.0012
Vanadium 	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00049	0.00044	0.0005	0.00045	0.00021	0.00042
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.002	0.002	< 0.002	< 0.002	0.002	0.004

Notes:

(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 23 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-30-III

Parameters	Units	Unite	OD14(0 (1)	2017		2018		2019			2020				2021			2022		2023		
General Chemistry	Units	ODWS (1)	Sept	Мау	July	Oct	Мау	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct	
Alkalinity	mg/L	30-500 OG ⁽²⁾	284	275	251	178	213	202	197	206	212	225	217	211	198	196	187	185	182	118	185	
Chloride	mg/L	250 AO ⁽³⁾	22.6	9.01	10.7	0.68	0.78	0.93	0.69	0.75	0.74	0.65	0.87	0.76	0.50	< 1	< 1	< 1	< 1	2	< 1	
Dissolved Organic Carbon	mg/L	5 AO	22.6	8.0	12.7	2.7	4.2	3.6	2.2	3.0	2.9	3.8	4.0	2.9	3.2	2.7	2.0	3.0	3.0	2.1	2.0	
Fluoride	mg/L	1.5 MAC (4)	0.79	0.55	0.46	0.17	0.23	0.25	0.21	0.26	0.20	0.18	0.24	0.20	0.18	0.23	0.28	0.22	0.22	1.22	0.22	
Sulphate	mg/L	500 AO	339	123	142	18.6	21.1	21.5	21.2	20.3	20.6	20.3	17.8	21.4	20.1	23	18	20	19	200	17	
Hardness	mg/L	80-100 OG	306	212	234	178	189	205	188	198	176	185	177	197	186	221	189	189	200	105	211	
Nitrate	mg/L	10 MAC	<0.25	<0.05	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	
Nitrite	mg/L	1 MAC	<0.25	<0.05	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Organic Nitrogen	mg/L	0.15 OG	0.15	<0.10	0.13	0.14	<0.10	0.10	<0.10	0.20	0.16	0.16	0.19	<0.10	0.18	< 0.5	< 0.5	0.07	0.13	0.13	0.11	
Orthophosphate	mg/L		<0.50	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10						< 0.03	
рН	pH Units	6.5-8.5 OG	8.22	8.00	8.02	7.73	7.80	7.77	7.69	7.84	7.88	7.36	7.77	7.88	7.78	7.99	8.05	7.94	7.90	8.30	7.95	
Electrical Conductivity	μS/cm		1280	723	784	390	420	458	474	466	375	357	423	420	410	373	386	378	371	612	370	
Total Ammonia	mg/L		0.07	0.03	0.12	0.10	0.05	0.08	0.03	<0.02	0.04	0.04	0.05	0.06	<0.02	0.04	< 0.04	0.06	0.06	< 0.04	< 0.04	
Total Dissolved Solids	mg/L	500 AO	732	402	440	230	222	204	224	228	234	224	236	240	212	200	251	209	229	429	217	
Total Kjeldahl Nitrogen (TKN)	mg/L		0.22	<0.10	0.25	0.24	<0.10	0.18	<0.10	0.20	0.20	0.20	0.24	<0.10	0.18	< 0.5	0.09	0.13	0.19	0.13	0.14	
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	0.05	< 0.050	<0.050	<0.050	0.03	< 0.03	0.03	< 0.03	< 0.03	0.006	
Metals																						
Aluminum	mg/L	0.1 OG	0.009	0.007	0.006	0.008	<0.004	0.005	0.007	0.008	0.013	0.015	0.052	0.012	0.008	0.143	0.002	0.002	< 0.001	0.002	0.002	
Arsenic	mg/L	0.01 MAC	<0.003	0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0007	< 0.0002	
Barium	mg/L	1 MAC	0.107	0.062	0.036	0.059	0.103	0.042	0.052	0.059	0.044	0.037	0.058	0.061	0.145	0.116	0.104	0.0935	0.0710	0.0392	0.0521	
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000035	< 0.000007	0.000017	0.000014	< 0.000007	0.000018	
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	
Boron	mg/l	5 IMAC (5)	0.152	0.123	0.067	0.041	0.054	0.071	0.068	0.058	0.10	0.058	0.051	0.063	0.055	0.064	0.052	0.042	0.025	0.195	0.026	
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000005	< 0.000003	0.000006	< 0.000003	0.000008	0.000003	
Calcium	mg/L		75.9	52.5	57.3	46.9	48.5	52.2	48.1	50.4	44.3	47.6	43.8	49.3	48.8	62.1	50.5	50.3	54.3	18.5	55.7	
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	0.00059	0.00016	0.00025	0.00014	0.00035	0.00012	
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000139	0.000078	0.000054	0.000024	0.00003	0.000027	
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	0.0031	< 0.0002	0.0003	0.0004	0.0018	0.0010	
Iron	mg/L	0.3 AO	0.607	1.17	0.432	1.31	1.12	0.037	0.658	0.63	0.79	0.546	1.80	0.491	0.918	1.64	0.106	1.07	1.55	< 0.007	0.864	
Lead	mg/L	0.01 MAC	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00028	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	
Magnesium	mg/L		28.3	19.6	22.1	14.8	16.6	18.1	16.5	17.4	15.9	16.1	16.5	17.9	15.5	16	15.3	15.5	15.5	14.3	17.6	
Manganese	mg/L	0.05 AO	0.829	0.545	0.090	0.096	0.271	0.095	0.126	0.077	0.114	0.089	0.21	0.108	0.151	0.0898	0.0768	0.0743	0.0634	0.0049	0.0691	
Molybdenum	mg/L		0.025	0.018	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00051	0.00082	0.00055	0.00064	0.0146	0.00047	
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	0.0006	0.0003	< 0.0001	0.0001	0.0011	0.0002	
Potassium	mg/L		6.16	4.85	5.25	3.21	3.84	3.95	3.92	3.83	3.35	3.53	3.73	3.98	3.46	3.62	3.05	3.03	3.20	5.44	3.28	
Selenium	mg/L		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.009	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.00004	< 0.00004	0.00012	< 0.00004	0.00004	< 0.00004	
Silicon	mg/L		5.77	4.41	6.32	5.03	6.35	5.51	5.95	4.96	6.57	5.79	5.27	6.31	5.88	8.29	7.19	6.91	6.38	3.60	5.95	
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	
Sodium	mg/L	200 AO	136	62.2	72.6	12.8	14.1	10.7	10.7	11.1	9.6	8.45	11.4	9.09	8.97	5.00	5.19	4.60	4.72	90.3	4.77	
Strontium	mg/L		3.82	2.81	1.25	1.22	1.47	1.17	1.21	1.19	1.15	1.08	1.13	1.2	1.68	1.31	1.12	1.07	0.971	0.689	0.886	
Sulphur	mg/L		102	60.9	44.9	7.53	7.71	8.20	7.30	6.71	6.01	9.40	6.31	7.85	6.20	11	6	6	6	70	5	
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000007	< 0.000005	
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	0.00008	0.00011	< 0.00006	0.00017	< 0.00006	
Titanium	mg/L		0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	0.00425	< 0.00005	0.00009	< 0.00007	< 0.00007	0.00009	
Uranium	mg/L	0.02 MAC	0.003	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000096	0.000172	0.000087	0.000053	0.000968	0.000038	
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00041	0.00007	0.00011	0.00011	0.00112	0.00010	
Zinc	mg/L	5 AO	0.012	0.006	<0.005	<0.005	0.007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.003	< 0.002	0.005	< 0.002	< 0.002	< 0.002	
					<u> </u>				1			<u> </u>	1			1	1		1	1		

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.
 (3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within OD'

(6) ODWS exceedances indicated by **bold** entries.

WSP Project No.: TY131010 Page 24 of 55

Groundwater Geochemical Results OW-31-I

Parameters	Units	ODWS (1)	2017 2018			2019 2020					2021			2022			2023				
General Chemistry	Units	ODWS "	Sept	May	July	Oct	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	164	146	132	Insufficient	140	128	140	139		163	136	Insufficient	136	144	137	137	134	148	135
Chloride	mg/L	250 AO ⁽³⁾	13.8	5.97	4.67	volume	2.75	2.85	2.08	1.98		1.65	1.62	volume	1.61	1	< 1	< 1	2	< 1	< 1
Dissolved Organic Carbon	mg/L	5 AO	2.1	1.3	3.3	to sample	1.5	2.8	1.0	1.5		1.7	1.8	to sample	3.0	1.4	2.0	2.0	1.0	1.3	1.0
Fluoride	mg/L	1.5 MAC (4)	0.73	0.82	0.40		0.58	0.75	<0.25	0.56		0.55	0.42		0.43	0.71	0.79	0.72	0.71	0.76	0.74
Sulphate	mg/L	500 AO	111	213	272		282	292	313	283		311	278		299	300	290	270	280	290	280
Hardness	mg/L	80-100 OG	154	177	227		240	245	256	254		247	214		240	258	242	234	240	227	259
Nitrate	mg/L	10 MAC	<0.10	0.37	0.62		0.64	0.58	0.82	0.69		0.70	0.52		0.51	0.56	0.49	0.42	0.44	0.40	0.40
Nitrite	mg/L	1 MAC	<0.10	<0.05	<0.25		<0.25	<0.25	<0.25	<0.25		<0.10	<0.05		<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.18	0.11	0.14		<0.10	1.28	0.11	0.17	0.16	0.11	0.39		<0.10	< 0.5	< 0.5	< 0.05	0.39	< 0.05	0.14
Orthophosphate	mg/L		<0.20	<0.10	<0.50		<0.50	<0.50	<0.50	<0.50		<0.20	<0.10		<0.10						0.05
рН	pH Units	6.5-8.5 OG	8.29	7.66	7.85		7.81	7.97	7.66	7.74		7.17	7.69		7.96	8.09	8.19	8.08	8.10	8.27	7.99
Electrical Conductivity	μS/cm		605	689	805		808	886	958	909		749	805		827	799	815	804	783	799	805
Total Ammonia	mg/L		0.17	0.07	<0.02		<0.02	0.09	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	338	432	478		498	528	518	518		570	512		532	529	526	554	534	529	534
Total Kjeldahl Nitrogen (TKN)	mg/L		0.35	0.18	0.14		<0.10	1.37	0.11	0.17	0.16	0.11	0.39		<0.10	< 0.5	< 0.05	< 0.05	0.42	< 0.05	0.13
Total Phosphorus	mg/L		<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	0.078		<0.050	0.21	< 0.03	< 0.03	< 0.03	< 0.03	0.012
Metals	1			T	1				1				1			1		T	T	1	
Aluminum	mg/L	0.1 OG	0.009	0.030	<0.004		0.230	0.008	0.008	0.022	0.020	0.015	0.057		0.111	0.333	0.378	0.093	0.033	0.004	0.180
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	0.0004	0.0005	0.0005	0.0003	0.0003	0.0003
Barium	mg/L	1 MAC	0.045	0.038	0.052		0.043	0.042	0.051	0.037	0.036	0.037	0.032		0.039	0.0421	0.0413	0.0385	0.0318	0.0346	0.0382
Beryllium	mg/L		<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	0.000012	0.000014	0.00001	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.202	0.192	0.190		0.220	0.212	0.220	0.210	0.277	0.215	0.187		0.228	0.320	0.224	0.225	0.167	0.189	0.202
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.000012	0.000008	0.000019	0.000006	0.000011	0.000007
Calcium	mg/L		24.5	29.4	38.0		40.4	41.7	44.1	42.1	38.7	43.6	35.4		41	50.2	43.1	43.1	45.2	40.3	48.3
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	0.00152	0.00253	0.00071	0.00038	0.00033	0.00122
Cobalt	mg/L		<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	0.000553	0.000946	0.000177	0.000054	0.000022	0.000555
Copper	mg/L	1 AO	<0.003	<0.003	<0.003		0.007	<0.003	0.004	<0.003	<0.003	<0.003	0.006		0.003	0.0032	0.0028	0.0014	0.0018	0.0023	0.0050
Iron	mg/L	0.3 AO	0.062	<0.010	<0.010		0.337	<0.010	<0.010	<0.010	0.019	<0.010	0.106		0.055	0.388	0.633	0.135	0.044	0.009	0.340
Lead	mg/L	0.01 MAC	<0.002	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	0.00033	0.00043	0.00009	< 0.00009	< 0.00009	0.00028
Magnesium	mg/L		22.5	25.1	32.1		33.8	34.1	35.4	36.2	31.6	33.6	30.6		33.4	32.3	32.7	30.6	31.0	30.7	33.7
Manganese	mg/L	0.05 AO	0.053	0.020	0.018		0.023	0.003	0.004	<0.002	0.003	<0.002	0.010		0.011	0.0175	0.0344	0.00542	0.00203	0.00168	0.0197
Molybdenum	mg/L		0.014	0.014	0.013		0.013	0.012	0.013	0.013	0.012	0.013	0.016		0.013	0.0136	0.014	0.0133	0.0149	0.0132	0.0134
Nickel	mg/L		<0.003	<0.003	0.003		0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003		<0.003	0.0025	0.0037	0.0014	0.0013	0.0011	0.0028
Potassium	mg/L		6.45	7.24	8.57		8.73	8.89	9.93	9.63	8.17	8.91	7.97		9.08	10.6	8.66	8.84	9.26	9.01	9.83
Selenium	mg/L		<0.004	<0.004	<0.004		<0.004	<0.004	<0.004	0.057	<0.004	<0.004	<0.004		<0.004	0.00036	0.00044	0.00055	0.00034	0.00045	0.00041
Silicon	mg/L		4.35	2.55	3.35		3.80	2.29	3.32	2.24	3.08	3.06	3.01		3.04	4.75	3.33	3.76	3.08	3.30	3.21
Silver	mg/L		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	48.8	62.4	72.2		74.9	76.9	81.9	78.7	73.2	78.0	69.3		75.9	74.3	73.1	71.6	76.4	73.3	79.6
Strontium	mg/L		1.94	0.983	1.25		1.19	1.20	1.30	1.18	1.14	1.20	1.03		1.12	1.11	0.982	0.999	1.07	1.03	1.17
Sulphur	mg/L		35.1	66.6	82.0		93.2	95.1	101	95.3	89.7	101	89		90.4	119	96	95	96	99	102
Thallium	mg/L		<0.006	<0.006	<0.006		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		<0.006	0.000033	0.000036	0.000029	0.000024	0.000022	0.000026
Tin	mg/L		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.0001	0.00008	0.00013	0.00009	0.00012	0.00013
Titanium	mg/L		<0.002	0.005	0.003		0.015	0.004	0.004	<0.002	<0.002	<0.002	0.012		0.008	0.015	0.0188	0.00506	0.0016	0.00018	0.00905
Uranium	mg/L	0.02 MAC	<0.002	0.002	0.004		0.004	0.002	0.003	0.003	0.002	0.002	0.002		0.002	0.00234	0.00275	0.00231	0.00243	0.00218	0.00217
Vanadium	mg/L		<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.00224	0.00222	0.00145	0.00093	0.00085	0.00151
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005		800.0	<0.005	0.005	<0.005	<0.005	<0.005	<0.005		<0.005	0.003	0.004	0.003	< 0.002	0.003	0.005
		<u> </u>												·							

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.
 (3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within OD'

(6) ODWS exceedances indicated by **bold** entries.

WSP Project No.: TY131010 Page 25 of 55

Groundwater Geochemical Results OW-31-II

Parameters	Units	ODWS (1)	2017 2018			2019 2020							2021		2022						
General Chemistry	Units	ODWS "	Sept	May	July	Oct	Мау	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	169	155	129	124	140	139	126	130	134	146	128	143	117	DRY	115	119	130	263	121
Chloride	mg/L	250 AO ⁽³⁾	18.8	9.62	6.80	4.58	3.47	3.36	2.60	2.52	2.76	2.33	2.14	3.01	1.95		1.0	2.0	2	1	3
Dissolved Organic Carbon	mg/L	5 AO	6.6	6.4	8.4	5.1	4.4	4.2	2.7	7.3	3.3	3.7	2.6	4.8	4.2		2.0	2.0	3.0	1.9	2.0
Fluoride	mg/L	1.5 MAC (4)	1.0	1.27	1.13	0.98	0.93	1.11	0.94	1.10	1.40	1.24	1.01	1.37	1.16		1.24	1.17	1.19	0.34	1.19
Sulphate	mg/L	500 AO	166	232	241	218	206	223	211	193	199	199	193	190	196		190	210	200	83	180
Hardness	mg/L	80-100 OG	137	145	135	125	117	115	109	112	99.9	99.5	115	91.5	112		102	108	138	151	108
Nitrate	mg/L	10 MAC	<0.10	<0.05	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05	0.07	<0.05	<0.05		< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.10	<0.05	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.28	0.12	0.26	<0.10	<0.10	0.14	<0.10	0.22	0.12	0.18	0.15	0.28	0.14		< 0.5	0.08	0.19	0.10	0.11
Orthophosphate	mg/L		<0.20	<0.10	<0.10	<0.20	<0.20	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10						0.06
рН	pH Units	6.5-8.5 OG	8.21	7.80	7.99	7.72	7.88	8.04	7.72	7.82	7.87	7.22	7.73	8.16	8.04		8.24	8.04	8.14	8.37	8.03
Electrical Conductivity	μS/cm		752	763	758	726	688	768	764	748	599	575	655	618	646		635	656	629	638	648
Total Ammonia	mg/L		0.08	0.14	0.06	0.13	0.04	0.10	0.08	<0.02	0.05	0.02	<0.02	0.02	<0.02		0.05	0.04	< 0.04	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	392	444	468	456	422	412	408	402	396	418	402	424	388		429	414	414	409	429
Total Kjeldahl Nitrogen (TKN)	mg/L		0.36	0.26	0.32	0.20	<0.10	0.24	0.12	0.22	0.17	0.20	0.15	0.3	0.14		< 0.05	0.12	0.20	0.10	0.13
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050		< 0.03	< 0.03	0.10	< 0.03	< 0.003
Metals																					
Aluminum	mg/L	0.1 OG	0.008	0.011	0.007	0.010	0.008	0.016	0.009	0.019	0.013	0.029	0.078	0.041	0.027		0.011	0.018	0.335	0.003	0.011
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		0.0004	0.0007	0.0006	0.0006	0.0006
Barium	mg/L	1 MAC	0.077	0.064	0.059	0.059	0.047	0.044	0.046	0.043	0.035	0.033	0.037	0.036	0.04		0.0416	0.042	0.0446	0.0306	0.0373
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		< 0.000007	0.000022	0.000012	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.213	0.213	0.229	0.231	0.241	0.224	0.222	0.233	0.282	0.216	0.245	0.23	0.215		0.243	0.217	0.181	0.138	0.215
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.000003	0.000015	0.000006	0.000009	0.000004
Calcium	mg/L		20.9	25.0	23.3	21.4	20.2	19.7	18.8	19.0	17.1	17.6	19.4	13.9	20.5		17.5	19.6	28.8	26.1	18.2
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003		0.00021	0.00019	0.00195	0.00038	0.00012
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		0.00007	0.000052	0.000426	0.00003	0.000056
Copper	mg/L	1 AO	<0.003	0.054	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003		0.0004	0.0013	0.0034	0.001	0.0028
Iron	mg/L	0.3 AO	<0.010	0.013	<0.010	<0.010	<0.010	<0.010	<0.010	0.011	0.014	0.026	0.061	0.03	<0.010		0.02	0.032	0.705	< 0.007	0.012
Lead	mg/L	0.01 MAC	<0.002	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		< 0.00009	< 0.00009	0.00035	< 0.00009	< 0.00009
Magnesium	mg/L		20.5	20.1	18.7	17.3	16.2	16.0	15.1	15.7	13.9	13.5	16.1	13.8	14.8		14.1	14.2	16.1	20.8	15.3
Manganese	mg/L	0.05 AO	0.053	0.051	0.045	0.045	0.023	0.028	0.023	0.013	0.019	0.008	0.007	0.011	0.034		0.0196	0.00854	0.0367	0.00196	0.00869
Molybdenum	mg/L		0.014	0.017	0.016	0.016	0.016	0.015	0.016	0.015	0.015	0.014	0.016	0.016	0.016		0.0168	0.0166	0.0167	0.0134	0.0151
Nickel	mg/L		0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	<0.003	0.024	< 0.003	<0.003	<0.003		0.0015	0.0013	0.0029	0.0004	0.0014
Potassium	mg/L		5.43	6.11	5.66	5.74	5.50	5.46	5.63	6.40	4.9	4.82	5.66	5.21	5.44		5.13	5.4	5.75	6.16	5.77
Selenium	mg/L		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004		< 0.00004	0.00017	< 0.00004	< 0.00004	0.00004
Silicon	mg/L		3.4	2.48	3.25	2.68	3.77	2.22	3.21	2.42	3.66	3.22	3.72	1.7	1.98		2.32	3.73	3.5	4.3	3.24
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	84	104	99.3	106	96.7	99.4	103	102	90.3	92.6	107	87.4	93.9		92.5	91.7	93.2	61.7	103
Strontium	mg/L		1.99	1.03	1.07	0.984	0.833	0.825	0.82	0.72	0.75	0.659	0.774	0.746	0.762		0.686	0.679	0.760	0.544	0.746
Sulphur	mg/L		52.6	72.2	71.1	74.5	70.2	69.1	68.4	65.9	61.4	65.3	61.8	59.8	74.4		67	70	68	28	72
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		< 0.000005	0.000011	< 0.000005	0.000009	0.000008
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.00014	0.00015	0.00019	0.00006	0.00009
Titanium	mg/L		<0.002	0.004	0.003	0.003	0.005	0.002	0.003	<0.002	<0.002	<0.002	0.011	<0.002	<0.002		0.00057	0.00081	0.0162	0.00012	0.00045
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.000779	0.00131	0.000929	0.00159	0.0011
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.00034	0.00108	0.00155	0.00057	0.00101
Zinc	mg/L	5 AO	<0.005	0.080	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		< 0.002	0.004	0.004	< 0.002	< 0.002
	<u> </u>	-		1														· · ·	· · · · · · · · · · · · · · · · · · ·		

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.
 (3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within OD'

(6) ODWS exceedances indicated by **bold** entries.

WSP Project No.: TY131010 Page 26 of 55

Groundwater Geochemical Results OW-25-I

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Offics	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	230	227	223	221	231	225	234	235	239	236	243	239	252	222	211
Chloride	mg/L	250 AO ⁽³⁾	1.68	1.27	1.32	1.27	1.48	1.32	1.43	1.23	1.22	1.41	1.21	1.26	1.21	1.24	1.04
Dissolved Organic Carbon	mg/L	5 AO	2.5	2.5	2.4	2.7	3.2	2.8	2.7	3.1	2.4	2.5	3.0	3.0	2.7	2.3	2.6
Fluoride	mg/L	1.5 MAC (4)	0.54	0.55	0.59	0.60	0.46	0.60	0.16	0.58	0.53	0.51	0.56	0.52	0.52	0.59	0.53
Sulphate	mg/L	500 AO	5.3	0.89	1.38	0.90	6.11	1.24	2.53	1.42	0.77	2.62	1.88	0.82	2.25	2.33	0.90
Hardness	mg/L	80-100 OG	164	181	165	163	177	166	161	159	160	153	157	166	167	166	168
Nitrate	mg/L	10 MAC	0.16	<0.05	<0.10	< 0.05	<0.10	<0.05	<0.10	<0.05	< 0.05	<0.10	< 0.05	<0.05	< 0.05	< 0.05	<0.05
Nitrite	mg/L	1 MAC	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.05	<0.10	<0.05	< 0.05	<0.10	< 0.05	<0.05	< 0.05	< 0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	0.44	<0.10	0.18	0.17	0.39	0.21	<0.10	0.21	0.16	0.17	<0.10	0.23	0.25	<0.10	0.19
Orthophosphate	mg/L		<0.10	<0.10	<0.20	0.55	<0.20	<0.10	<0.20	<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10
рН	pH Units	6.5-8.5 OG	8.32	8.19	8.06	8.39	8.15	8.13	8.08	8.17	8.33	8.23	8.34	8.18	7.92	7.96	7.8
Electrical Conductivity	μS/cm		433	432	444	432	454	438	414	444	449	422	427	449	429	432	418
Total Ammonia	mg/L		0.33	0.39	0.34	0.31	0.22	0.33	0.30	0.31	0.36	0.22	0.33	0.30	0.35	0.34	0.34
Total Dissolved Solids	mg/L	500 AO	240	246	228	220	240	230	224	228	224	220	232	220	222	224	286
Total Kjeldahl Nitrogen (TKN)	mg/L		0.77	0.46	0.52	0.48	0.61	0.54	0.39	0.52	0.52	0.39	0.38	0.53	0.60	0.37	0.53
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	<0.004	<0.004	0.005	<0.004	0.007	0.236	0.016	<0.004	0.005	0.007	0.005	<0.004	0.012
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.04	0.036	0.034	0.040	0.041	0.040	0.040	0.043	0.042	0.041	0.04	0.045	0.043	0.040	0.041
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	0.136	0.131	0.123	0.113	0.127	0.130	0.141	0.127	0.127	0.118	0.131	0.142	0.128	0.132	0.139
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		34.5	39.8	34.9	34.8	39.0	35.7	33.4	33.8	35.2	32.0	32.5	36.6	36.0	35.7	36.7
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	0.102	0.17	0.163	0.157	0.151	0.137	0.141	0.283	0.137	0.081	0.162	0.142	<0.010	0.124	0.146
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		19.0	19.8	18.8	18.4	19.3	18.6	18.8	18.1	17.6	17.8	18.3	18.0	18.7	18.7	18.5
Manganese	mg/L	0.05 AO	0.007	0.011	0.011	0.009	0.024	0.012	0.012	0.015	0.011	0.011	0.014	0.011	0.011	0.010	0.014
Molybdenum	mg/L		0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	0.003	0.002	<0.002	0.002	<0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		3.94	4.32	4.01	3.92	3.87	4.01	3.81	3.85	3.84	3.67	3.46	3.45	3.69	3.51	3.61
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		7.56	7.43	7.37	6.94	6.35	7.43	7.25	8.53	7.45	7.69	7.99	7.45	5.48	8.92	6.56
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	33.1	29.3	29.2	29.1	27.5	29.4	32.5	30.0	27.9	29.5	27.5	24.8	28.8	27.6	27.3
Strontium	mg/L		0.745	0.744	0.657	0.654	0.730	0.722	0.732	0.728	0.77	0.764	0.751	0.737	0.714	0.709	0.802
Sulphur	mg/L		1.28	0.9	1.88	0.55	0.54	0.83	0.77	1.32	1.14	1.01	1.14	0.86	0.76	1.63	1.20
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.010	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.005	<0.005	<0.005	0.006	<0.005	0.007	0.006	<0.005	<0.005	<0.005	0.009	<0.005	<0.005	<0.005	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 27 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-25-I

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	234	217	223	234	233	248	235	No sample	232	245	223	230	232	231	233
Chloride	mg/L	250 AO ⁽³⁾	1.11	1.44	1.13	1.57	1.34	1.30	1.26	obtained	1.06	2	< 1	< 1	< 1	< 1	< 1
Dissolved Organic Carbon	mg/L	5 AO	3.0	3.1	2.2	2.7	3.0	3.1	2.8		3.4	3.5	3.0	3.0	4.0	2.7	3.0
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	0.50	0.60	0.57	0.64	0.66	0.62	0.54		0.57	0.69	0.61	0.59	0.66	0.67	0.65
Sulphate	mg/L	500 AO	1.53	2.64	1.31	5.63	0.74	2.46	1.24		1.80	10	< 2	2	3	< 2	< 2
Hardness	mg/L	80-100 OG	167	169	156	163	147	153	155		158	183	159	162	173	168	185
Nitrate	mg/L	10 MAC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	0.27	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.16	0.25	0.37	0.33	0.15	0.24	0.18		0.55	< 0.5	< 0.5	< 0.05	0.15	0.30	0.05
Orthophosphate	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10						0.06
рН	pH Units	6.5-8.5 OG	7.83	7.86	7.70	7.76	8.01	7.60	7.87		8.05	8.24	8.28	8.15	8.22	8.14	8.22
Electrical Conductivity	μS/cm		414	463	468	492	380	370	422		427	426	426	418	426	421	424
Total Ammonia	mg/L		0.16	0.29	0.36	0.14	0.32	0.27	0.29		<0.02	0.29	0.38	0.38	0.33	0.39	0.35
Total Dissolved Solids	mg/L	500 AO	226	220	232	248	230	230	220		222	246	246	234	263	232	246
Total Kjeldahl Nitrogen (TKN)	mg/L		0.32	0.54	0.73	0.47	0.47	0.51	0.47		0.55	< 0.5	0.41	0.42	0.48	0.69	0.40
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	0.086	<0.050	0.071	0.146		0.067	0.03	< 0.03	< 0.03	0.07	< 0.03	0.03
Metals	1																
Aluminum	mg/L	0.1 OG	<0.004	0.004	0.009	0.011	0.017	0.025	0.012		800.0	0.001	0.002	0.010	< 0.001	0.002	0.001
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	0.0002	< 0.0002	< 0.0002	0.0002	< 0.0002	< 0.0002
Barium	mg/L	1 MAC	0.040	0.039	0.040	0.040	0.033	0.034	0.035		0.042	0.046	0.041	0.0394	0.0395	0.0384	0.0381
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.142	0.147	0.145	0.145	0.189	0.148	0.143		0.145	0.207	0.129	0.165	0.140	0.125	0.138
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.000003	< 0.000003	0.000008	< 0.000003	< 0.000003	< 0.000003
Calcium	mg/L		36.6	36.3	33.9	34.7	31.9	33.2	32.9		33.1	43	35.1	36.2	39.5	36.4	39.8
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	0.00026	0.00015	0.00033	0.00013	0.00024	0.00013
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	0.000033	0.000034	0.000028	0.000018	0.000022	0.000014
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.007		<0.003	0.0005	0.0017	0.0002	0.0005	0.0006	0.0021
Iron	mg/L	0.3 AO	0.046	<0.010	0.069	0.113	0.112	0.177	0.179		0.106	0.160	0.158	0.167	0.206	0.128	0.190
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	< 0.00009	0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		18.4	19.1	17.3	18.5	16.3	17.0	17.7		18.4	18.4	17.3	17.3	18.1	18.6	20.8
Manganese	mg/L	0.05 AO	0.012	0.020	0.016	0.014	0.016	0.019	0.009		0.011	0.0122	0.0119	0.0126	0.0113	0.0120	0.0116
Molybdenum	mg/L		0.002	0.002	0.002	0.003	<0.002	0.003	<0.002		<0.002	0.00269	0.00096	0.00239	0.00311	0.00185	0.00201
Nickel	mg/L		<0.003	<0.003	<0.003	0.006	<0.003	<0.003	<0.003		<0.003	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	0.0004
Potassium	mg/L		3.79	3.72	3.60	3.14	3.07	3.34	3.28		3.50	4.34	3.42	3.46	3.99	3.75	4.13
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	0.005	<0.004	<0.004	<0.004		<0.004	< 0.00004	< 0.00004	0.0002	< 0.00004	< 0.00004	< 0.00004
Silicon	mg/L		7.57	6.93	7.38	7.72	8.16	7.11	6.21		8.20	9.98	8.72	8.48	7.79	8.12	7.55
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	28.7	31.2	28.5	28.0	24.6	28.6	25.7		27.0	29.4	25.7	25.5	31.9	28.4	33.0
Strontium	mg/L		0.733	0.74	0.738	0.751	0.728	0.705	0.587		0.798	0.828	0.656	0.703	0.825	0.788	0.876
Sulphur	mg/L		1.57	1.83	1.31	1.61	0.74	2.47	1.31		1.23	5	<1	<1	< 3	< 3	< 3
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.00006	< 0.00006	0.0001	< 0.00006	0.00011	< 0.00006
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.01		<0.002	0.00012	0.00009	0.00043	< 0.00007	0.00013	0.00009
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.000038	0.000015	0.000043	0.000039	0.000037	0.00004
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.00014	0.00006	0.00009	0.00006	0.00015	0.00007
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		0.011	< 0.002	< 0.002	0.003	< 0.002	< 0.002	0.002

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 28 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-25-II

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	152	142	139	145	147	143	155	152	142	155	160	156	169	143	137
Chloride	mg/L	250 AO ⁽³⁾	11.2	10.4	10.8	8.82	10.2	9.64	9.87	8.69	8.31	7.16	7.92	7.7	7.48	6.87	6.26
Dissolved Organic Carbon	mg/L	5 AO	1.4	1.1	1.3	1.5	5.3	1.5	1.5	1.6	1.2	1.0	1.7	1.7	1.9	1.8	2.2
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	1.00	0.43	0.96	1.16	0.65	1.11	0.29	0.9	1.0	0.62	1.09	0.96	1.30	0.61	0.90
Sulphate	mg/L	500 AO	232	230	212	218	237	223	257	236	210	213	214	199	211	212	196
Hardness	mg/L	80-100 OG	141	149	135	141	145	142	137	129	124	128	125	119	125	128	124
Nitrate	mg/L	10 MAC	0.25	<0.25	0.27	<0.25	<0.25	0.35	<0.25	0.19	<0.25	<0.25	0.13	0.14	0.16	<0.25	0.11
Nitrite	mg/L	1 MAC	< 0.05	<0.25	<0.10	<0.25	<0.25	<0.25	<0.25	<0.10	<0.25	<0.25	<0.05	<0.10	<0.05	<0.25	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.38	<0.10	0.20	0.32	0.86	0.33	<0.10	0.25	<0.10	<0.10	<0.10	0.26	0.37	0.16	0.18
Orthophosphate	mg/L		<0.10	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.10	<0.20	<0.10	<0.50	<0.20
рН	pH Units	6.5-8.5 OG	8.29	8.26	8.29	8.33	8.04	8.13	8.14	8.21	8.37	8.17	8.17	8.08	7.76	7.89	7.75
Electrical Conductivity	μS/cm		808	806	795	798	836	793	769	791	795	740	770	784	749	746	722
Total Ammonia	mg/L		0.06	0.05	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.10
Total Dissolved Solids	mg/L	500 AO	474	514	440	408	462	476	452	456	454	420	448	450	452	448	454
Total Kjeldahl Nitrogen (TKN)	mg/L		0.44	<0.10	0.23	0.32	0.86	0.33	<0.10	0.25	<0.10	<0.10	<0.10	0.26	0.37	0.16	0.28
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	0.009	0.008	0.005	0.024	0.151	0.006	0.026	0.181	0.011	0.016	0.009	0.011	0.366	0.005	0.013
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.019	0.02	0.021	0.024	0.023	0.025	0.027	0.023	0.027	0.023	0.023	0.024	0.024	0.023	0.025
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.010	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	0.18	0.192	0.195	0.204	0.176	0.198	0.226	0.196	0.198	0.193	0.218	0.219	0.134	0.186	0.214
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		26.6	28.1	25.4	26.3	27.1	27.1	25.2	24.2	23.8	23.8	23.1	22.4	23.5	23.7	23.3
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.052	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	0.217	<0.010	<0.010	0.125	<0.010	<0.010	<0.010	<0.010	0.193	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.001	<0.001
Magnesium	mg/L		18.2	19.2	17.5	18.2	18.7	18.1	17.9	16.6	15.8	16.7	16.4	15.2	16.1	16.6	16.0
Manganese	mg/L	0.05 AO	0.002	<0.002	<0.002	<0.002	0.010	<0.002	<0.002	0.005	<0.002	<0.002	<0.002	<0.002	0.016	<0.002	<0.002
Molybdenum	mg/L		0.066	0.079	0.072	0.067	0.068	0.063	0.058	0.059	0.06	0.061	0.061	0.063	0.031	0.049	0.053
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.013	<0.003	<0.003
Potassium	mg/L		8.08	8.55	8.37	8.37	8.11	8.5	8.12	8.65	8.10	7.99	7.27	6.67	6.87	6.87	7.46
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		2.89	3.11	3.17	3.24	2.79	3.2	3.06	3.65	3.06	3.2	3.36	3.6	2.42	3.22	2.75
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	116	117	116	115	110	115	122	118	110	108	103	97	95.7	98.9	104
Strontium	mg/L		0.552	0.595	0.521	0.55	0.595	0.559	0.540	0.538	0.566	0.571	0.562	0.537	0.348	0.507	0.531
Sulphur	mg/L		66.9	76.7	80.9	82	81.4	82	71.7	67.9	65.9	72.7	67.4	65.6	45.0	64.4	68.8
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		0.002	<0.002	<0.002	0.005	0.011	0.004	0.004	0.011	0.003	0.003	0.005	<0.002	0.007	0.002	0.003
Uranium	mg/L	0.02 MAC	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.004	0.003	0.004	0.004
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.005	0.010	0.005	<0.005	0.005	<0.005	0.009	<0.005	<0.005	0.006	0.008	0.005	0.078	<0.005	<0.005
<u> </u>	<u>-</u>													•			

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 29 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-25-II

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Onits	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG (2)	158	141	144	154	157	178	157	158	151	158	148	154	150	151	155
Chloride	mg/L	250 AO ⁽³⁾	5.93	6.54	5.80	5.90	7.33	6.26	5.57	6.08	5.75	7	6	7	6	7	7
Dissolved Organic Carbon	mg/L	5 AO	1.6	1.4	1.2	1.5	2.0	1.7	2.6	1.5	2.2	1.8	1.0	1.0	1	1.4	1
Fluoride	mg/L	1.5 MAC (4)	0.91	1.03	0.58	0.90	1.16	0.97	0.92	0.94	1.10	1.17	1.07	1.13	1.1	1.18	1.19
Sulphate	mg/L	500 AO	199	218	203	202	198	196	192	199	193	220	200	200	200	200	180
Hardness	mg/L	80-100 OG	123	127	117	129	114	109	127	122	115	132	120	121	126	119	122
Nitrate	mg/L	10 MAC	0.12	<0.10	<0.25	<0.25	<0.10	0.10	0.11	0.13	0.09	0.11	0.13	0.13	0.12	0.14	0.16
Nitrite	mg/L	1 MAC	<0.10	<0.10	<0.25	<0.25	<0.10	<0.10	< 0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	<0.10	<0.10	0.20	0.11	0.14	0.16	<0.10	0.17	< 0.5	< 0.5	< 0.05	0.19	< 0.05	0.09
Orthophosphate	mg/L		<0.20	<0.20	<0.50	<0.50	<0.20	<0.20	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.97	8.03	7.64	7.69	7.89	7.30	7.82	8.05	8.05	8.08	8.25	8.18	8.19	8.3	8.12
Electrical Conductivity	μS/cm		716	795	810	803	645	626	713	727	705	694	704	721	703	703	703
Total Ammonia	mg/L		<0.02	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	440	416	420	430	418	452	416	432	412	420	443	449	466	477	420
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.12	<0.10	0.20	0.11	0.14	0.16	<0.10	0.17	< 0.5	< 0.05	0.06	0.20	< 0.05	0.10
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	0.136	<0.050	<0.050	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003
Metals																	
Aluminum	mg/L	0.1 OG	0.008	0.006	0.007	0.027	0.017	0.031	0.064	0.124	0.017	0.013	0.006	0.019	0.004	0.005	0.005
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0015	0.0016	0.0017	0.0017	0.0026	0.0020
Barium	mg/L	1 MAC	0.025	0.024	0.027	0.026	0.022	0.021	0.025	0.027	0.023	0.0284	0.0276	0.0274	0.0250	0.0226	0.0231
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.220	0.220	0.197	0.211	0.263	0.211	0.212	0.208	0.208	0.315	0.220	0.229	0.179	0.189	0.208
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000021	0.000012	0.000014	0.000017	0.000023	0.000013
Calcium	mg/L		23.2	23.8	22.1	23.9	21.0	20.4	23.2	22.6	21.1	27.3	22.9	23.5	26.0	22.4	22.2
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00046	0.00035	0.00046	0.00036	0.00047	0.00024
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00003	0.000029	0.000031	0.00002	0.000014	0.000016
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.013	<0.003	<0.003	0.0012	0.0007	0.001	0.0010	0.0013	0.0034
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	0.02	0.021	0.017	0.022	0.196	<0.10	0.011	0.008	0.024	< 0.007	< 0.007	< 0.007
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		15.8	16.5	15.1	16.9	15.0	14.2	16.7	16.0	15.1	15.5	15.2	15.2	14.9	15.2	16.1
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.005	0.011	<0.002	0.00101	0.00052	0.00125	0.00092	0.00028	0.00027
Molybdenum	mg/L		0.048	0.050	0.048	0.046	0.057	0.041	0.042	0.046	0.044	0.0326	0.0404	0.0404	0.0374	0.0370	0.0375
Nickel	mg/L		<0.003	<0.003	<0.003	0.013	<0.003	0.009	<0.003	<0.003	<0.003	0.0005	0.0005	0.0005	0.0005	0.0005	0.0008
Potassium	mg/L		7.04	7.26	7.54	8.06	6.56	6.64	7.35	7.01	7.23	8.81	7.06	7.34	7.72	7.34	7.96
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.00053	0.00055	0.00045	0.00051	0.00055	0.00041
Silicon	mg/L		3.68	2.10	3.14	2.96	3.50	3.0	3.14	3.28	2.7	4.19	3.08	3.49	3.12	3.27	3.01
Silver	mg/L	000.15	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	99.0	105	105	106.0	97.4	97.9	105	103	103	101	99.4	101	103	101	112
Strontium	mg/L		0.548	0.557	0.536	0.538	0.606	0.482	0.537	0.506	0.506	0.575	0.506	0.532	0.572	0.556	0.590
Sulphur	mg/L		67.7	69.1	66.3	66.2	62.4	62.5	63.7	64	59.4	85	67	67	68	70	71
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.000006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	0.00007	0.00015	< 0.00006	0.00012	0.00007
Titanium	mg/L		0.004	0.003	0.003	<0.002	<0.002	0.002	0.008	0.003	<0.002	0.00034	0.00023	0.00082	0.0001	0.00014	0.00008
Uranium	mg/L	0.02 MAC	0.005	0.003	0.004	0.004	0.004	0.003	0.004	0.005	0.004	0.00359	0.00472	0.00438	0.00439	0.00498	0.0049
Vanadium 	mg/L		<0.002	<0.002	<0.002	<0.002	0.002	<0.002	0.002	0.002	<0.002	0.00196	0.00177	0.00217	0.00179	0.00211	0.00204
Zinc	mg/L	5 AO	<0.005	<0.005	0.009	<0.005	<0.005	<0.005	<0.005	0.015	<0.005	< 0.002	< 0.002	0.004	0.003	0.002	0.003
Notes:																	

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 30 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-25-III

Parameters	Unito	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODW2.	June	July	Sep	May	July	Sep	May	July	Sep	Мау	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	356	364	348	307	332	314	340	364	Insufficient	378	347	353	352	No data	298
Chloride	mg/L	250 AO ⁽³⁾	1.79	1.63	2.02	1.36	1.03	1.33	1.26	1.28	volume	2.03	0.77	2.47	1.60	available	1.84
Dissolved Organic Carbon	mg/L	5 AO	1.0	1.0	1.1	1.0	1.5	1.2	1.3	1.3	to sample	1.1	1.4	1.9	1.5		1.7
Fluoride	mg/L	1.5 MAC (4)	0.54	0.51	1.24	1.14	0.66	0.81	<0.25	0.59		1.04	1.31	1.02	1.24		0.92
Sulphate	mg/L	500 AO	132	140	161	130	96.6	116	93.9	127		76.3	125	242	137		112
Hardness	mg/L	80-100 OG	403	432	417	341	364	365	328	361		305	334	477	373		378
Nitrate	mg/L	10 MAC	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25		<0.25	<0.25	<0.25	<0.05		<0.10
Nitrite	mg/L	1 MAC	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25		<0.25	<0.25	<0.25	<0.05		<0.10
Organic Nitrogen	mg/L	0.15 OG	0.61	<0.10	0.19	<0.10	0.23	0.16	0.15	0.41		<0.10	<0.10	0.24	0.19		<0.10
Orthophosphate	mg/L		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.10		<0.20
рН	pH Units	6.5-8.5 OG	8.22	8.15	8.01	8.15	8.20	8.15	8.22	8.17		8.35	8.26	8.26	8.09		7.99
Electrical Conductivity	μS/cm		865	900	950	818	792	779	720	856		710	838	1070	812		777
Total Ammonia	mg/L		0.07	0.08	0.04	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02		0.09
Total Dissolved Solids	mg/L	500 AO	536	550	532	450	432	418	426	472		394	516	662	492		532
Total Kjeldahl Nitrogen (TKN)	mg/L		0.68	0.14	0.23	<0.10	0.23	0.16	0.15	0.41		<0.10	<0.10	0.24	0.19		<0.10
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.16	<0.05		<0.05	<0.05	<0.05	<0.05		<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	0.024	0.005	<0.004	0.010	2.58	0.008		0.018	0.004	0.010	0.006		0.011
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003		<0.003
Barium	mg/L	1 MAC	0.039	0.037	0.036	0.031	0.036	0.042	0.077	0.036		0.042	0.045	0.047	0.042		0.047
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001		<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002
Boron	mg/l	5 IMAC (5)	0.035	0.049	0.056	0.050	0.027	0.033	0.027	0.050		0.021	0.023	0.071	0.019		0.030
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002
Calcium	mg/L		87.4	90.8	86.8	65.3	83.3	81.8	74.3	74.3		71.5	78.2	100	82.6		88.0
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.007	0.006		<0.003	<0.003	<0.003	<0.003		0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.004	<0.001		<0.001	<0.001	0.002	<0.001		0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.005	<0.003		<0.003	<0.003	<0.003	0.070		<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	0.018	<0.010	<0.010	<0.010	1.96	<0.010		<0.010	0.028	0.012	<0.010		<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.006	<0.002		<0.002	<0.002	<0.002	0.004		<0.001
Magnesium	mg/L		44.9	49.9	48.7	43.2	38.0	39.1	34.5	42.5		30.8	33.8	55.1	40.6		38.5
Manganese	mg/L	0.05 AO	<0.002	0.005	0.003	0.005	<0.002	<0.002	0.288	0.022		0.039	0.015	0.032	<0.002		0.026
Molybdenum	mg/L		0.007	0.011	0.009	800.0	0.007	800.0	0.003	0.009		800.0	0.008	0.011	0.007		0.008
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	0.004	0.005	<0.003		<0.003	<0.003	<0.003	<0.003		<0.003
Potassium	mg/L		5.21	6.89	6.95	5.56	4.89	5.36	3.61	6.39		3.17	4.66	7.06	4.03		5.51
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004		<0.004	<0.004	<0.004	<0.004		<0.004
Silicon	mg/L		4.96	4.69	4.86	4.42	4.89	6.29	7.20	5.31		5.18	6.37	4.96	3.79		5.11
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002
Sodium	mg/L	200 AO	34.8	36.1	36.5	34.8	29.7	32.4	36.3	33.2		32.2	31.0	31.5	25.1		25.3
Strontium	mg/L		2.22	2.77	3.06	2.54	1.76	1.57	1.41	2.69		1.97	1.56	3.9	1.56		1.88
Sulphur	mg/L		37.5	46.8	60.1	47.1	28.2	31.8	21.5	35.4		45.8	28.2	81.3	30.3		41.3
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006	<0.006		<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	0.002	<0.002	0.002	0.027	0.002		0.002	0.002	0.002	<0.002		<0.002
Uranium	mg/L	0.02 MAC	0.005	0.004	0.004	0.003	0.004	0.005	0.004	0.004		0.005	0.005	0.006	0.006		0.004
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002
Zinc	mg/L	5 AO	<0.005	0.006	<0.005	<0.005	<0.005	0.012	0.013	0.006		<0.005	0.008	0.007	0.087		0.007

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 31 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-25-III

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Office	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	383	348	294	364	397	411	349	379	353	342	361	311	348	402	347
Chloride	mg/L	250 AO ⁽³⁾	2.06	2.54	3.01	2.83	2.78	2.28	1.97	2.1	1.2	1	< 1	< 1	< 1	< 1	< 1
Dissolved Organic Carbon	mg/L	5 AO	1.8	1.9	1.3	2.9	3.4	1.7	2.5	3.8	2.2	1	2	2	2.0	1.2	2.0
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	0.60	0.90	0.52	0.78	1.01	0.70	0.84	0.64	0.85	0.91	1.13	0.85	1.06	1.06	0.95
Sulphate	mg/L	500 AO	44.5	150	95.1	104	91.0	58.8	70.9	92.6	37.7	74	89	74	65	64	49
Hardness	mg/L	80-100 OG	375	478	319	407	387	355	353	437	338	400	533	356	427	405	631
Nitrate	mg/L	10 MAC	<0.10	<0.25	<0.25	<0.25	<0.10	<0.10	< 0.05	<0.05	<0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.10	<0.25	<0.25	<0.25	<0.10	<0.10	< 0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	0.16	<0.10	0.22	0.14	0.17	0.21	<0.10	0.15	< 0.5	< 0.5	0.19	< 0.05	0.09	0.13
Orthophosphate	mg/L		<0.20	<0.50	<0.50	<0.50	<0.20	<0.20	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.86	7.69	7.82	8.02	8.00	7.75	7.86	7.86	7.82	8.15	8.15	8.07	7.99	8.07	8.13
Electrical Conductivity	μS/cm		734	974	813	916	747	665	740	814	699	689	793	628	717	754	668
Total Ammonia	mg/L		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.04	0.07	< 0.04	0.04	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	398	522	410	476	486	454	414	468	384	431	491	369	471	480	391
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.16	<0.10	0.22	0.14	0.17	0.21	<0.10	0.15	< 0.5	< 0.05	0.18	< 0.05	0.10	0.14
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	0.10	<0.050	<0.050	<0.050	<0.050	<0.050	0.14	< 0.03	0.03	0.06	< 0.03	0.121
Metals																	
Aluminum	mg/L	0.1 OG	0.016	<0.004	0.008	0.019	0.016	0.019	0.103	0.217	0.021	0.038	1.41	0.018	0.001	0.002	1.05
Arsenic	mg/L	0.01 MAC	0.005	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	0.0003	0.0017	0.0002	0.0009	0.0023	0.0014
Barium	mg/L	1 MAC	0.061	0.051	0.049	0.064	0.057	0.066	0.052	0.075	0.065	0.0763	0.0838	0.0854	0.0597	0.0744	0.0804
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	0.000073	0.000022	< 0.000007	< 0.000007	0.000077
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.012	0.051	0.013	0.018	0.061	0.020	0.02	0.032	0.018	0.030	0.050	0.053	0.022	0.021	0.037
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00001	0.000025	0.000004	< 0.000003	< 0.000003	0.000045
Calcium	mg/L		91.5	104	80.3	95.8	90.5	88.4	79.7	100	82.5	104	126	86.3	104	96.6	151
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00043	0.00675	0.00025	0.00009	0.00026	0.00535
Cobalt	mg/L		0.004	0.002	<0.001	0.008	0.005	0.001	0.004	0.005	0.002	0.00059	0.00721	0.000209	0.0048	0.00374	0.00742
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0015	0.0056	0.0006	0.0007	0.0004	0.0091
Iron	mg/L	0.3 AO	2.57	<0.010	<0.010	2.5	2.3	0.324	0.736	1.35	0.088	0.036	2.88	0.015	0.073	1.22	2.50
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	0.00222	< 0.00009	< 0.00009	< 0.00009	0.00261
Magnesium	mg/L		35.6	52.9	28.8	40.8	39.2	32.7	37.4	45.5	32.1	33.8	52.9	34.1	40.6	39.7	61.5
Manganese	mg/L	0.05 AO	0.296	0.060	<0.002	0.165	0.147	0.062	0.117	0.152	0.068	0.00311	0.208	0.00244	0.113	0.092	0.238
Molybdenum	mg/L		0.006	0.009	0.008	0.007	0.008	0.005	0.005	0.006	0.005	0.00629	0.00539	0.00672	0.00535	0.00463	0.0047
Nickel	mg/L		<0.003	0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	0.0016	0.0075	0.001	0.0026	0.0022	0.008
Potassium	mg/L		2.76	6.23	3.28	2.83	3.58	1.98	3.35	4.35	2.33	3.58	5	2.9	4.21	3.74	5.86
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	0.007	<0.004	0.015	<0.004	<0.004	0.0006	< 0.00004	0.00018	0.00008	0.00008	0.00006
Silicon	mg/L		8.13	4.34	5.67	6.05	7.95	6.97	5.34	6.78	7.56	6.14	9.41	7.2	6.52	7.82	7.38
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	21.3	26.8	15.9	17.5	17.6	13.7	15.1	18	11.6	11.8	16.4	11.9	15.3	13.9	18.5
Strontium	mg/L		0.926	2.94	1.32	1.61	1.92	0.945	1.78	2.2	1.13	1.51	2.2	1.39	2.04	1.9	2.87
Sulphur 	mg/L		11.2	51.6	24.3	25.8	25.0	17.2	26.9	30.1	11.5	31	27	18	23	18	27
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.000022	0.000037	0.000024	0.000011	< 0.000005	0.000027
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	< 0.00006	< 0.00006	< 0.00006	0.00009	< 0.00006
Titanium	mg/L		<0.002	0.002	<0.002	<0.002	<0.002	<0.002	0.007	0.011	<0.002	0.0012	0.0589	0.00081	< 0.00007	0.00019	0.03209
Uranium	mg/L	0.02 MAC	0.006	0.005	0.004	0.005	0.006	0.005	0.004	0.006	0.004	0.0042	0.0053	0.00534	0.00394	0.00456	0.00461
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00078	0.00435	0.00043	0.00039	0.00033	0.00346
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.003	0.008	< 0.002	< 0.002	< 0.002	0.01

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 32 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-25-IV

Parameters		(1)	2017		2018			2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS (1)	Sept	May	July	Oct	May	July	Sept	June	Aug	Oct	June	Aug	Oct	Мау	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	229	206	179	174	189	184	179	183	190	209	195	189	188	201	182	177	DRY	DRY	181
Chloride	mg/L	250 AO ⁽³⁾	10.4	12.0	8.94	8.00	7.89	8.03	6.96	7.20	8.09	7.28	7.81	7.41	7.03	14	8	10			9
Dissolved Organic Carbon	mg/L	5 AO	6.0	5.4	7.5	5.7	4.6	4.0	2.6	3.0	3.6	4.4	5.2	5.8	4.3	3.7	2	2			2
Fluoride	mg/L	1.5 MAC (4)	0.85	1.52	1.82	1.70	1.72	2.01	1.72	1.81	2.06	1.80	1.77	1.67	1.85	1.78	1.79	1.83			1.84
Sulphate	mg/L	500 AO	55.1	45.8	35.8	32.3	23.7	24.8	22.0	19.4	20.8	22.0	23.9	24.2	21.6	45	21	43			17
Hardness	mg/L	80-100 OG	177	92.4	66.5	64.1	61.8	60.8	326	56.0	51.6	52.9	54.9	54.7	57.9	64.9	57.3	61.2			62.7
Nitrate	mg/L	10 MAC	0.78	<0.05	<0.05	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.06	< 0.06	0.35			< 0.06
Nitrite	mg/L	1 MAC	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03			< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.18	<0.10	0.11	0.11	<0.10	<0.10	<0.10	0.22	0.12	<0.10	0.14	0.10	0.18	< 0.5	< 0.5	0.11			0.20
Orthophosphate	mg/L		<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	8.11	7.83	8.06	7.79	7.90	8.00	7.94	7.86	8.02	7.48	7.93	8.19	8.12	8.28	8.30	8.17			8.27
Electrical Conductivity	μS/cm		581	494	453	436	415	458	440	454	368	356	421	414	413	433	410	384			389
Total Ammonia	mg/L		0.06	0.06	0.05	0.10	0.03	0.04	0.05	<0.02	0.02	0.05	0.05	0.18	<0.02	0.09	0.09	0.09			0.04
Total Dissolved Solids	mg/L	500 AO	296	272	268	276	246	250	226	232	226	222	246	260	238	131	260	200			220
Total Kjeldahl Nitrogen (TKN)	mg/L		0.24	0.10	0.16	0.21	<0.10	0.13	0.13	0.22	0.14	0.13	0.19	0.28	0.18	< 0.5	0.14	0.20			0.24
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	0.39	< 0.03	< 0.03			< 0.003
Metals	1	<u> </u>		•		-	<u>'</u>											•	-	<u>'</u>	
Aluminum	mg/L	0.1 OG	0.010	0.009	0.016	0.015	<0.004	<0.004	0.012	0.009	0.028	0.017	0.163	0.048	0.113	0.006	0.032	0.107			0.003
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0004	0.0003	0.0003			0.0002
Barium	mg/L	1 MAC	0.040	0.027	0.022	0.021	0.016	0.015	0.015	0.012	0.011	0.012	0.020	0.017	0.018	0.0209	0.0205	0.0168			0.0138
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	0.000012	0.00004			< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001			< 0.00001
Boron	mg/l	5 IMAC (5)	0.175	0.299	0.301	0.358	0.355	0.334	0.322	0.333	0.411	0.329	0.358	0.349	0.318	0.481	0.336	0.332			0.339
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000019	0.000007	0.000017			0.000013
Calcium	mg/L		41.4	20.8	14.6	14.0	13.6	13.3	69.1	12.1	10.9	11.2	11.7	11.9	12.6	14.9	12.3	13.5			13.3
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00027	0.00022	0.00036			0.00009
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00004	0.000072	0.000154			0.000048
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	0.0018	0.0003	0.0008			0.0016
Iron	mg/L	0.3 AO	0.118	<0.010	<0.010	<0.010	<0.010	<0.010	0.037	0.037	0.091	0.119	0.254	0.083	<0.010	0.052	0.121	0.174			0.078
Lead	mg/L	0.01 MAC	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	0.00014			< 0.00009
Magnesium	mg/L		17.8	9.83	7.3	7.07	6.77	6.69	37.2	6.27	5.92	6.05	6.24	6.07	6.42	6.69	6.48	6.68			7.15
Manganese	mg/L	0.05 AO	0.042	0.012	0.026	0.018	0.013	0.023	0.019	0.016	0.020	0.020	0.023	0.023	0.021	0.0173	0.0148	0.0225			0.0095
Molybdenum	mg/L		0.021	0.036	0.036	0.042	0.041	0.037	0.041	0.046	0.042	0.039	0.041	0.043	0.039	0.0351	0.0364	0.0402			0.0389
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0002	0.0003	0.0005			0.0003
Potassium	mg/L		2.57	2.98	2.71	2.70	2.89	2.61	5.76	2.82	2.3	2.41	2.48	2.57	2.57	3.09	2.55	2.64			2.95
Selenium	mg/L		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.013	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.00004	< 0.00004	0.00005			< 0.00004
Silicon	mg/L		3.82	3.10	4.31	3.83	5.02	3.58	4.32	4.42	4.76	3.95	5.26	4.30	4.03	5.76	5.02	4.99			4.11
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005			< 0.00005
Sodium	mg/L	200 AO	41.5	69.5	70.2	74.5	67.5	70.0	14.4	69.3	63.8	68.0	64.9	70.8	69.6	70.3	68.3	66.4			76.3
Strontium	mg/L		0.685	0.516	0.474	0.491	0.445	0.445	0.438	0.422	0.452	0.416	0.468	0.581	0.470	0.497	0.43	0.427			0.498
Sulphur	mg/L		17.2	15.3	11.6	11.8	8.55	8.39	7.56	5.7	6.25	7.54	7.75	8.40	6.96	13	7	6			6
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005			< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00008	0.00007	0.00016			0.00015
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	0.003	0.011	<0.002	0.003	0.00013	0.0011	0.00414			0.00008
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00013	0.00011	0.000175			0.000129
Vanadium	mg/L	0.02 .	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000223	0.000231	0.00044			0.00005
Zinc	mg/L	5 AO	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.005	<0.005	<0.002	<0.002	0.00010	< 0.002	0.003			< 0.002
	g/ L	07.0	0.000	30.000	30.000	10.000	30.000	10.000	10.000	10.000			10.000	30.000	30.000	0.002	₹ 0.002	0.000			1 0.002

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.
 (3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within OD'

(6) ODWS exceedances indicated by **bold** entries.

WSP Project No.: TY131010 Page 33 of 55

Groundwater Geochemical Results OW-16-I

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Oiiito	ODWO	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	285	276	278	310	290	304	327	323	315	336	327	326	375	298	329
Chloride	mg/L	250 AO ⁽³⁾	7.64	6.85	5.97	6.69	5.90	5.33	7.89	5.72	5.82	6.49	5.03	4.45	6.45	5.28	5.02
Dissolved Organic Carbon	mg/L	5 AO	7.6	9.4	9.4	8.9	9.4	8.8	9.4	10.7	8.4	9.3	11.0	14.4	10.0	13.1	11.4
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	1.54	1.54	1.64	1.65	1.62	1.93	0.41	1.98	1.66	1.22	1.64	1.56	1.47	1.70	1.50
Sulphate	mg/L	500 AO	4.26	4.0	2.4	3.55	2.70	1.82	5.2	1.60	2.64	4.09	1.82	1.64	3.06	2.36	2.43
Hardness	mg/L	80-100 OG	79	82	82.3	81.7	84.1	102	81.9	78.8	77.9	77.0	76.6	78.7	187	77.8	80.9
Nitrate	mg/L	10 MAC	0.05	<0.10	<0.05	<0.05	<0.10	<0.25	<0.25	<0.05	<0.25	<0.10	<0.05	<0.10	<0.05	< 0.05	<0.10
Nitrite	mg/L	1 MAC	<0.05	<0.10	<0.05	<0.05	<0.10	<0.25	<0.25	<0.05	<0.25	<0.10	<0.05	<0.10	<0.05	<0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	1.47	0.49	1.04	0.71	0.78	0.80	0.75	1.39	0.68	1.0	0.46	2.96	0.48	2.68	1.04
Orthophosphate	mg/L		<0.10	<0.20	<0.10	<0.10	<0.20	<0.50	<0.50	<0.10	<0.50	<0.20	<0.10	<0.20	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.49	8.45	8.16	8.26	8.19	8.12	8.12	8.32	8.28	8.22	8.39	8.21	8.05	8.11	7.93
Electrical Conductivity	μS/cm		549	592	543	600	570	592	573	606	616	585	590	606	598	587	577
Total Ammonia	mg/L		1.1	1.16	1.56	1.15	1.34	0.83	0.92	0.75	1.10	0.91	1.33	1.0	1.36	0.54	0.91
Total Dissolved Solids	mg/L	500 AO	378	492	404	400	388	364	386	410	380	400	392	368	444	362	346
Total Kjeldahl Nitrogen (TKN)	mg/L		2.57	1.65	2.6	1.86	2.12	1.63	1.67	2.14	1.78	1.91	1.79	3.96	1.84	3.22	1.95
Total Phosphorus	mg/L		0.07	0.07	<0.05	<0.05	0.05	<0.05	0.08	0.07	0.06	<0.05	0.05	0.07	0.06	<0.05	0.08
Metals																	
Aluminum	mg/L	0.1 OG	0.011	0.01	0.004	0.007	0.009	0.006	0.016	0.334	0.014	0.016	0.005	0.034	0.014	0.007	0.015
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.031	0.031	0.033	0.037	0.034	0.037	0.033	0.041	0.037	0.034	0.031	0.058	0.040	0.049	0.037
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.428	0.445	0.44	0.413	0.434	0.418	0.494	0.460	0.443	0.444	0.408	0.488	0.485	0.454	0.484
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		13.1	13.1	14	13.6	13.9	18.1	13.5	13.1	12.9	12.7	12.2	12.9	30.5	12.7	13.1
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	0.204	0.281	0.226	0.157	0.149	0.090	0.235	0.554	0.245	0.212	0.202	0.081	0.179	0.044	0.404
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		11.2	11.9	11.5	11.6	12.0	13.7	11.7	11.2	11.1	11.0	11.2	11.3	26.8	11.2	11.7
Manganese	mg/L	0.05 AO	0.018	0.015	0.017	0.021	0.022	0.018	0.017	0.030	0.017	0.017	0.016	0.013	0.015	0.016	0.017
Molybdenum	mg/L		0.016	0.013	0.009	0.013	0.01	0.008	0.014	0.010	0.011	0.013	0.009	0.009	0.012	0.011	0.008
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		4.41	4.77	4.42	4.44	4.52	5.94	4.74	4.90	4.62	4.53	4.2	4.09	7.14	4.08	4.55
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		7.62	6.86	6.86	7.41	6.25	6.96	7.26	8.92	7.47	7.56	7.67	7.27	5.19	8.43	7.60
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	108	109	106	108	106	109	117	112	108	107	99.3	90.7	62.3	97.8	103
Strontium	mg/L		0.53	0.497	0.499	0.491	0.553	0.507	0.514	0.539	0.578	0.55	0.55	0.546	0.445	0.551	0.50
Sulphur	mg/L		1.8	2.0	2.79	1.8	1.33	1.39	1.88	0.82	1.59	1.82	1.03	1.36	1.03	1.48	1.62
Thallium 	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.014	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	0.009	<0.005	<0.005	0.005	<0.005	<0.005	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 34 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-16-I

Major Majo	Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
Debetic Page 200.00 24.07 5.00 4.12 4.81 5.44 4.81 5.46 4.91 5.8 5.07 6.01 8 1 9 7 9	General Chemistry	Onits	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Description Clareno mg/L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Alkalinity	mg/L	30-500 OG ⁽²⁾	338	317	308	332	440	351	331	318	333	355	331	338	307	389	325
Notice mg/L 1.0.MaC 1.49 1.68 1.88 1.67 1.59 1.72 1.72 1.72 1.72 1.75 1.58 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.50 1.	Chloride	mg/L	250 AO ⁽³⁾	4.97	5.06	4.12	4.81	5.44	4.91	5.8	5.07	8.01	8	8	9	7	9	9
Suphare mgl, MonAo 2.00 1.61 1.07 3.31 3.03 1.27 2.70 1.99 3.9 3.9 4.2 4.2 4.2 4.2 4.5	Dissolved Organic Carbon	mg/L	5 AO	12.1	11.3	8.0	12.6	9.3	11.1	10.2	10.0	9.7	9.2	8	8	10	9.8	7.0
Section Part Section	Fluoride	mg/L	1.5 MAC (4)	1.49	1.65	1.38	1.67	1.99	1.73	1.67	1.29	1.55	1.59	1.59	1.59	1.59	1.55	1.56
Name mg/L 19MC -3.05 0.11 -4.010 -	Sulphate	mg/L	500 AO	2.60	1.51	1.07	3.31	3.03	1.27	2.76	1.96	3.9	3	< 2	< 2	< 2	< 2	< 2
Selection	Hardness	mg/L	80-100 OG	82.8	80.7	81.3	86.4	77.9	83.6	70.7	92.5	126	92.4	84	85.7	91.0	86.7	90.1
Depart Notinger mgl	Nitrate	mg/L	10 MAC	<0.05	0.11	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Drincyhosphate mgL	Nitrite	mg/L	1 MAC	<0.05	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
PH PH PH PH PH PH PH PH	Organic Nitrogen	mg/L	0.15 OG	1.31	1.13	1.04	1.75	0.83	0.89	1.1	0.8	1.08	< 0.5	< 0.5	0.48	0.25	0.37	0.60
Electrical Conductivity µSicm	Orthophosphate	mg/L		<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10						0.23
Total Ammonia mg/L 0.46 0.86 0.70 0.34 0.81 0.78 1.13 1.35 0.77 1.22 1.39 1.39 1.39 1.31 1.37 1.75	рН	pH Units	6.5-8.5 OG	7.89	7.93	7.81	7.88	8.14	7.88	8.09	8.20	8.07	8.28	8.25	8.35	8.22	8.41	8.23
Total Dissolved Solids	Electrical Conductivity	μS/cm		568	627	649	656	518	504	572	562	581	567	586	576	549	556	567
Total Kjeldahl Nitrogen (TKN mg/L 1.77 1.78 1.74 2.09 1.64 1.67 2.23 2.15 1.85 1.7 1.82 1.87 1.56 1.74 2.75 1.86 1.74 2.75 1.86 1.75 1.87 1.87 1.56 1.74 2.75 1.87	Total Ammonia	mg/L		0.46	0.65	0.70	0.34	0.81	0.78	1.13	1.35	0.77	1.22	1.39	1.39	1.31	1.37	1.74
Metats Martin Might Mi	Total Dissolved Solids	mg/L	500 AO	426	372	362	384	364	384	366	394	438	374	383	360	400	461	393
Metals Might Mig	Total Kjeldahl Nitrogen (TKN)	mg/L		1.77	1.78	1.74	2.09	1.64	1.67	2.23	2.15	1.85	1.7	1.82	1.87	1.56	1.74	2.34
Attentinum	Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	0.127	0.071	0.114	0.198	0.11	0.04	0.12	0.17	0.28	0.12
Arsenic mg/L 0.01 MAC 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0007 0.00007 0.00007 0.00007 0.00007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.0000007 0.0000007 0.0000007 0.0000007 0.0000007 0.00000007 0.0000007 0.0000007 0.0000007 0.0000007 0.0000007 0.0000007 0.0000007 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.00000000	Metals																	
Barium mg/L 1 MAC 0.051 0.031 0.033 0.051 0.033 0.030 0.043 0.035 0.043 0.0442 0.0430 0.0345 0.0421 0.0424 0.0436 0.0411 0.0424 0.0436 0.0441 0.0424 0.0436 0.0441 0.0424 0.0436 0.0441 0.0424 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0436 0.0442 0.0446 0.04	Aluminum	mg/L	0.1 OG	0.006	0.009	0.009	0.016	0.018	0.029	0.034	0.062	0.757	0.011	0.164	0.004	0.005	0.003	0.016
Beryllium mg/L	Arsenic	mg/L	0.01 MAC	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0002	0.0003	0.0002	0.0004	0.0004	0.0003
Bismuth mg/L	Barium	mg/L	1 MAC	0.051	0.031	0.033	0.051	0.033	0.030	0.043	0.035	0.043	0.0442	0.0430	0.0345	0.0421	0.0424	0.0363
Boron mg/l 5 MAC 0.492 0.487 0.476 0.539 0.586 0.483 0.614 0.484 0.510 0.715 0.492 0.466 0.400 0.411 0.001 0	Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Cadmium mg/L 0.005 MAC <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.0003 0.00003 0.00008 0.00007 <0.00003 0.000009 0.000000	Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Calcium mg/L 13.7 13.2 13.6 14.0 12.9 14.5 11.5 16.6 24.6 17.6 14.4 14.8 17.2 14.8 1 1 1 1 14.8 17.2 14.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Boron	mg/l	5 IMAC (5)	0.492	0.487	0.476	0.539	0.586	0.483	0.614	0.484	0.510	0.715	0.492	0.466	0.400	0.411	0.468
Chromium mg/L 0.05 MAC <0.003	Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000003	0.000008	0.000007	< 0.000003	0.000009	0.000003
Cobalt mg/L < 0.001	Calcium	mg/L		13.7	13.2	13.6	14.0	12.9	14.5	11.5	16.6	24.6	17.6	14.4	14.8	17.2	14.8	14.6
Copper mg/L 1 AO <0.003	Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	0.00067	0.00107	0.00058	0.00048	0.00053	0.00057
From mg/L 0.3 AO <0.010 <0.010 0.190 0.112 0.417 0.417 0.232 0.422 1.60 0.207 0.497 0.314 0.122 0.224 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009	Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00013	0.000263	0.000107	0.000124	0.000102	0.000112
Lead mg/L 0.01 MAC <0.001	Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	0.0028	0.0007	< 0.0002	0.0009	0.0003	0.0011
Magnesium mg/L 11.8 11.6 11.5 12.5 11.1 11.5 10.2 12.4 15.8 11.8 11.7 11.8 11.7 12.1 1 Manganese mg/L 0.05 AO 0.014 0.016 0.015 0.019 0.019 0.018 0.025 0.064 0.0199 0.0243 0.0167 0.0177 0.0188 0.0 Molybdenum mg/L 0.008 0.007 0.008 0.006 0.01 0.008 0.008 0.00942 0.00907 0.0 Nickel mg/L <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.002 0.004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 <td< th=""><th>Iron</th><th>mg/L</th><th>0.3 AO</th><th><0.010</th><th><0.010</th><th>0.190</th><th>0.112</th><th>0.417</th><th>0.417</th><th>0.232</th><th>0.422</th><th>1.60</th><th>0.207</th><th>0.497</th><th>0.314</th><th>0.122</th><th>0.224</th><th>0.069</th></td<>	Iron	mg/L	0.3 AO	<0.010	<0.010	0.190	0.112	0.417	0.417	0.232	0.422	1.60	0.207	0.497	0.314	0.122	0.224	0.069
Manganese mg/L 0.05 AO 0.014 0.016 0.015 0.019 0.019 0.018 0.025 0.064 0.0199 0.0243 0.0167 0.0177 0.0188 0.0 Molybdenum mg/L 0.008 0.007 0.008 0.007 0.008 0.006 0.01 0.008 0.008 0.00816 0.00942 0.00907 0.0 Nickel mg/L <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004	Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	0.00014	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Molybdenum mg/L 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.006 0.01 0.008 0.008 0.00816 0.00942 0.00907 0.00 Nickel mg/L <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.000 <0.000 0.0002 0.0006 0.0002 0.0004 0.0002 0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000	Magnesium	mg/L		11.8	11.6	11.5	12.5	11.1	11.5	10.2	12.4	15.8	11.8	11.7	11.8	11.7	12.1	13.0
Nickel mg/L < 0.003	Manganese	mg/L	0.05 AO	0.014	0.016	0.016	0.015	0.019	0.019	0.018	0.025	0.064	0.0199	0.0243	0.0167	0.0177	0.0188	0.0153
Potassium mg/L 4.49 4.05 4.21 5.55 3.77 3.98 3.89 4.32 4.47 5.27 4.08 4.11 4.75 4.36 4.21	Molybdenum	mg/L		0.008	0.007	0.008	0.007	0.008	0.006	0.01	0.008	0.008	0.00808	0.00888	0.00816	0.00942	0.00907	0.00673
	Nickel	mg/L		<0.003	<0.003	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0002	0.0006	0.0002	0.0004	0.0002	0.0005
Selenium mg/ 0.05 MAC <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004	Potassium	mg/L		4.49	4.05	4.21	5.55	3.77	3.98	3.89	4.32	4.47	5.27	4.08	4.11	4.75	4.36	4.82
	Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.004	< 0.00004	0.00008	0.00019	0.00005	0.00009	0.00005
Silicon mg/L 7.91 7.16 7.43 8.11 8.8 7.36 9.85 8.4 9.45 10.3 9.47 8.78 8.26 8.06 7	Silicon	mg/L		7.91	7.16	7.43	8.11	8.8	7.36	9.85	8.4	9.45	10.3	9.47	8.78	8.26	8.06	7.35
Silver mg/L < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0	Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium mg/L 200 AO 98.9 99.2 103 104 94.3 96.7 93.2 93.6 102 100 99.4 101 104 99.5	Sodium	mg/L	200 AO	98.9	99.2	103	104	94.3	96.7	93.2	93.6	102	100	99.4	101	104	99.5	113
Strontium mg/L 0.545 0.590 0.581 0.549 0.583 0.558 0.55 0.609 0.588 0.623 0.531 0.585 0.577 0.579 0	Strontium	mg/L		0.545	0.590	0.581	0.549	0.583	0.558	0.55	0.609	0.588	0.623	0.531	0.585	0.577	0.579	0.653
Sulphur mg/L 1.06 1.27 1.37 1.02 1.51 3.63 1.5 2.85 2.06 5 <1	Sulphur	mg/L		1.06	1.27	1.37	1.02	1.51	3.63	1.5	2.85	2.06	5	< 1	1	< 3	< 3	< 3
Thallium mg/L < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.00005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.00000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.000005 < 0.0	Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin mg/L <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.0018 0.00017 0.0001 <0.00006 0.00007 0.00007 0.00000000000000	Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00018	0.00017	0.0001	< 0.00006	0.00007	0.00014
Titanium mg/L < 0.002 <0.002 <0.002 0.005 0.002 0.003 <0.002 0.005 0.005 0.008 0.0011 0.00854 0.00088 0.00088 0.00083 0.0088	Titanium	mg/L		<0.002	<0.002	<0.002	0.005	<0.002	0.003	<0.002	0.005	0.028	0.00111	0.00854	0.00088	0.00088	0.00083	0.00128
Uranium mg/L 0.02 MAC <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.00014 0.000025 0.000012 0.000044 0.000034 0.0000000000000000000	Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000014	0.000025	0.000012	0.000044	0.000034	0.000028
Vanadium mg/L < 0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.003 0.0078 0.00113 0.00053 0.00119 0.00078 0.001	Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	0.00078	0.00113	0.00053	0.00119	0.00078	0.00083
Zinc mg/L 5 AO <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.002 0.004 0.008 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.	Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.008	<0.005	<0.005	< 0.002	0.004	0.008	< 0.002	< 0.002	< 0.002

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 35 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-16-II

Parameters	Unito	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS **	June	July	Sep	Мау	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG (2)	173	169	169	167	171	165	176	172	184	176	178	171	185	159	154
Chloride	mg/L	250 AO ⁽³⁾	5.24	5.51	6.14	4.74	4.81	5.40	5.26	5.23	5.18	4.03	4.58	4.4	4.37	4.06	3.99
Dissolved Organic Carbon	mg/L	5 AO	1.6	1.1	1.3	1.4	2.4	1.7	1.4	1.8	1.1	1.4	1.7	1.9	1.5	1.9	1.9
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	0.77	<0.25	0.9	0.86	0.78	1.07	0.52	0.94	0.74	0.64	0.86	0.87	0.74	0.93	0.91
Sulphate	mg/L	500 AO	119	114	108	108	117	118	114	112	101	95.5	94.8	91.7	95.0	94.8	92.2
Hardness	mg/L	80-100 OG	139	143	129	129	138	139	133	129	120	115	114	108	114	114	117
Nitrate	mg/L	10 MAC	0.06	<0.25	<0.10	0.06	0.15	0.28	<0.10	0.15	<0.25	<0.10	0.10	0.06	0.09	0.10	0.12
Nitrite	mg/L	1 MAC	<0.05	<0.25	<0.10	<0.05	<0.10	<0.05	<0.10	<0.05	<0.25	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	0.30	<0.10	0.19	0.23	0.38	<0.10	<0.10	0.17	<0.10	<0.10	<0.10	0.20	0.18	<0.10	<0.10
Orthophosphate	mg/L		<0.10	<0.50	<0.20	<0.10	<0.20	<0.10	<0.20	<0.10	<0.50	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10
рН	pH Units	6.5-8.5 OG	8.35	8.22	8.21	8.3	8.06	7.94	7.99	8.09	8.33	8.07	8.10	8.09	7.75	7.88	7.71
Electrical Conductivity	μS/cm		588	592	588	576	603	596	547	577	581	530	542	548	534	527	524
Total Ammonia	mg/L		0.09	0.04	0.02	<0.02	0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.04	0.06
Total Dissolved Solids	mg/L	500 AO	332	340	332	308	332	326	320	298	312	288	302	282	284	302	344
Total Kjeldahl Nitrogen (TKN)	mg/L		0.39	<0.10	0.21	0.23	0.4	<0.10	<0.10	0.17	<0.10	<0.10	<0.10	0.20	0.24	<0.10	<0.10
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	0.017	0.005	0.005	0.008	0.024	0.006	0.012	0.112	0.013	0.010	0.007	0.010	0.009	0.007	0.009
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.026	0.026	0.026	0.026	0.026	0.030	0.030	0.032	0.035	0.031	0.030	0.031	0.031	0.029	0.034
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC ⁽⁵⁾	0.173	0.184	0.192	0.163	0.178	0.211	0.208	0.208	0.209	0.186	0.183	0.238	0.212	0.194	0.222
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		26.9	27.8	25.0	24.8	27.1	26.8	25.4	25.2	23.8	22.0	21.7	21.1	21.9	22.1	22.6
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	0.015	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.005	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.031	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		17.5	17.9	16.1	16.2	17.2	17.4	16.9	16.1	14.8	14.7	14.5	13.4	14.4	14.4	14.7
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Molybdenum	mg/L		0.031	0.034	0.031	0.028	0.027	0.028	0.030	0.029	0.030	0.029	0.030	0.029	0.026	0.024	0.025
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		7.88	8.12	8.08	7.58	7.80	8.34	7.61	8.27	8.12	7.35	7.2	6.62	6.40	6.72	7.47
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		3.03	3.1	3.17	3.04	2.53	3.39	2.90	3.70	3.24	3.03	3.33	3.31	2.65	3.55	3.30
Silver	mg/L	000 : 0	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	71.3	71.2	71.3	69.7	68.5	70.0	73.0	69.2	69.6	66.7	62.9	59.7	60.3	61.9	66.3
Strontium	mg/L		0.565	0.55	0.517	0.495	0.593	0.602	0.541	0.536	0.578	0.528	0.522	0.508	0.475	0.487	0.504
Sulphur	mg/L		35.4	39.8	41	40	40.2	42.3	35.0	32.4	31.7	32.5	31.4	29.6	30.7	29.3	32.6
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	0.002	0.003	<0.002	0.008	<0.002	<0.002	0.002	<0.002	0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	0.003	0.003	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.005	<0.005	<0.005	0.008	0.007	<0.005	<0.005	<0.005	<0.005	0.005	0.006	<0.005	0.007	<0.005	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 36 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-16-II

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Offics	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	171	157	168	174	179	189	174	172	168	176	164	170	166	165	169
Chloride	mg/L	250 AO ⁽³⁾	4.18	3.66	3.99	4.09	4.42	4.17	4.1	3.88	4.01	5	4	5	5	5	5
Dissolved Organic Carbon	mg/L	5 AO	1.6	1.3	1.4	3.6	2.3	1.5	1.5	3.0	2.5	1.2	1.0	1.0	2.0	4.6	1.0
Fluoride	mg/L	1.5 MAC (4)	0.80	0.90	0.91	0.97	1.06	0.88	0.92	0.90	0.96	0.98	0.97	0.97	1.00	1.02	1.03
Sulphate	mg/L	500 AO	89.5	90.3	88.4	82.1	82.0	86.0	84.9	83.7	90.6	90	88	82	82	89	81
Hardness	mg/L	80-100 OG	137	107	110	108	94	104	95.2	104	110	124	102	103	119	110	111
Nitrate	mg/L	10 MAC	0.11	0.05	0.30	0.10	0.07	0.15	0.09	0.10	0.11	0.12	0.22	0.08	0.09	0.15	0.11
Nitrite	mg/L	1 MAC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	<0.10	0.10	0.29	0.13	0.14	0.14	0.23	4.38	< 0.5	< 0.5	0.05	< 0.05	< 0.05	0.20
Orthophosphate	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.75	8.02	7.59	7.68	7.89	7.32	7.83	8.04	8.06	8.31	8.27	8.13	8.24	8.09	8.17
Electrical Conductivity	μS/cm		506	546	578	564	441	446	500	502	514	511	510	499	496	501	497
Total Ammonia	mg/L		<0.02	0.04	0.06	0.25	<0.02	<0.02	<0.02	0.1	<0.02	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	288	272	308	292	274	292	284	306	288	320	300	309	286	317	306
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.13	0.16	0.54	0.13	0.14	0.14	0.33	4.38	< 0.5	0.1	0.05	< 0.05	< 0.05	0.22
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	0.065	<0.050	<0.050	<0.050	0.066	<0.050	0.04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003
Metals																	
Aluminum	mg/L	0.1 OG	0.008	0.014	0.012	0.025	0.017	0.027	0.010	0.022	0.012	0.011	0.009	0.008	0.010	0.006	0.006
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	0.001	0.0011	0.001	0.0011	0.0012	0.001
Barium	mg/L	1 MAC	0.032	0.028	0.033	0.032	0.024	0.027	0.032	0.027	0.033	0.0361	0.0322	0.0314	0.0301	0.0310	0.0300
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC ⁽⁵⁾	0.217	0.215	0.216	0.233	0.275	0.222	0.251	0.197	0.238	0.318	0.235	0.217	0.198	0.194	0.199
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000008	0.000007	0.000006	0.000015	0.000014	0.000007
Calcium	mg/L		26.4	20.5	21.3	20.1	17.7	20.0	18	19.7	21.0	26.1	19.7	20.5	24.7	21.5	21.1
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00042	0.00041	0.00044	0.00036	0.00052	0.0002
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000042	0.000025	0.000022	0.000017	0.000012	0.000015
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	0.002	0.0057	0.0004	0.0024	0.0017	0.0043
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.053	<0.010	0.015	0.009	0.010	< 0.007	< 0.007	0.008
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		17.2	13.5	13.8	14.1	12.1	13.1	12.2	13.4	14	14.3	12.9	12.6	13.9	13.8	14.1
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	0.006	<0.002	0.00029	0.00031	0.00037	0.00111	0.00017	0.00025
Molybdenum	mg/L		0.027	0.026	0.027	0.026	0.026	0.024	0.022	0.023	0.024	0.0217	0.0228	0.0226	0.0249	0.0210	0.0220
Nickel	mg/L		<0.003	<0.003	<0.003	0.005	<0.003	<0.003	<0.003	<0.003	<0.003	0.0004	0.0005	0.0003	0.0005	0.0004	0.0007
Potassium	mg/L		8.03	6.69	7.57	7.75	6.07	6.82	6.13	6.77	7.24	8.42	6.88	6.86	7.59	7.48	7.90
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.005	0.00025	0.0004	0.00049	0.00025	0.0006	0.00028
Silicon	mg/L		3.65	2.23	3.22	3.0	3.36	3.21	2.6	3.08	3.43	4.14	3.19	3.66	3.44	3.45	3.10
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	73.0	63.3	65.1	65.8	58.0	62.1	58.8	63.2	65.3	63.9	61.1	59.1	69.9	62.5	69.2
Strontium	mg/L		0.507	0.482	0.514	0.477	0.474	0.489	0.519	0.467	0.526	0.54	0.445	0.466	0.510	0.521	0.567
Sulphur	mg/L		30.8	29.3	28.7	27.3	24.3	27.8	26.2	27.9	28.7	41	29	27	31	31	30
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.000005	0.000006	< 0.000005	0.000006	0.000005	0.000006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	0.00034	0.00007	< 0.00006	0.00015	< 0.00006
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.009	0.003	<0.002	0.00022	0.00028	0.00025	0.00007	0.00011	0.0001
Uranium	mg/L	0.02 MAC	0.003	0.002	0.003	0.003	0.002	0.002	0.003	0.002	0.003	0.00226	0.00271	0.00267	0.00275	0.00248	0.00251
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.004	<0.002	<0.002	0.00145	0.0015	0.00147	0.00158	0.00141	0.00145
Zinc	mg/L	5 AO	<0.005	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.002	0.008	0.004	< 0.002	0.003	0.004

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 37 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-16-III

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG (2)	344	406	454	423	452	321	301	357	354	291	298	352	373	348	279
Chloride	mg/L	250 AO ⁽³⁾	2.31	2.33	3.14	3.35	3.98	5.45	4.60	3.97	2.93	3.80	3.74	4.32	3.31	3.06	2.93
Dissolved Organic Carbon	mg/L	5 AO	2.6	2.2	2.6	1.6	2.7	2.2	1.6	2.3	1.5	1.3	2.0	2.4	1.8	2.8	2.9
Fluoride	mg/L	1.5 MAC (4)	0.12	<0.25	0.31	0.34	<0.25	0.25	0.32	<0.25	<0.25	0.20	0.28	0.26	< 0.05	0.45	0.17
Sulphate	mg/L	500 AO	5.92	7.34	4.24	7.59	4.54	29.9	21.7	34.0	72.7	24.8	14.3	17.5	22.4	25.8	26.3
Hardness	mg/L	80-100 OG	312	405	400	364	424	345	293	348	387	270	302	309	346	355	316
Nitrate	mg/L	10 MAC	<0.05	<0.25	<0.25	<0.10	<0.25	0.31	0.32	<0.25	<0.25	<0.10	<0.05	<0.10	<0.05	<0.05	<0.10
Nitrite	mg/L	1 MAC	<0.05	<0.25	<0.25	<0.10	<0.25	<0.05	<0.10	<0.25	<0.25	<0.10	<0.05	<0.10	<0.05	<0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.46	<0.10	0.47	0.23	0.63	0.60	0.69	0.15	0.17	0.10	<0.10	0.61	0.12	0.16	0.33
Orthophosphate	mg/L		<0.10	<0.50	<0.50	<0.20	<0.50	<0.10	<0.20	<0.50	<0.50	<0.20	<0.10	<0.20	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.1	7.84	7.63	7.99	8.1	8.06	8.06	8.00	8.12	8.26	8.24	8.21	8.03	8.02	7.92
Electrical Conductivity	μS/cm		633	770	865	804	853	671	558	719	819	557	561	663	660	700	592
Total Ammonia	mg/L		0.09	0.15	0.15	0.41	0.68	0.1	0.16	0.34	0.28	0.02	0.12	0.19	0.03	0.10	0.02
Total Dissolved Solids	mg/L	500 AO	308	414	436	408	426	356	314	378	430	296	328	320	338	370	362
Total Kjeldahl Nitrogen (TKN)	mg/L		0.55	0.23	0.62	0.64	1.31	0.7	0.85	0.49	0.45	0.12	<0.10	0.80	0.15	0.26	0.35
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	0.12	0.14	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	<0.004	<0.004	0.005	<0.004	0.022	0.294	0.014	0.013	<0.004	0.006	0.006	0.004	0.011
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.036	0.046	0.08	0.063	0.068	0.037	0.038	0.068	0.068	0.035	0.032	0.049	0.046	0.054	0.045
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.015	0.013	0.058	0.015	0.025	0.013	0.016	0.022	0.032	<0.010	0.014	0.043	0.017	0.039	0.021
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		83.9	108	91.1	87.7	105	94.5	78.7	90.6	100	73.3	82.6	82.4	92.8	87.5	87.5
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	1.7	2.72	1.24	0.684	0.804	0.159	0.455	0.733	2.85	0.828	0.657	0.584	0.227	1.33	0.39
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		24.9	32.8	41.9	35.3	39.2	26.4	23.5	29.6	33.3	21.1	23.3	25.1	27.7	33.2	23.8
Manganese	mg/L	0.05 AO	0.053	0.093	0.056	0.049	0.069	0.025	0.068	0.085	0.082	0.072	0.075	0.065	0.048	0.064	0.073
Molybdenum	mg/L		<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		2.22	4.08	7.54	7.43	9.65	2.77	2.43	5.51	6.06	1.77	2.08	3.29	1.99	4.58	2.49
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	0.065	0.005	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		5.22	6.98	7.53	6.01	6.19	5.19	5.11	8.69	6.59	4.16	5.51	5.90	3.48	6.94	4.16
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	5.01	9.81	17.4	10.7	12.2	8.5	8.74	11.5	12.2	8.6	7.99	8.71	6.23	10.6	6.62
Strontium	mg/L		0.257	0.329	1.15	0.591	0.763	0.241	0.361	0.554	0.646	0.271	0.22	0.422	0.393	0.623	0.312
Sulphur	mg/L		<0.05	3.9	6.65	9.93	4.58	12.6	6.22	9.95	23.0	8.89	6.51	7.03	7.79	9.79	11.3
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.011	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.005	<0.005	<0.005	<0.005	<0.005	0.006	0.008	<0.005	<0.005	<0.005	0.007	<0.005	<0.005	<0.005	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 38 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-16-III

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Offics	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG (2)	252	286	250	265	309	325	251	306	311		DAMAGED			DAMAGED	
Chloride	mg/L	250 AO ⁽³⁾	2.09	2.95	1.90	2.64	2.76	1.98	2.35	2.03	1.60						
Dissolved Organic Carbon	mg/L	5 AO	3.0	3.1	3.2	2.2	2.1	2.3	2.3	4.0	2.6						
Fluoride	mg/L	1.5 MAC (4)	0.16	0.40	0.19	0.34	0.40	0.16	0.27	0.28	0.23						
Sulphate	mg/L	500 AO	13.0	16.5	21.4	25.2	17.1	14.4	19.8	15.5	11.7						
Hardness	mg/L	80-100 OG	251	291	255	247	273	286	229	290	306						
Nitrate	mg/L	10 MAC	0.29	0.13	0.05	0.09	<0.05	<0.05	<0.05	<0.05	0.05						
Nitrite	mg/L	1 MAC	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
Organic Nitrogen	mg/L	0.15 OG	0.22	0.46	0.16	0.32	0.30	0.24	0.41	0.30	0.22						
Orthophosphate	mg/L		<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10						
рН	pH Units	6.5-8.5 OG	7.83	7.70	7.70	7.90	7.95	7.57	7.80	7.80	7.86						
Electrical Conductivity	μS/cm		474	630	570	587	511	493	496	561	587						
Total Ammonia	mg/L		0.14	0.33	0.16	0.04	0.12	0.03	0.07	0.13	<0.02						
Total Dissolved Solids	mg/L	500 AO	264	294	274	282	300	296	276	340	320						
Total Kjeldahl Nitrogen (TKN)	mg/L		0.36	0.79	0.32	0.36	0.42	0.27	0.48	0.43	0.22						
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050						
Metals		<u>, </u>															
Aluminum	mg/L	0.1 OG	<0.004	<0.004	0.007	0.026	0.016	0.078	0.068	<0.004	0.017						
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003						
Barium	mg/L	1 MAC	0.046	0.072	0.037	0.032	0.036	0.030	0.043	0.040	0.056						
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001						
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
Boron	mg/l	5 IMAC ⁽⁵⁾	<0.010	0.038	0.023	0.053	0.071	0.022	0.019	0.021	0.031						
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
Calcium	mg/L		71.6	75.6	73.9	67.9	74.7	80.2	60.8	81	82.6						
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003						
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001						
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003						
Iron	mg/L	0.3 AO	<0.010	0.827	<0.010	0.228	1.12	0.356	0.664	0.432	0.711						
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001						
Magnesium	mg/L		17.6	24.8	17.0	18.8	21.1	20.8	18.7	21.3	24.2						
Manganese	mg/L	0.05 AO	0.136	0.440	0.047	0.045	0.066	0.056	0.069	0.071	0.122						
Molybdenum	mg/L		<0.002	0.003	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002						
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003						
Potassium	mg/L		2.33	4.26	1.99	1.95	2.26	1.57	2.12	2.03	2.95						
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	0.005	<0.004	<0.004	<0.004	<0.004	0.004						
Silicon	mg/L		4.67	5.32	4.19	4.18	6.12	4.7	4.4	4.53	6.11						
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
Sodium	mg/L	200 AO	4.50	8.94	5.42	14.3	6.48	4.84	5.2	5.43	6.54						
Strontium	mg/L		0.226	0.457	0.196	0.215	0.34	0.243	0.343	0.264	0.435						
Sulphur	mg/L		5.99	6.45	6.91	9.18	6.21	6.82	7.22	6.45	5.53						
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006						
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
Titanium	mg/L		<0.002	<0.002	<0.002	0.006	<0.002	<0.002	0.01	<0.002	<0.002						
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005						
<u></u>	-	<u> </u>															

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 39 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-24-I

Parameters	Unito	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS \"	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity r	mg/L 3	30-500 OG ⁽²⁾	DESTROYED	DESTROYED	176	213	241	235	247	239	232	253	222	244	248	218	208
Chloride	mg/L	250 AO ⁽³⁾			12.5	1.63	2.73	2.11	1.54	1.77	1.73	1.73	1.26	2.31	1.87	0.77	1.18
Dissolved Organic Carbon r	mg/L	5 AO			6.6	2.2	3.3	2.0	2.4	2.5	3.1	1.7	2.8	3.4	2.1	2.9	2.5
Fluoride	mg/L	1.5 MAC (4)			0.36	0.37	0.28	0.33	0.25	0.30	0.36	0.30	0.31	0.38	0.19	0.31	0.36
Sulphate r	mg/L	500 AO			82.1	16.9	21.2	20.8	23.4	19.8	17.5	18.1	17.9	17.6	20.9	19.8	18.9
Hardness	mg/L	80-100 OG			225	206	227	234	239	223	211	229	214	217	226	224	220
Nitrate	mg/L	10 MAC			<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	0.11	<0.05	<0.10	<0.05	<0.05	<0.05
Nitrite r	mg/L	1 MAC			<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.05	<0.05	<0.05
Organic Nitrogen r	mg/L	0.15 OG			0.30	0.33	0.31	0.25	0.22	0.22	0.21	0.13	0.12	0.23	<0.10	<0.10	0.22
Orthophosphate r	mg/L				<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10
рН рН	H Units	6.5-8.5 OG			8.13	8.32	8.17	8.06	8.11	8.07	8.25	8.19	8.11	8.12	7.91	8.01	7.88
Electrical Conductivity µ	uS/cm				558	455	501	497	467	490	491	490	431	492	463	459	448
Total Ammonia r	mg/L				0.29	0.04	0.09	0.03	0.03	0.07	0.16	<0.02	0.17	0.12	0.07	0.08	0.06
	mg/L	500 AO			314	226	242	256	264	256	250	266	256	244	248	252	252
	mg/L				0.59	0.37	0.40	0.28	0.25	0.29	0.37	0.13	0.29	0.35	0.12	<0.10	0.28
Total Phosphorus r	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals			1														
	mg/L	0.1 OG			<0.004	<0.004	0.027	0.051	0.022	0.207	0.017	0.007	0.004	0.006	0.008	0.011	<0.004
		0.01 MAC			<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium r	mg/L	1 MAC			0.04	0.038	0.024	0.044	0.040	0.044	0.036	0.034	0.032	0.037	0.035	0.034	0.033
	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
		5 IMAC (5)			0.071	0.044	0.039	0.046	0.052	0.044	0.049	0.042	0.036	0.062	0.048	0.061	0.061
		0.005 MAC			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	mg/L				53	50.6	57.1	60.5	64.5	59.9	55.7	61.2	56.3	56.6	60.7	59.7	58.4
		0.05 MAC			<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
· · ·	mg/L	1 AO			<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	mg/L	0.3 AO			0.772	1.03	0.802	1.56	0.887	0.890	1.06	0.032	0.327	0.381	0.164	0.267	0.710
		0.01 MAC			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
	mg/L				22.5	19.3	20.6	20.1	18.9	17.8	17.5	18.4	17.9	18.4	18.0	18.3	18.1
<u> </u>	mg/L	0.05 AO			0.054	0.039	0.061	0.062	0.082	0.078	0.053	0.038	0.071	0.063	0.047	0.051	0.051
	mg/L				0.011	0.005	0.009	0.006	0.004	0.004	0.003	0.003	0.003	0.003	0.002	<0.002	0.003
	mg/L				<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	mg/L	0.05.1440			6.44	4.79	4.01	4.29	2.86	3.10	3.22	2.58	2.94	3.14	2.49	2.70	2.89
-		0.05 MAC			<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
	mg/L				5.64	6.88	5.39	7.02	6.59	7.60	6.57	6.38	7.37	6.86	4.83	8.57	6.09
	mg/L	200.40			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	mg/L	200 AO			17.1	9.55	16.7	13.4	9.07	11.6	11.8	11.7	9.05	13.1	7.61	7.18	9.32
	mg/L				0.448	0.396	0.321	0.403	0.395	0.398	0.479	0.323	0.414	0.448	0.356	0.447	0.489
- ·	mg/L				29.5 <0.006	5.57 <0.006	6.01 <0.006	6.74 <0.006	6.11 <0.006	5.95 <0.006	8.19 <0.006	6.11 <0.006	6.24 <0.006	6.74	6.53	7.48	7.93 <0.006
	mg/L				<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006 <0.002	<0.006 <0.002	<0.006 <0.002	<0.006
	mg/L				<0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	mg/L	0.02 MAC			<0.002	<0.002	<0.002	<0.003	<0.002	<0.009	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	mg/L mg/L	U.UZ IVIAU			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
v anaulum	my/L			1	<0.00Z	<0.002	<0.00∠	<0.00∠	<∪.∪∪∠	<0.00∠	<0.00∠	<0.002	<∪.∪∪∠	<0.00∠	<0.002	<∪.∪∪∠	<0.00Z
Zinc r	mg/L	5 AO			0.005	< 0.005	< 0.005	< 0.005	0.009	< 0.005	< 0.005	< 0.005	0.006	< 0.005	< 0.005	< 0.005	< 0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 40 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-24-I

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	227	207	217	234	253	347	265	363	318	254	228	256	233	234	258
Chloride	mg/L	250 AO ⁽³⁾	1.22	3.57	1.34	1.34	1.25	1.84	1.26	2.96	1.29	3	< 1	< 1	< 1	< 1	< 1
Dissolved Organic Carbon	mg/L	5 AO	2.8	2.4	2.2	2.2	3.4	2.5	2.2	4.9	3.6	2.0	3.0	2.0	2.0	9.6	2.0
Fluoride	mg/L	1.5 MAC (4)	0.21	0.61	0.39	0.38	0.30	0.19	0.14	0.62	<0.05	0.30	0.37	0.35	0.35	0.57	0.30
Sulphate	mg/L	500 AO	19.6	16.7	20.1	21.1	21.4	23.7	21.3	25.2	20.6	30	24	28	24	32	23
Hardness	mg/L	80-100 OG	225	197	210	228	215	287	230	364	310	293	198	252	248	213	326
Nitrate	mg/L	10 MAC	<0.05	0.06	<0.05	0.11	0.08	0.26	0.15	<0.05	0.25	0.09	< 0.06	0.09	< 0.06	< 0.06	0.09
Nitrite	mg/L	1 MAC	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	0.12	0.23	0.30	0.15	0.24	0.35	0.43	0.30	< 0.5	< 0.5	0.05	< 0.05	< 0.05	< 0.05
Orthophosphate	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10						0.11
рН	pH Units	6.5-8.5 OG	7.82	7.86	7.75	7.86	7.89	7.73	7.74	8.03	7.67	8.09	8.16	8.06	8.09	8.44	8.09
Electrical Conductivity	μS/cm		437	473	505	524	436	541	509	684	615	483	469	513	470	456	505
Total Ammonia	mg/L		0.02	0.06	0.11	<0.02	0.04	0.02	<0.02	0.23	<0.02	0.07	0.1	0.08	0.11	0.16	0.04
Total Dissolved Solids	mg/L	500 AO	244	238	236	262	304	342	276	366	332	283	240	294	309	309	323
Total Kjeldahl Nitrogen (TKN)	mg/L		0.10	0.18	0.34	0.30	0.19	0.26	0.35	0.66	0.3	< 0.5	0.08	0.13	0.06	0.11	< 0.05
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	0.084	<0.050	<0.050	<0.050	0.074	<0.050	0.05	< 0.03	0.14	0.06	< 0.03	0.051
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.006	0.009	<0.004	0.013	0.023	0.033	0.196	0.007	0.236	0.019	0.332	0.002	0.002	0.378
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	0.0003	0.0003	0.0015	0.0003	0.0005	0.0003
Barium	mg/L	1 MAC	0.031	0.028	0.033	0.034	0.025	0.034	0.022	0.063	0.033	0.0339	0.0316	0.0474	0.0280	0.0375	0.0303
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000016	< 0.000007	0.00001	< 0.000007	< 0.000007	0.000029
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.045	0.093	0.072	0.060	0.090	0.040	0.032	0.057	0.040	0.064	0.046	0.081	0.037	0.075	0.036
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000003	< 0.000003	0.000009	< 0.000003	< 0.000003	0.000009
Calcium	mg/L		63.2	49.9	56.1	60.2	58.1	79.9	63.4	73.8	86.1	86.1	49.3	65.4	68.7	52.7	89.0
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00091	0.00022	0.00157	0.00017	0.00029	0.00211
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000279	0.000211	0.000545	0.000089	0.000117	0.000574
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	0.014	<0.003	<0.003	0.0026	0.0004	0.0012	0.0007	0.0004	0.0042
Iron	mg/L	0.3 AO	0.044	0.068	0.386	0.265	0.056	0.138	0.032	0.309	0.067	0.340	0.102	0.733	0.198	0.112	1.07
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00025	< 0.00009	0.00037	< 0.00009	< 0.00009	0.00082
Magnesium	mg/L		16.4	17.6	17.0	18.9	17	21.3	17.5	43.7	23.0	19	18.2	21.7	18.5	19.8	25.2
Manganese	mg/L	0.05 AO	0.073	0.022	0.072	0.049	0.036	0.027	0.023	0.091	0.032	0.028	0.0523	0.0774	0.0318	0.0662	0.0495
Molybdenum	mg/L		0.004	0.01	0.004	0.002	<0.002	0.002	<0.002	0.007	0.002	0.00235	0.00261	0.00403	0.00222	0.00456	0.00148
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	<0.003	<0.003	0.0013	0.0007	0.0018	0.0005	0.0005	0.0022
Potassium	mg/L		2.82	3.68	3.00	2.7	2.13	1.66	1.59	6.09	1.47	2.25	2.48	2.46	2.53	3.02	2.18
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.00005	< 0.00004	< 0.00004	< 0.00004	< 0.00004	0.00006
Silicon	mg/L		6.28	4.63	6.41	6.52	7.71	6.75	5.97	6.4	7.71	9.06	6.33	7.98	6.90	6.86	7.15
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	6.83	18.5	9.71	9.25	7.17	12.7	7.11	14.4	9.84	7.00	7.48	14.7	8.07	21.4	8.69
Strontium	mg/L		0.271	0.323	0.423	0.418	0.369	0.275	0.134	1.37	0.241	0.225	0.341	0.431	0.360	0.535	0.352
Sulphur	mg/L		8.08	6.18	6.62	6.62	6.2	9.17	7.82	10	6.5	12	7.0	8.0	7	9	7
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.000011	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000007
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00007	< 0.00006	< 0.00006	< 0.00006	0.00012	0.00007
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.009	0.01	<0.002	0.0112	0.00102	0.02031	0.00015	0.00014	0.0186
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000478	0.000456	0.00113	0.000359	0.000503	0.000497
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.001	0.00046	0.00191	0.0003	0.00066	0.00177
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.003	< 0.002	0.002	< 0.002	< 0.002	0.004

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 41 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-24-II

Contended Cont	Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
Processes	General Chemistry	Onits	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Separate Dispance Carron mgls SAO 91.5 1.9 0.3 1.2 1.4 1.8 1.9 0.9 1.8 2.1 1.5 1.6 1.4 1.6 1.5 1.6 1.4 1.5 1.5 1.6 1.4 1.5	Alkalinity	mg/L	30-500 OG (2)	DESTROYED	DESTROYED	204	263	282	292	300	307	306	328	302	349	351	302	324
Process Proc	Chloride	mg/L	250 AO ⁽³⁾			36.2	15.0	12.6	7.4	6.67	5.32	4.70	3.56	3.74	4.07	4.12	3.74	3.33
Mary Mary	Dissolved Organic Carbon	mg/L	5 AO			31.7	1.9	3.2	1.2	1.4	1.6	1.9	0.9	1.6	2.1	1.5	1.6	1.4
Hardware myl. Micros myl. Micros myl. 1 Micro myl. 1 Mic	Fluoride	mg/L	1.5 MAC (4)			0.34	0.92	0.79	0.74	0.67	0.66	0.70	0.57	0.73	0.64	0.65	0.73	0.58
	Sulphate	mg/L	500 AO			74.1	10.4	18.7	14.2	11.6	10.8	13.2	14.5	14.8	16.8	17.3	14.8	20.8
Part	Hardness	mg/L	80-100 OG			275	231	266	277	261	271	277	281	287	316	301	287	330
Depth Ninger	Nitrate	mg/L	10 MAC			<0.10	< 0.05	0.13	< 0.05	<0.10	<0.10	<0.05	<0.10	<0.05	<0.10	0.12	< 0.05	<0.10
Company	Nitrite	mg/L	1 MAC			<0.10	<0.05	<0.10	<0.05	<0.10	<0.10	<0.05	<0.10	<0.05	<0.10	<0.05	<0.05	<0.10
Electrical Concentrally	Organic Nitrogen	mg/L	0.15 OG			0.19	0.14	0.10	0.16	<0.10	0.18	0.13	0.10	<0.10	0.40	0.14	<0.10	0.26
	Orthophosphate	mg/L				<0.20	<0.10	<0.20	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20	<0.10	<0.10	<0.20
Total Passive Solids mg/L 500 AO 100 1	рН	pH Units	6.5-8.5 OG			8.18	8.36	8.24	8.15	8.16	8.09	8.31	8.28	8.2	8.17	8.07	8.20	8.02
Paral Resolved Rolles	Electrical Conductivity	μS/cm				721	571	605	602	552	604	634	609	566	675	614	566	651
First Michael Michael Michael First Michae	Total Ammonia	mg/L				0.13	<0.02	0.06	<0.02	<0.02	<0.02	<0.02	<0.02	0.16	0.02	0.06	0.16	0.07
Metals	Total Dissolved Solids	mg/L	500 AO			418	276	302	298	288	298	304	306	312	322	316	312	366
Metals	Total Kjeldahl Nitrogen (TKN)	mg/L				0.32	0.14	0.16	0.16	<0.10	0.18	0.13	0.10	<0.10	0.42	0.20	<0.10	0.33
Aluminum	Total Phosphorus	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Research mg L 0.01 MAC 0.003	Metals																	
Barium mgL	Aluminum	mg/L	0.1 OG			0.007	0.004	0.005	<0.004	<0.004	0.337	0.057	0.007	<0.004	0.006	0.009	<0.004	0.009
Seryillum mg/L mg	Arsenic	mg/L	0.01 MAC			<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Bismuth	Barium	mg/L	1 MAC			0.037	0.049	0.046	0.052	0.046	0.047	0.051	0.048	0.054	0.057	0.056	0.054	0.059
Boron mg/l SIMAC	Beryllium	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	Bismuth	mg/L				<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium mg/L Calcium mg/L Calcium mg/L Cob MAC Chomium mg/L Cob MAC Cobalt mg/L mg/L	Boron	mg/l	5 IMAC ⁽⁵⁾			0.083	0.068	0.075	0.064	0.077	0.063	0.065	0.053	0.055	0.079	0.070	0.055	0.060
Chromium mg/L 0.05 MAC	Cadmium	mg/L	0.005 MAC			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt mgL 1 AC Copper mg/L 1 AC Copper mg/L 1 AC Copper mg/L 1 AC Copper mg/L 1 AC Copper mg/L 1 AC Copper mg/L 1 AC Copper mg/L 1 AC Copper mg/L 1 AC Copper mg/L 1 AC Copper mg/L 1 AC Copper mg/L	Calcium	mg/L				55.2	42.4	49.3	55.1	49.1	53.4	55.5	56.4	53.7	63.6	56.9	53.7	65.7
Copper	Chromium	mg/L	0.05 MAC			<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Tron mg/L 0.3 AO Lead mg/L 0.01 MAC Magnesium mg/L 0.01 MAC Magnesium mg/L 0.05 AO 0.083 0.083 0.126 0.107 0.067 0.110 0.109 0.043 0.047 0.126 0.112 0.047 0.126 0.126 0.112 0.047 0.126	Cobalt	mg/L				<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Color Colo	Copper	mg/L	1 AO			<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003			<0.003	0.013	<0.003
Magnesium mg/L 33.2 30.3 34.7 33.9 33.7 33.4 33.6 34.0 37.1 38.1 38.7 37.1 40.3 Manganese mg/L 0.05 AO 0.093 0.083 0.126 0.107 0.067 0.110 0.109 0.043 0.047 0.126 0.112 0.047 0.126 Molybdenum mg/L 0.019 0.018 0.018 0.014 0.010 0.011 0.007 0.008 0.010 0.009 0.008 0.009 Nickel mg/L 0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <td< th=""><th>Iron</th><td>mg/L</td><td>0.3 AO</td><td></td><td></td><td>0.019</td><td><0.010</td><td>0.148</td><td>0.09</td><td>0.070</td><td>0.319</td><td>0.079</td><td><0.010</td><td>0.073</td><td>0.045</td><td><0.010</td><td>0.073</td><td><0.010</td></td<>	Iron	mg/L	0.3 AO			0.019	<0.010	0.148	0.09	0.070	0.319	0.079	<0.010	0.073	0.045	<0.010	0.073	<0.010
Marganese mg/L 0.05 AO Molybdenum mg/L 0.093 0.083 0.126 0.107 0.067 0.110 0.109 0.043 0.047 0.126 0.112 0.047 0.126 Molybdenum mg/L 0.019 0.018 0.018 0.014 0.010 0.011 0.007 0.008 0.010 0.009 0.008 0.009 Nickel mg/L 0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.004	Lead	mg/L	0.01 MAC			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.002	<0.001
Molybdenum mg/L	Magnesium	mg/L				33.2	30.3	34.7	33.9	33.7	33.4	33.6	34.0		38.1	38.7	37.1	40.3
Nickel mg/L	Manganese	mg/L	0.05 AO			0.093	0.083	0.126	0.107	0.067	0.110	0.109	0.043	0.047	0.126		0.047	0.126
Potassium mg/L	Molybdenum																	
Selenium mg/L 0.05 MAC	Nickel	mg/L																
Silicon mg/L 4.62 6.15 5.41 5.85 5.47 6.90 5.76 5.69 6.35 6.02 4.84 6.35 5.00 Silver mg/L mg/L 200 AO <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	Potassium	mg/L																
Silver mg/L 200 AO <0.002			0.05 MAC															1
Sodium mg/L 200 AO Strontium mg/L 200 AO 28.6 21.9 21.4 17.2 17.5 16.5 15.6 15.8 15.1 14.1 15.4 15.1 15.0 Strontium mg/L 0.617 0.616 0.754 0.735 0.735 0.777 0.877 0.807 1.06 1.07 1.11 1.06 1.35																		
Strontium mg/L 0.617 0.616 0.754 0.735 0.735 0.777 0.877 0.807 1.06 1.07 1.11 1.06 1.35																		
			200 AO															
Sulphur mg/L 27.1 2.83 4.69 4.5 2.75 3.58 4.63 4.76 4.64 5.0 5.01 4.64 9.43																		
		-																
Thallium mg/L <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0																		
Tin mg/L <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002																		
Titanium mg/L <0.002 <0.002 <0.002 <0.002 0.013 0.003 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002																		
Uranium mg/L 0.02 MAC <0.002			0.02 MAC															
Vanadium mg/L < 0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <		-																
Zinc mg/L 5 AO S AO <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 	Zinc	mg/L	5 AO			<0.005	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	<0.005	0.024	0.005	<0.005	0.024	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 42 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-24-II

Content Cont	Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
Desired on the control of the contro	General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Description	Alkalinity	mg/L	30-500 OG ⁽²⁾	347	320	340	349	362	396	350	289	357	363	350	358	348	345	358
Part	Chloride	mg/L	250 AO ⁽³⁾	3.25	3.45	3.08	3.21	3.43	3.02	3.12	1.23	2.64	4	2	3	3	4	3
Explain	Dissolved Organic Carbon	mg/L	5 AO	1.7	1.5	1.4	1.2	3.6	1.2	1.6	2.9	2.1	1.2	2.0	2.0	2.0	1.2	2.0
Part	Fluoride	mg/L	1.5 MAC (4)	0.62	0.58	0.62	0.67	0.87	0.63	0.63	0.16	0.63	0.73	0.72	0.68	0.79	0.73	0.65
Part	Sulphate	mg/L	500 AO	18.9	21.1	21.5	19.1	24.6	24.4	19.8	21.8	30.8	30	31	33	37	33	34
Mine Mine	Hardness	mg/L	80-100 OG	324	275	325	332	310	335	293	280	369	402	383	374	379	372	418
Depart Nethergon mgl	Nitrate	mg/L	10 MAC	<0.10	0.12	0.12	0.18	<0.05	0.08	0.09	0.10	<0.05	0.10	< 0.06	0.09	0.13	0.06	0.13
Professional	Nitrite	mg/L	1 MAC	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Part Part	Organic Nitrogen	mg/L	0.15 OG	<0.10	0.12	0.23	0.23	0.31	0.16	0.32	0.27	0.26	< 0.5	< 0.5	< 0.05	< 0.05	0.06	0.09
Secondar Conductivity Section	Orthophosphate	mg/L		<0.20	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10						0.04
Total Secretary Secretary Figure	рН	pH Units	6.5-8.5 OG	7.99	7.84	7.90	8.05	8.00	7.88	8.01	7.84	7.97	8.07	8.14	8.13	8.10	8.23	8.06
Trace Developed Soliday myle	Electrical Conductivity	μS/cm		631	733	746	731	597	602	657	547	698	654	690	689	676	612	668
Total Pleady Normal Page	Total Ammonia	mg/L		<0.02	0.03	0.07	<0.02	0.08	<0.02	0.03	<0.02	<0.02	0.09	0.06	< 0.04	< 0.04	< 0.04	< 0.04
Total Processions	Total Dissolved Solids	mg/L	500 AO	344	348				384			386	406	374		474	434	380
Martin Part 10 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10					0.16					< 0.05	0.07	< 0.05	0.07	0.11
Number	Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	0.071	<0.050	0.078	< 0.03	< 0.03	< 0.03	0.06	< 0.03	< 0.003
New No. March Ma	Metals	1																
Baryshim mg/L 1 MAC 0.053 0.028 0.055 0.059 0.059 0.059 0.059 0.040 0.027 0.008 0.058 0.058 0.058 0.0480 0.0580	Aluminum	mg/L	0.1 OG	<0.004	<0.004	0.006	0.016	0.025	0.022	0.011	0.089	0.417	0.020	0.902	0.014	0.0010	0.0020	0.022
Experiment Margit	Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002	0.0004	0.0003	< 0.0002	< 0.0002	0.0002
Semuth mgl	Barium	mg/L	1 MAC	0.053	0.026	0.053	0.050	0.052	0.040	0.042	0.027	0.060	0.063	0.0661	0.0568	0.0489	0.0460	0.0529
Born Mg BIMAC Mg Cadmium	Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	0.000042	0.000024	< 0.000007	< 0.000007	< 0.000007
Carbium	Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	0.00002		< 0.00001	< 0.00001
Column	Boron	mg/l	5 IMAC ⁽⁵⁾	0.060	0.056	0.060	0.058	0.108	0.042	0.052	0.036	0.054	0.076	0.055	0.075	0.037	0.036	0.046
Chromium	Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000007	0.000008	0.000009	0.000003	0.000005	0.000005
Cobail	Calcium			65.8	50.4	69.4	69.8	63.7	77.2	58.9	77.3	78.4	95.5	85.5	80.4	88.1	83.2	92.5
Copper	Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00026	0.00418	0.00022	0.00009	0.0001	0.00019
Figure F	Cobalt																	+
Lead	Copper		-															+
Magnesium mg/L 38.9 36.2 36.9 38.4 36.6 34.5 35.4 21.1 42 39.8 41.3 42.1 38.6 40.0 45.5 Manganese mg/L 0.05 AO 0.075 0.017 0.122 0.072 0.096 0.033 0.075 0.032 0.097 0.0538 0.0289 Molybdenum mg/L 0.008 0.007 0.008 0.0001 0.0001 0.001 <th>Iron</th> <th>mg/L</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Iron	mg/L	-															
Marganese mg/L 0.05 AO 0.075 0.017 0.122 0.072 0.096 0.033 0.075 0.032 0.097 0.0538 0.0910 0.0429 0.0313 0.0335 0.0289 Molydenum mg/L 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.0072 0.00863 0.00583 0.00575 Nickel mg/L 6.10 4.57 5.68 5.34 5.09 4.11 5.18 1.62 5.34 6.36 5.35 5.48 5.19 4.82 5.7 5.98 5.43 5.61 6.19 5.54 4.91 6.74 6.92 7.93 9.24 4.81 5.79 5.95 5.65 5.65 5.65 5.65 5.65 5.65 <t< th=""><th></th><th></th><th>0.01 MAC</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>			0.01 MAC															
Molybdenum mg/L 0.008 0.007 0.008 0.007 0.008 0.005 0.003 <0.002 0.006 0.0066 0.0056 0.0072 0.00683 0.00583 0.00575 Nickel mg/L <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.	Magnesium																	
Nickel mg/L < 0.003			0.05 AO															
Potassium mg/L																		-
Selenium mg/L 0.05 MAC <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.0004 <0.0004 <0.00004 <0.00004 <0.00004 <0.00004 <0.00004 <0.00004 <0.00004 <0.00004 <0.00004 <0.00004 <0.00004 <0.00006 <0.00006 <0.00006 <0.00006 <0.00006 <0.00006 <0.00006 <0.00006 <0.00006 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005		-																
Silicon mg/L 5.92 2.78 5.43 5.61 6.19 5.54 4.91 6.74 6.92 7.93 9.24 4.81 5.79 5.95 5.65																		+
Silver mg/L			0.05 MAC															+
Sodium mg/L 200 AO 16.2 14.3 14.3 14.6 13.3 12.3 15.3 7.46 13.1 15.9 14.9 14.3 15.7 13.6 15.																		
Strontium mg/L 1.21 1.03 1.17 0.988 1.25 0.877 0.898 0.177 1.37 1.37 1.37 1.23 1.36 1.23 1.12 1.58			202.40															+
Sulphur mg/L 7.79 10.2 7.60 6.61 6.52 9.22 7.87 8.71 8.96 15 10 11 11 11 11 12 Thallium mg/L <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002			200 AO															+
Thallium mg/L < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.0008 < 0.00023 < 0.000014 < 0.00011 < 0.00011 < 0.00018 < 0.00006 < 0.00008 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002																		+
Tin mg/L < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0																		+
Titanium mg/L																		+
Uranium mg/L 0.02 MAC <0.002																		+
Vanadium mg/L <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0			0.00.144.0															
			U.UZ MAC															
#####################################			5.40															+
	ZIIIC	mg/L	5 AU	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.002	0.008	0.005	0.003	0.004	0.002

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 43 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-24-III

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Offics	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	352	309	307	227	252	211	294	359	357	348	366	375	280	326	312
Chloride	mg/L	250 AO ⁽³⁾	3.88	4.08	3.84	3.55	3.70	4.52	4.29	3.76	3.22	3.85	3.56	3.51	4.92	4.17	3.06
Dissolved Organic Carbon	mg/L	5 AO	1.5	2.7	2.0	1.9	2.6	3.7	2.7	2.2	4.6	1.8	2.2	2.7	2.1	3.0	2.0
Fluoride	mg/L	1.5 MAC (4)	0.07	<0.25	<0.10	<0.05	0.15	0.11	<0.10	<0.10	<0.05	<0.25	<0.05	<0.10	<0.05	<0.05	<0.10
Sulphate	mg/L	500 AO	15.5	20.8	13.0	14.1	9.61	21.6	19.9	11.0	7.89	18.4	11.9	12.9	14.4	12.7	15.2
Hardness	mg/L	80-100 OG	335	335	303	224	300	249	297	357	335	333	352	352	257	339	346
Nitrate	mg/L	10 MAC	0.59	0.49	0.78	1.20	1.37	0.22	1.09	2.45	1.85	2.33	2.10	1.59	0.56	0.94	0.90
Nitrite	mg/L	1 MAC	<0.05	<0.25	<0.10	<0.05	<0.10	<0.05	<0.10	<0.10	<0.05	<0.25	<0.05	<0.10	<0.05	<0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.46	0.39	0.23	0.77	0.91	1.19	0.37	0.52	0.56	0.37	0.23	0.27	0.23	0.25	0.17
Orthophosphate	mg/L		<0.10	<0.50	<0.20	<0.10	<0.20	<0.10	<0.20	<0.20	<0.10	<0.50	<0.10	<0.20	<0.10	<0.10	<0.20
pH	pH Units	6.5-8.5 OG	8.08	7.95	7.75	8.25	8.17	7.97	7.94	7.91	8.03	8.16	8.32	8.08	7.78	7.94	7.81
Electrical Conductivity	μS/cm		655	628	637	470	519	469	554	701	710	668	666	726	518	657	646
Total Ammonia	mg/L		0.07	0.09	0.6	0.45	0.37	0.1	0.03	0.04	0.14	0.07	1.14	0.11	0.15	0.31	0.04
Total Dissolved Solids	mg/L	500 AO	352	372	352	252	316	260	312	358	362	330	386	356	270	364	392
Total Kjeldahl Nitrogen (TKN)	mg/L		0.53	0.48	0.83	1.22	1.28	1.29	0.40	0.56	0.70	0.44	1.37	0.38	0.38	0.56	0.21
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.21	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals		1		 													
Aluminum	mg/L	0.1 OG	<0.004	<0.004	<0.004	<0.004	0.004	<0.004	0.403	0.240	0.007	0.008	0.006	0.005	0.007	<0.004	0.007
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.032	0.03	0.03	0.019	0.023	0.023	0.036	0.028	0.029	0.029	0.025	0.025	0.027	0.042	0.034
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.01	0.012	0.021	0.011	0.011	0.018	0.010	<0.010	0.013	0.012	0.012	0.026	0.018	0.020	0.015
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		91.0	93.9	86.0	66.9	85.5	74.9	85.4	100	94.1	92.8	95.6	97.1	73.1	94.3	95.4
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	0.009	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	<0.001	<0.001	<0.001	0.001	0.001	0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.014	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	0.018	0.156	<0.010	<0.010	0.334	0.142	<0.010	<0.010	0.075	0.012	0.72	2.73	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L	0.05.40	26.2	24.4	21.4	13.9	21.0	15.1	20.4	26.0	24.2	24.5	27.5	26.5	18.2	25.1	26.1
Manganese	mg/L	0.05 AO	<0.002	0.002	0.161	0.364	0.037	0.091	0.026	0.050	0.019	0.005	0.030	0.010	0.280	0.423	0.008
Molybdenum	mg/L		<0.002	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003 1.77	<0.003 1.15	0.003 5.78	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003 0.95	<0.003 2.40	<0.003	<0.003 1.39
Potassium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	1.11 <0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Selenium	mg/L mg/L	0.05 WAC	6.68	6.8	6.45	3.8	4.58	3.86	5.51	8.25	7.48	6.23	8.21	8.22	3.89	7.91	6.34
-			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Silver Sodium	mg/L mg/L	200 AO	13.4	9.64	8.99	6.67	6.54	7.82	6.91	6.27	6.23	7.03	6.07	6.17	6.00	5.88	7.50
Strontium	mg/L	200 AO	0.139	0.15	0.345	0.129	0.137	0.119	0.158	0.146	0.163	0.153	0.155	0.17	0.116	0.142	0.157
Sulphur	mg/L		4.56	8.3	6.65	6.26	2.75	7.32	6.99	3.10	4.0	6.23	4.43	4.62	4.55	6.18	7.53
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.000	<0.006	<0.006	<0.006	<0.000	<0.008	<0.000	<0.000	<0.006
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L	U.UZ IVIAU	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.002	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	<0.002	0.002	0.027	<0.002	0.002	<0.002	0.002
ZIIIC	IIIg/L	3 AU	0.006	0.007	<0.005	<0.000	0.000	<0.005	0.012	<0.005	<0.000	0.000	0.027	<0.005	0.009	<0.005	0.011

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 44 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-24-III

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Oille	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	276	361	339	334	351	373	341	340	337	269	324	309	Damaged	Damaged	Damaged
Chloride	mg/L	250 AO ⁽³⁾	2.91	4.28	3.16	2.86	3.47	1.86	2.39	2.42	1.63	6	3	2			
Dissolved Organic Carbon	mg/L	5 AO	2.4	7.2	4.9	1.5	1.4	2.8	1.7	2.4	3.5	2.5	2.0	2.0			
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	< 0.05	<0.10	<0.10	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.06	0.10	0.08			
Sulphate	mg/L	500 AO	14.3	12.5	16.0	20.8	17.2	14.8	16.4	15.7	13.3	14	17	15			
Hardness	mg/L	80-100 OG	280	358	345	352	321	316	313	343	330	292	331	316			
Nitrate	mg/L	10 MAC	0.38	<0.10	0.79	1.22	1.08	0.77	0.98	1.12	0.88	0.67	1.25	0.83			
Nitrite	mg/L	1 MAC	< 0.05	<0.10	0.14	<0.10	< 0.05	< 0.05	< 0.05	<0.05	0.06	< 0.03	< 0.03	< 0.03			
Organic Nitrogen	mg/L	0.15 OG	0.26	1.05	1.07	0.66	0.27	0.27	0.69	0.31	0.27	< 0.5	< 0.5	< 0.05			
Orthophosphate	mg/L		<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10						
рН	pH Units	6.5-8.5 OG	7.69	7.46	7.67	7.79	7.84	7.58	7.68	7.61	7.69	8.07	8.08	7.99			
Electrical Conductivity	μS/cm		521	784	748	718	585	554	635	648	636	502	642	592			
Total Ammonia	mg/L		<0.02	4.10	0.32	0.18	0.08	0.04	<0.02	0.03	<0.02	< 0.04	0.04	< 0.04			
Total Dissolved Solids	mg/L	500 AO	280	330	356	352	364	360	342	356	354	317	363	309			
Total Kjeldahl Nitrogen (TKN)	mg/L		0.26	5.15	1.39	0.84	0.35	0.31	0.69	0.34	0.27	< 0.5	0.10	< 0.05			
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.03	< 0.03	0.08			
Metals																	
Aluminum	mg/L	0.1 OG	0.011	<0.004	0.011	0.028	0.022	0.020	0.077	0.113	0.092	0.017	0.284	0.118			
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	0.006	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002	< 0.0002	< 0.0002			
Barium	mg/L	1 MAC	0.026	0.030	0.028	0.023	0.019	0.027	0.022	0.027	0.028	0.0334	0.0276	0.0262			
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	0.00001	0.00002			
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001			
Boron	mg/l	5 IMAC (5)	<0.010	0.014	0.016	0.012	0.053	0.017	<0.010	0.012	0.016	0.031	0.018	0.029			
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000008	0.00001	0.000012			
Calcium	mg/L		77.7	98.4	95.7	97.6	87.3	90.4	86.7	93.3	92.3	84.7	90.8	87.0			
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00053	0.00215	0.00136			
Cobalt	mg/L		<0.001	0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000061	0.00469	0.000357			
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.009	<0.003	<0.003	0.0018	0.0014	0.0011			
Iron	mg/L	0.3 AO	<0.010	<0.010	0.444	0.064	0.032	0.012	0.115	0.091	<0.010	0.021	0.355	0.137			
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	0.00028	0.00011			
Magnesium	mg/L		20.8	27.2	25.8	26.2	25.0	21.9	23.5	26.6	24.2	19.4	25.3	24.0			
Manganese	mg/L	0.05 AO	0.005	0.268	0.216	0.010	0.002	<0.002	0.007	0.004	0.004	0.00128	0.00903	0.00301			
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00061	0.0003	0.00056			
Nickel	mg/L		<0.003	<0.003	<0.003	0.007	<0.003	<0.003	<0.003	<0.003	<0.003	0.0005	0.0013	0.0007			
Potassium	mg/L		0.91	2.61	1.18	0.9	0.84	1.14	1.44	1.15	1.25	0.903	0.776	0.952			
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.00017	0.00018	0.00029			
Silicon	mg/L		5.73	8.32	7.97	8.04	8.32	6.62	5.59	8.32	7.6	7.16	9.55	7.77			
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005			
Sodium	mg/L	200 AO	5.86	6.48	6.27	5.73	5.54	6.0	5.46	6.3	6.0	6.46	6.06	6.75			
Strontium	mg/L		0.110	0.139	0.142	0.131	0.145	0.153	0.100	0.148	0.158	0.107	0.128	0.139			
Sulphur	mg/L		6.69	7.23	5.29	5.56	4.88	6.59	6.31	7.06	4.47	9	5	5			
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	0.000008	< 0.000005			
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	< 0.00006	< 0.00006			
Titanium	mg/L		<0.002	<0.002	<0.002	0.004	<0.002	<0.002	<0.002	0.003	0.003	0.00068	0.0127	0.00543			
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000437	0.000558	0.000622			
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00069	0.00151	0.00103			
Zinc	mg/L	5 AO	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	0.006	<0.005	0.003	0.004	0.006			<u> </u>

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 45 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-17-I

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Offics	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	235	245	231	219	235	228	253	242	230	239	222	241	259	230	220
Chloride	mg/L	250 AO ⁽³⁾	0.69	0.78	0.83	0.85	0.82	0.69	0.82	0.72	0.73	0.97	0.28	0.90	0.88	0.76	0.62
Dissolved Organic Carbon	mg/L	5 AO	2.4	2.2	2.1	2.3	2.5	2.1	2.2	2.5	2.3	1.9	2.7	2.9	2.3	2.8	2.8
Fluoride	mg/L	1.5 MAC (4)	0.17	0.19	0.36	0.35	0.19	0.34	<0.10	0.23	0.34	0.25	0.24	0.24	0.12	0.27	0.25
Sulphate	mg/L	500 AO	16.2	15.9	15.5	14.8	16.5	16.5	20.0	16.8	15.5	15.5	14.6	15.4	16.4	16.0	15.4
Hardness	mg/L	80-100 OG	235	249	231	227	246	235	239	235	233	221	226	232	239	242	240
Nitrate	mg/L	10 MAC	<0.05	<0.10	0.06	<0.10	<0.10	<0.05	<0.10	<0.05	<0.05	0.14	0.05	0.13	<0.05	<0.05	<0.05
Nitrite	mg/L	1 MAC	<0.05	<0.10	<0.05	<0.10	<0.10	<0.05	<0.10	<0.05	<0.05	<0.10	0.14	<0.05	<0.05	<0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	0.39	<0.10	0.16	<0.10	<0.10	<0.10	<0.10	0.15	0.15	<0.10	<0.10	0.23	0.12	0.11	0.22
Orthophosphate	mg/L		<0.10	<0.20	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10
рН	pH Units	6.5-8.5 OG	8.26	8.14	7.96	8.27	8.18	8.03	8.09	7.97	8.24	8.27	8.13	8.30	7.88	7.95	7.85
Electrical Conductivity	μS/cm		459	474	483	454	486	471	456	497	490	449	420	483	467	470	455
Total Ammonia	mg/L		0.09	0.09	0.07	<0.02	0.07	<0.02	<0.02	0.04	0.04	0.03	0.03	<0.02	0.02	0.03	<0.02
Total Dissolved Solids	mg/L	500 AO	258	280	254	250	254	244	262	264	258	244	250	256	258	230	278
Total Kjeldahl Nitrogen (TKN)	mg/L		0.48	<0.10	0.23	<0.10	<0.10	<0.10	<0.10	0.19	0.19	<0.10	<0.10	0.23	0.14	0.14	0.22
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	0.009	<0.004	<0.004	<0.004	0.014	0.015	0.005	0.006	0.005	0.008	0.006	<0.004	0.009
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.029	0.028	0.03	0.028	0.027	0.031	0.034	0.030	0.034	0.040	0.033	0.034	0.034	0.032	0.036
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.028	0.031	0.032	0.029	0.028	0.031	0.035	0.030	0.036	0.030	0.030	0.049	0.034	0.039	0.037
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		63.0	66.2	61.1	61.1	65.5	62.9	63.1	63.4	62.9	58.0	59.9	62.4	63.4	65.1	64.3
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	<0.003	0.014	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	0.129	0.415	0.352	0.453	0.371	0.123	0.115	0.152	0.280	0.249	0.33	0.302	0.112	0.370	0.084
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		18.9	20.3	19.0	18.1	19.9	19.0	19.7	18.6	18.5	18.5	18.5	18.6	19.6	19.2	19.4
Manganese	mg/L	0.05 AO	0.023	0.024	0.038	0.024	0.024	0.015	0.012	0.015	0.040	0.023	0.019	0.015	0.029	0.037	0.036
Molybdenum	mg/L		<0.002	0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		3.19	3.44	3.39	3.06	3.29	3.26	3.40	3.36	3.61	3.34	3.05	3.0	3.18	3.05	3.35
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		8.49	8.25	8.02	8.04	6.63	8.43	8.56	7.54	8.44	8.02	8.98	8.49	6.37	10.1	7.56
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	4.61	5.21	4.64	4.49	4.91	4.84	4.58	4.56	4.34	4.10	3.82	3.95	3.74	3.81	4.07
Strontium	mg/L		0.455	0.472	0.438	0.404	0.499	0.484	0.483	0.451	0.508	0.485	0.479	0.479	0.441	0.474	0.528
Sulphur	mg/L		4.41	5.9	5.85	5.86	5.31	5.65	5.27	5.34	5.71	5.38	5.49	5.03	5.48	6.47	7.00
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.006	<0.005	0.006	<0.005	<0.005	<0.005	0.023	0.007	0.020	<0.005	0.027	<0.005	<0.005	<0.005	0.006
<u> </u>		<u> </u>			<u> </u>		<u>. </u>		·		<u> </u>	·	·	•	·		

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 46 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-17-I

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Office	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	236	224	224	240	237	254	240	240	236	244	229	232	236	240	239
Chloride	mg/L	250 AO ⁽³⁾	0.76	0.78	0.70	0.70	0.77	0.70	0.54	0.68	0.16	< 1	< 1	< 1	< 1	< 1	< 1
Dissolved Organic Carbon	mg/L	5 AO	2.9	3.1	1.9	2.8	2.7	2.9	3.2	3.2	3.2	2.2	2.0	2.0	3.0	2.7	2.0
Fluoride	mg/L	1.5 MAC (4)	0.25	0.26	0.23	0.30	0.24	0.23	0.26	0.24	0.22	0.32	0.33	0.31	0.35	0.36	0.33
Sulphate	mg/L	500 AO	15.6	16.2	16.3	16.0	16.5	16.6	16.1	16.3	16.3	20	18	18	18	18	17
Hardness	mg/L	80-100 OG	235	246	227	237	214	217	211	246	231	269	227	242	263	244	276
Nitrate	mg/L	10 MAC	0.05	<0.05	<0.05	< 0.05	0.13	0.05	<0.05	<0.05	<0.05	0.10	0.43	0.17	< 0.06	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	0.11	<0.10	0.30	0.21	0.21	0.19	0.10	0.17	< 0.5	< 0.5	< 0.05	< 0.05	0.12	0.20
Orthophosphate	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.84	7.81	7.72	7.82	7.97	7.59	7.92	7.99	7.97	8.19	8.23	8.18	8.17	8.02	8.15
Electrical Conductivity	μS/cm		448	503	503	510	404	394	466	463	465	453	465	458	462	466	455
Total Ammonia	mg/L		0.02	0.03	<0.02	<0.02	0.02	< 0.02	0.04	0.09	<0.02	0.07	0.09	0.11	0.07	0.05	0.06
Total Dissolved Solids	mg/L	500 AO	230	246	244	268	242	252	260	286	266	297	254	254	297	266	274
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.14	<0.10	0.3	0.23	0.21	0.23	0.19	0.17	< 0.5	0.25	0.11	0.09	0.17	0.26
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	0.091	<0.050	0.051	0.068	<0.050	<0.050	0.04	< 0.03	< 0.03	< 0.03	< 0.03	0.021
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.004	0.006	0.024	0.013	0.025	0.012	<0.004	0.005	0.006	0.002	0.068	< 0.001	0.001	0.002
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	0.004	0.004	0.012	<0.003	0.004	<0.003	0.0004	0.0006	0.0004	0.0003	0.0008	0.0002
Barium	mg/L	1 MAC	0.032	0.029	0.032	0.037	0.027	0.027	0.037	0.03	0.033	0.0373	0.0337	0.0335	0.0305	0.0296	0.0315
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.029	0.040	0.037	0.042	0.079	0.036	0.034	0.037	0.037	0.063	0.058	0.049	0.037	0.032	0.030
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.000003	0.000004	< 0.000003	< 0.000003	0.000004	< 0.000003
Calcium	mg/L		63.8	66.1	61.0	62.9	56.7	57.9	56.3	64.9	62.0	76.1	60.7	64.4	72.0	65.2	74.5
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00023	0.00014	0.00051	0.00012	0.00032	0.00136
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000106	0.000111	0.00023	0.000147	0.000189	0.000107
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0018	< 0.0002	0.0004	0.0009	0.0009	0.0013
Iron	mg/L	0.3 AO	0.314	<0.010	0.252	0.326	0.21	0.133	0.016	0.273	0.237	0.414	0.361	0.567	0.327	0.437	0.642
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		18.3	19.7	18.2	19.3	17.5	17.6	17.1	20.4	18.6	19.3	18.4	19.8	20.1	19.7	21.9
Manganese	mg/L	0.05 AO	0.028	0.011	0.020	0.027	0.016	0.019	0.047	0.025	0.034	0.0406	0.0397	0.0522	0.0371	0.0414	0.0348
Molybdenum	mg/L		<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	0.00197	0.00181	0.00192	0.00234	0.00198	0.00152
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0002	0.0003	0.0004	0.0004	0.0003	0.0004
Potassium	mg/L		3.16	3.23	3.15	3.01	2.8	2.82	2.99	3.05	2.99	3.68	3.34	3.09	3.46	3.30	3.58
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	0.005	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.00004	< 0.00004	0.00009	< 0.00004	< 0.00004	< 0.00004
Silicon	mg/L		8.71	8.11	8.48	8.19	9.53	7.82	8.31	8.62	9.13	11.4	9.64	9.64	9.32	9.21	8.60
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	3.83	3.98	3.96	3.75	3.42	3.71	3.54	3.71	3.53	3.84	3.73	3.64	4.12	3.74	4.36
Strontium	mg/L		0.453	0.477	0.461	0.461	0.475	0.438	0.455	0.489	0.49	0.501	0.429	0.477	0.494	0.501	0.564
Sulphur	mg/L		6.66	6.68	5.63	5.37	4.98	6.63	6.12	7.2	6.09	10	5	5	6	6	6
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00008	0.00008	0.0002	< 0.00006	0.00022	0.00006
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.01	<0.002	<0.002	0.00017	0.00009	0.00385	0.00014	0.00007	0.0001
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000023	0.000025	0.00004	0.000042	0.000039	0.000028
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00016	0.00018	0.00038	0.00012	0.00016	0.00013
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	0.027	<0.005	<0.005	0.014	0.003	< 0.002	0.005	< 0.002	0.002	< 0.002

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 47 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-17-II

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Onits	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	277	284	279	274	298	211	284	292	272	319	299	288	291	274	256
Chloride	mg/L	250 AO ⁽³⁾	2.26	2.58	2.58	2.44	2.68	9.80	2.67	2.76	2.72	2.29	2.33	3.09	2.50	2.86	2.59
Dissolved Organic Carbon	mg/L	5 AO	2.0	3.0	1.5	1.5	1.9	1.8	1.5	1.5	1.4	1.5	1.8	2.1	2.8	3.3	2.3
Fluoride	mg/L	1.5 MAC (4)	1.0	0.56	0.99	1.22	1.19	1.44	0.15	1.19	1.34	0.97	1.18	1.04	1.07	1.24	1.01
Sulphate	mg/L	500 AO	73	69.9	68.8	68.8	70.7	83.7	83.9	71.1	64.9	61.7	59.3	60.1	69.8	66.5	64.8
Hardness	mg/L	80-100 OG	234	241	211	226	222	134	224	216	213	218	206	207	225	218	223
Nitrate	mg/L	10 MAC	<0.05	<0.25	<0.10	<0.10	<0.10	0.14	<0.10	0.11	0.08	0.06	0.10	<0.10	0.06	0.08	<0.10
Nitrite	mg/L	1 MAC	<0.05	<0.25	<0.10	<0.10	<0.10	<0.05	<0.10	<0.10	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.24	0.13	0.15	<0.10	<0.10	0.12	<0.10	0.15	<0.10	<0.10	<0.10	0.21	<0.10	0.21	0.12
Orthophosphate	mg/L		<0.10	<0.50	<0.20	<0.20	<0.20	<0.10	<0.20	<0.20	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.36	8.27	8.15	8.37	8.25	8.13	8.16	8.00	8.37	8.34	8.46	8.27	8.11	8.08	7.94
Electrical Conductivity	μS/cm		649	674	676	673	706	628	628	697	677	608	637	660	632	651	621
Total Ammonia	mg/L		0.03	0.07	0.03	<0.02	0.08	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05
Total Dissolved Solids	mg/L	500 AO	354	390	358	348	368	336	346	368	352	320	348	322	332	346	366
Total Kjeldahl Nitrogen (TKN)	mg/L		0.27	0.2	0.18	<0.10	<0.10	0.12	<0.10	0.15	<0.10	<0.10	<0.10	0.21	<0.10	0.21	0.17
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	0.005	<0.004	<0.004	0.004	<0.004	<0.004	0.014	0.025	0.016	0.007	0.005	0.020	0.008	0.005	0.006
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	< 0.003	<0.003	<0.003	<0.003	< 0.003	< 0.003	< 0.003	<0.003
Barium	mg/L	1 MAC	0.041	0.035	0.041	0.045	0.040	0.026	0.048	0.042	0.048	0.046	0.042	0.048	0.045	0.045	0.051
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.137	0.135	0.132	0.128	0.117	0.338	0.154	0.121	0.149	0.138	0.118	0.161	0.139	0.140	0.155
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		38.7	40.9	34.8	38.4	36.8	21.6	36.3	36.2	35.8	35.3	33.2	34.4	36.9	35.9	36.7
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.016	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.017	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		33.4	33.7	30.1	31.7	31.7	19.5	32.3	30.5	29.9	31.6	29.8	29.5	32.3	31.1	31.9
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Molybdenum	mg/L		0.014	0.019	0.014	0.014	0.014	0.033	0.014	0.013	0.013	0.012	0.012	0.012	0.012	0.011	0.012
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		4.62	5.01	4.48	4.78	4.39	4.20	4.41	4.74	4.59	4.36	4.06	3.95	3.96	4.14	4.43
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		3.72	4.23	3.75	4.02	3.16	3.04	3.79	3.83	4.02	3.91	4.28	4.05	2.86	4.62	3.61
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	54.5	61.3	56.9	55.3	66.8	86.8	52.4	60.3	53.7	46.8	54.0	47.0	44.1	53.0	52.2
Strontium	mg/L		3.1	3.2	3.07	2.80	2.99	0.725	3.13	3.01	3.20	3.10	3.16	3.09	2.65	3.02	3.10
Sulphur	mg/L		21.6	24.6	25.5	25.5	22.5	32.3	23.0	22.2	20.5	21.2	19.3	19.3	22.3	20.9	23.5
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	0.003	0.004	0.003	0.003	0.004	<0.002	0.004	0.004	0.004	0.003	0.004	0.004	0.004	0.004	0.004
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.008	<0.005	0.006	0.005	<0.005	0.005	0.006	<0.005	<0.005	<0.005	0.025	0.006	<0.005	<0.005	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 48 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-17-II

Parameters	Unito	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Units	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	282	272	269	274	293	308	274	284	281	291	300	284	280	303	281
Chloride	mg/L	250 AO ⁽³⁾	3.02	3.12	2.60	3.03	3.27	3.08	3.11	3.01	3.14	4	3	6	4	4	4
Dissolved Organic Carbon	mg/L	5 AO	2.2	2.3	1.3	2.7	1.7	1.7	1.6	1.9	2.3	1.4	2	2	1.0	1.5	2.0
Fluoride	mg/L	1.5 MAC (4)	1.10	1.16	1.08	1.12	1.36	1.26	1.03	1.06	1.15	1.25	1.19	1.15	1.28	1.27	1.24
Sulphate	mg/L	500 AO	69.9	66.8	66.4	66.8	66.0	64.4	65.9	65.8	63.9	71	67	65	72	70	66
Hardness	mg/L	80-100 OG	223	220	215	236	199	202	200	227	212	259	219	228	266	228	404
Nitrate	mg/L	10 MAC	<0.10	0.13	<0.10	<0.10	0.08	0.06	<0.05	<0.05	<0.05	0.06	0.29	0.16	0.07	0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	0.12	<0.10	0.18	0.10	0.16	<0.10	<0.10	0.11	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	0.18
Orthophosphate	mg/L		<0.20	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10						0.07
рН	pH Units	6.5-8.5 OG	7.93	7.96	7.85	7.91	8.09	7.75	8.05	8.14	8.09	8.29	8.35	8.24	8.24	8.19	8.21
Electrical Conductivity	μS/cm		620	700	701	684	565	551	617	624	634	619	690	628	632	649	629
Total Ammonia	mg/L		<0.02	0.03	<0.02	<0.02	0.02	<0.02	<0.02	0.03	<0.02	< 0.04	0.05	0.05	< 0.04	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	320	362	336	346	340	350	344	396	348	377	403	357	426	414	397
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.15	<0.10	0.18	0.12	0.16	<0.10	<0.10	0.11	< 0.5	< 0.05	0.07	< 0.05	< 0.05	0.19
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.04	< 0.03	< 0.03	0.03	< 0.03	0.108
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.005	0.008	0.035	0.021	0.013	0.044	0.058	0.076	0.022	0.061	0.010	0.068	0.038	0.675
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0005	0.0007	0.0007	0.0007	0.0006	0.001
Barium	mg/L	1 MAC	0.047	0.044	0.049	0.052	0.039	0.040	0.043	0.044	0.049	0.0566	0.0506	0.0492	0.0469	0.0455	0.0565
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000063
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.152	0.144	0.152	0.169	0.201	0.147	0.145	0.141	0.153	0.211	0.146	0.161	0.134	0.122	0.142
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000006	0.00001	0.000005	0.000009	0.000006	0.000027
Calcium	mg/L		37.3	36.2	36.2	38.8	32.5	33.7	32.6	36.6	34.6	50.5	35.2	42.4	51.9	40.4	83.9
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00035	0.0005	0.00026	0.00056	0.00055	0.00423
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000038	0.000099	0.000033	0.000091	0.000058	0.00146
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.011	<0.003	0.003	0.0008	0.0019	0.0005	0.0009	0.0014	0.0049
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	0.060	0.042	0.026	0.114	0.059	<0.010	0.026	0.111	0.023	0.107	0.058	1.62
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	0.00012	< 0.00009	< 0.00009	< 0.00009	0.00179
Magnesium	mg/L		31.5	31.4	30.3	33.9	28.7	28.7	28.9	32.9	30.6	32.2	31.8	29.6	33.2	30.8	47.2
Manganese	mg/L	0.05 AO	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	0.004	0.00091	0.0038	0.0005	0.00385	0.00203	0.0766
Molybdenum	mg/L		0.013	0.011	0.012	0.012	0.011	0.012	0.007	0.011	0.011	0.0102	0.0116	0.0114	0.0114	0.00986	0.00936
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0007	0.0009	0.0007	0.0009	0.0008	0.0041
Potassium	mg/L		4.17	4.21	4.31	4.74	3.68	3.89	3.85	4.09	4.16	5.23	4.47	4.26	4.73	4.40	4.98
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	0.006	<0.004	<0.004	<0.004	<0.004	<0.004	0.00007	0.00006	0.0002	0.00008	0.00008	0.00009
Silicon	mg/L		4.84	3.03	4.10	4.22	4.27	4.26	3.71	4.05	4.74	5.51	4.99	4.76	4.60	4.60	5.15
Silver	mg/L	200 : 5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	47.9	56.6	53.6	47.7	49.8	50.8	44.3	52.1	54.6	49.9	72.8	60.5	58.8	62.0	64.4
Strontium	mg/L		3.22	3.13	3.19	3.345	3.36	3.09	3.3	3.08	3.26	3.49	3.03	3.02	3.26	3.19	3.56
Sulphur	mg/L		23.9	22.2	22.2	21.4	19.3	21.6	20.6	23.3	19.4	32	23	22	24	24	24
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	0.000007	0.000007	0.000005	0.000005	0.000017
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00006	0.0001	0.00007	< 0.00006	0.0001	0.00007
Titanium	mg/L		<0.002	<0.002	<0.002	0.005	<0.002	<0.002	<0.002	<0.002	0.004	0.00097	0.00282	0.00042	0.00288	0.00184	0.0202
Uranium	mg/L	0.02 MAC	0.005	0.003	0.004	0.004	0.003	0.003	0.003	0.003	0.004	0.00302	0.00424	0.00384	0.00381	0.00374	0.00384
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00052	0.00066	0.00049	0.00064	0.00059	0.00281
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.002	0.003	0.006	< 0.002	< 0.002	0.006

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 49 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-17-III

Parameters	Huita	GD14(G (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS (1)	June	July	Sep	May	July	Sep	May	July	Sep	Мау	July	Sep	Мау	July	Oct
Alkalinity	mg/L	30-500 OG (2)	183		387	175	319	DRY	143	340	DRY	134	349	DRY	187	DRY	DRY
Chloride	mg/L	250 AO ⁽³⁾	1.56	Insufficient	2.2	1.41	2.66		1.42	2.58		1.0	1.23		1.54		
Dissolved Organic Carbon	mg/L	5 AO	2.3	Water to Sample	2.7	2.2	3.0		2.8	4.7		2.7	2.5		2.7		
Fluoride	mg/L	1.5 MAC (4)	<0.05		<0.10	<0.05	<0.20		<0.05	<0.10		<0.05	<0.05		<0.05		
Sulphate	mg/L	500 AO	3.51		6.81	2.82	3.81		5.68	4.20		4.75	7.46		3.97		
Hardness	mg/L	80-100 OG	163		356	172	340		126	332		117	338		167		
Nitrate	mg/L	10 MAC	<0.05		<0.10	<0.05	<0.20		<0.05	<0.10		<0.05	<0.05		<0.05		
Nitrite	mg/L	1 MAC	<0.05		<0.10	<0.05	<0.20		<0.05	<0.10		<0.05	<0.05		<0.05		
Organic Nitrogen	mg/L	0.15 OG	0.65		0.62	<0.10	0.39		0.42	1.39		<0.10	<0.10		<0.10		
Orthophosphate	mg/L		<0.10		<0.20	<0.10	<0.40		<0.10	<0.20		<0.10	<0.10		<0.10		
рН	pH Units	6.5-8.5 OG	8		7.64	7.88	8.13		7.75	8.02		7.99	8.28		7.61		
Electrical Conductivity	μS/cm		354		709	354	605		263	656		250	614		332		
Total Ammonia	mg/L		0.08		0.04	<0.02	<0.02		<0.02	0.07		<0.02	<0.02		<0.02		
Total Dissolved Solids	mg/L	500 AO	196		368	178	320		148			134	350		172		
Total Kjeldahl Nitrogen (TKN)	mg/L		0.73		0.66	<0.10	0.39		0.42	1.46		<0.10	<0.10		<0.10		
Total Phosphorus	mg/L		<0.05		<0.05	<0.05	<0.05		<0.05	<0.05		<0.05	<0.05		<0.05		
Metals																	
Aluminum	mg/L	0.1 OG	0.011		800.0	0.012	0.010		0.019	0.014		0.012	0.007		0.007		
Arsenic	mg/L	0.01 MAC	<0.003		<0.003	<0.003	<0.003		<0.003	<0.003		<0.003	<0.003		< 0.003		
Barium	mg/L	1 MAC	0.014		0.024	0.015	0.015		0.016	0.053		0.012	0.020		0.013		
Beryllium	mg/L		<0.001		<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001		<0.001		
Bismuth	mg/L		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.002		
Boron	mg/l	5 IMAC (5)	0.011		<0.010	<0.010	0.014		<0.010	<0.010		<0.010	<0.010		<0.010		
Cadmium	mg/L	0.005 MAC	<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.002		
Calcium	mg/L		44.0		97.4	46.2	91.4		33.6	89.4		30.8	89.4		45.0		
Chromium	mg/L	0.05 MAC	<0.003		<0.003	<0.003	0.003		<0.003	<0.003		<0.003	<0.003		< 0.003		
Cobalt	mg/L		<0.001		<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	0.002		<0.001		
Copper	mg/L	1 AO	<0.003		<0.003	<0.003	<0.003		<0.003	<0.003		<0.003	<0.003		<0.003		
Iron	mg/L	0.3 AO	<0.010		0.011	<0.010	<0.010		<0.010	<0.010		<0.010	1.83		<0.010		
Lead	mg/L	0.01 MAC	<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.001		
Magnesium	mg/L		12.8		27.3	13.7	27.2		10.2	26.4		9.64	27.9		13.3		
Manganese	mg/L	0.05 AO	0.012		0.004	0.009	0.024		0.026	0.254		0.008	0.912		0.030		
Molybdenum	mg/L		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.002		
Nickel	mg/L		<0.003		<0.003	<0.003	<0.003		<0.003	0.007		<0.003	<0.003		<0.003		
Potassium	mg/L		1.05		0.94	0.83	0.66		0.81	1.07		0.85	0.43		0.80		
Selenium	mg/L	0.05 MAC	<0.004		<0.004	<0.004	<0.004		<0.004	<0.004		<0.004	<0.004		<0.004		
Silicon	mg/L		5.86		6.48	5.6	5.36		4.85	6.19		4.8	7.28		4.11		
Silver	mg/L		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.002		
Sodium	mg/L	200 AO	4.57		5.29	3.85	5.85		4.64	7.67		2.95	5.02		3.0		
Strontium	mg/L		0.079		0.14	0.084	0.122		0.067	0.222		0.063	0.139		0.077		
Sulphur	mg/L		0.81		2.69	1.19	0.97		1.54	1.64		1.83	3.31		1.43		
Thallium	mg/L		<0.006		<0.006	<0.006	<0.006		<0.006	<0.006		<0.006	<0.006		<0.006		
Tin	mg/L		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.002		
Titanium	mg/L		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.002		
Uranium	mg/L	0.02 MAC	<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.002		
Vanadium	mg/L		<0.002		<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002		<0.002		
Zinc	mg/L	5 AO	0.006		0.008	0.007	0.005		<0.005	0.006		<0.005	0.006		<0.005		

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 50 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-17-III

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Ullits	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG (2)	126	DRY	DRY	318	413	DRY	242	417	DRY	155	DRY	DRY	DRY	DRY	DRY
Chloride	mg/L	250 AO ⁽³⁾	0.94			1.25	1.28		1.61	1.66		< 1					
Dissolved Organic Carbon	mg/L	5 AO	3.4			2.2	3.0		2.2	4.4		2.3					
Fluoride	mg/L	1.5 MAC (4)	<0.05			<0.05	<0.05		<0.05	<0.05		< 0.06					
Sulphate	mg/L	500 AO	3.36			8.43	6.98		3.36	2.7		9					
Hardness	mg/L	80-100 OG	123			322	366		201	408		156					
Nitrate	mg/L	10 MAC	<0.05			<0.10	<0.10		<0.05	<0.05		< 0.06					
Nitrite	mg/L	1 MAC	<0.05			<0.10	<0.10		<0.05	<0.05		< 0.03					
Organic Nitrogen	mg/L	0.15 OG	<0.10			0.17	0.24		0.42	0.27		< 0.5					
Orthophosphate	mg/L		<0.10			<0.20	<0.20		<0.10	<0.10							
рН	pH Units	6.5-8.5 OG	7.44			7.85	7.89		7.47	7.76		7.99					
Electrical Conductivity	μS/cm		236			642	653		438	729		282					
Total Ammonia	mg/L		<0.02			<0.02	<0.02		<0.02	<0.02		< 0.04					
Total Dissolved Solids	mg/L	500 AO	132			308	390		252	418		183					
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10			0.17	0.24		0.42	0.27		< 0.5					
Total Phosphorus	mg/L		< 0.05			<0.050	<0.050		< 0.050	<0.050		< 0.03					
Metals																	
Aluminum	mg/L	0.1 OG	0.006			0.019	0.014		0.011	0.067		0.082					
Arsenic	mg/L	0.01 MAC	<0.003			0.005	<0.003		<0.003	<0.003		< 0.0002					
Barium	mg/L	1 MAC	0.011			0.020	0.017		0.014	0.022		0.0106					
Beryllium	mg/L		<0.001			<0.001	<0.001		<0.001	<0.001		0.000007					
Bismuth	mg/L		<0.002			<0.002	<0.002		<0.002	<0.002		< 0.00001					
Boron	mg/l	5 IMAC (5)	<0.010			<0.010	0.053		<0.010	<0.010		0.016					
Cadmium	mg/L	0.005 MAC	<0.002			<0.002	<0.002		<0.002	<0.002		0.000005					
Calcium	mg/L		33.3			86.1	99.2		52.8	110		43.5					
Chromium	mg/L	0.05 MAC	<0.003			<0.003	<0.003		<0.003	<0.003		0.00048					
Cobalt	mg/L		<0.001			<0.001	0.001		<0.001	0.001		0.000071					
Copper	mg/L	1 AO	<0.003			0.004	0.003		<0.003	<0.003		0.0009					
Iron	mg/L	0.3 AO	<0.010			<0.010	0.789		0.614	1.08		0.08					
Lead	mg/L	0.01 MAC	<0.001			<0.001	<0.001		<0.001	<0.001		< 0.00009					
Magnesium	mg/L		9.79			26.1	28.7		16.9	32.4		11.5					
Manganese	mg/L	0.05 AO	0.013			0.002	0.354		0.422	0.513		0.00359					
Molybdenum	mg/L		<0.002			<0.002	<0.002		<0.002	<0.002		0.00037					
Nickel	mg/L		<0.003			<0.003	<0.003		0.009	0.007		0.0006					
Potassium	mg/L		1.02			0.30	0.45		<0.50	0.58		0.72					
Selenium	mg/L	0.05 MAC	<0.004			0.004	<0.004		<0.004	<0.004		0.00007					
Silicon	mg/L		5.43			6.8	9.08		8.14	8.91		7.1					
Silver	mg/L		<0.002			<0.002	<0.002		<0.002	<0.002		< 0.00005					
Sodium	mg/L	200 AO	3.2			5.3	5.37		4.5	5.65		3.18					
Strontium	mg/L		0.062			0.125	0.163		0.086	0.168		0.0694					
Sulphur	mg/L		1.96			2.82	2.62		2.23	3.84		5					
Thallium	mg/L		<0.006			<0.006	<0.006		<0.006	<0.006		< 0.000005					
Tin	mg/L		<0.002			<0.002	<0.002		<0.002	<0.002		< 0.00006					
Titanium	mg/L		<0.002			<0.002	<0.002		0.01	<0.002		0.00231					
Uranium	mg/L	0.02 MAC	<0.002			<0.002	<0.002		<0.002	<0.002		0.00012					
Vanadium	mg/L		<0.002			<0.002	<0.002		<0.002	<0.002		0.0003					
Zinc	mg/L	5 AO	<0.005			<0.005	<0.005		<0.005	0.012		< 0.002					

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 51 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-23-I

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	221	214	220	228	219	220	229	226	223	228	239	239	244	220	205
Chloride	mg/L	250 AO ⁽³⁾	1.89	1.96	2.04	1.34	2.03	1.85	2.19	1.94	1.89	1.63	1.55	1.75	1.77	1.55	1.79
Dissolved Organic Carbon	mg/L	5 AO	2.7	2.1	2.4	2.7	3.1	2.7	2.5	2.4	2.3	2.4	3.0	3.4	2.2	3.6	3.3
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	1.17	1.38	1.25	0.89	1.41	1.26	1.25	1.27	1.31	1.02	1.2	1.19	1.06	1.08	1.35
Sulphate	mg/L	500 AO	5.16	4.3	4.76	5.40	5.24	6.50	5.90	4.82	4.22	4.15	4.31	4.36	4.96	4.79	6.74
Hardness	mg/L	80-100 OG	96	97	99.1	153	99.5	139	114	105	90.4	97.5	101	125	121	130	93.3
Nitrate	mg/L	10 MAC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.27	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrite	mg/L	1 MAC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2	<0.05	<0.05	<0.05	<0.05	<0.05
Organic Nitrogen	mg/L	0.15 OG	0.62	0.33	0.51	0.26	0.20	1.04	0.24	<0.10	0.15	0.13	<0.10	0.24	<0.10	0.10	0.30
Orthophosphate	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10
рН	pH Units	6.5-8.5 OG	8.43	8.11	8.32	8.39	8.17	8.2	8.23	8.05	8.45	8.39	8.28	8.25	8.04	8.04	7.92
Electrical Conductivity	μS/cm		422	428	439	457	441	443	423	448	440	417	434	454	434	436	410
Total Ammonia	mg/L		0.62	0.65	0.5	0.5	0.63	0.46	0.45	0.68	0.61	0.55	0.72	0.64	0.61	0.54	0.44
Total Dissolved Solids	mg/L	500 AO	226	240	216	218	226	236	228	240	220	218	230	224	210	234	252
Total Kjeldahl Nitrogen (TKN)	mg/L		1.24	0.98	1.01	0.76	0.83	1.5	0.69	0.74	0.76	0.68	0.71	0.88	0.66	0.64	0.74
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals	1																
Aluminum	mg/L	0.1 OG	0.006	<0.004	<0.004	<0.004	0.005	<0.004	0.011	0.013	0.017	0.011	0.004	0.006	0.007	<0.004	0.012
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.025	0.023	0.027	0.029	0.022	0.031	0.028	0.027	0.027	0.027	0.027	0.046	0.041	0.033	0.028
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.316	0.325	0.307	0.272	0.298	0.310	0.347	0.269	0.310	0.304	0.258	0.262	0.294	0.292	0.349
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		14.5	14.1	14.8	26.9	15.1	24.3	17.4	16.7	13.6	14.8	15.4	20.9	20.1	21.9	14.1
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	0.057	0.048	0.028	0.014	<0.010	0.046	0.063	0.063	0.034	0.058	0.029	<0.010	0.012	0.012
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		14.5	14.9	15.1	20.9	15.0	18.9	17.2	15.3	13.7	14.7	15.1	17.6	17.3	18.2	14.1
Manganese	mg/L	0.05 AO	0.009	0.009	800.0	0.009	0.008	0.008	0.010	0.009	0.008	0.009	0.009	0.008	0.007	0.011	0.010
Molybdenum	mg/L		0.009	0.01	0.009	0.009	0.013	0.009	0.009	0.009	0.010	0.010	0.009	0.006	0.008	0.008	0.010
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		2.99	3.16	3.2	3.50	3.0	4.16	3.29	3.31	3.06	3.17	3.09	3.17	3.26	3.19	2.97
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		4.63	4.54	4.5	4.59	3.66	4.38	4.64	4.85	4.55	4.55	5.19	5.41	3.6	5.85	3.82
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	60.0	63.0	59.1	35.0	57.2	50.1	57.0	58.9	60.5	57.5	49.9	42.1	43.6	42.5	58.2
Strontium	mg/L		0.442	0.453	0.432	0.433	0.535	0.438	0.479	0.536	0.495	0.483	0.54	0.721	0.537	0.596	0.465
Sulphur	mg/L		1.71	2.2	4.01	2.25	5.29	2.23	1.91	2.05	2.90	1.91	2.07	1.64	1.45	2.09	2.88
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002
Zinc	mg/L	5 AO	<0.005	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

Page 52 of 55 WSP Project No.: TY131010

⁽²⁾ Operational Guideline (OG) within ODWS.

⁽³⁾ Aesthetic Objective (AO) within ODWS.

⁽⁴⁾ Maximum Acceptable Concentration (MAC) within ODWS.

⁽⁵⁾ Interim Maximum Acceptable Concentration (IMAC) within ODWS.

⁽⁶⁾ ODWS exceedances indicated by **bold** entries.

⁽⁷⁾ ND indicates no data obtained.

Groundwater Geochemical Results OW-23-I

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Ullits	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG ⁽²⁾	227	221	212	233	226	255	233	230	235	238	217	Partial Sample	Destroyed	Destroyed	Destroyed
Chloride	mg/L	250 AO ⁽³⁾	1.58	2.02	1.63	1.71	2.27	1.92	1.56	1.57	1.08	2	1				
Dissolved Organic Carbon	mg/L	5 AO	3.1	5.7	2.3	2.5	3.9	3.7	3.4	2.6	3.6	2.3	3.0				
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	1.30	1.49	1.28	1.26	1.76	1.40	1.04	1.11	0.86	1.2	1.33				
Sulphate	mg/L	500 AO	4.92	5.11	5.53	5.10	4.9	4.87	4.80	5.9	5.12	7	5				
Hardness	mg/L	80-100 OG	101	89.8	117	117	110	85.7	144	127	148	92.4	99.8	88.5			
Nitrate	mg/L	10 MAC	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.29	<0.05	0.24	0.2				
Nitrite	mg/L	1 MAC	<0.05	0.09	<0.05	<0.05	<0.05	<0.05	0.06	0.09	<0.05	0.06	< 0.03				
Organic Nitrogen	mg/L	0.15 OG	0.44	0.24	0.22	0.36	0.20	0.40	0.38	0.56	0.33	< 0.5	< 0.5				
Orthophosphate	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10						
рН	pH Units	6.5-8.5 OG	8.00	8.07	8.01	7.81	8.00	7.70	8.02	8.17	8.13	8.27	8.39				
Electrical Conductivity	μS/cm		409	451	472	475	512	364	426	423	446	428	426				
Total Ammonia	mg/L		0.27	0.47	0.49	0.49	<0.02	0.45	0.59	0.30	0.45	0.60	0.65				
Total Dissolved Solids	mg/L	500 AO	214	228	218	238	324	224	226	244	242	254	249				
Total Kjeldahl Nitrogen (TKN)	mg/L		0.71	0.71	0.71	0.85	0.20	0.85	0.97	0.86	0.78	< 0.5	0.76				
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.25	< 0.03				
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	0.006	<0.004	0.027	0.015	0.016	0.044	0.009	0.005	0.037	0.007	0.072			
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0005	< 0.0002	0.0003			
Barium	mg/L	1 MAC	0.030	0.022	0.033	0.041	0.026	0.021	0.032	0.032	0.0400	0.0356	0.0275	0.0244			
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	0.000023			
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	< 0.00001			
Boron	mg/l	5 IMAC (5)	0.355	0.351	0.303	0.350	0.463	0.350	0.213	0.296	0.253	0.519	0.349	0.340			
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00001	0.000003	0.000007			
Calcium	mg/L		15.5	13.2	19.3	18.3	16.7	12.7	24.5	20.1	25.3	14.9	15.2	13.3			
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00026	0.00016	0.00081			
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000042	0.000038	0.000084			
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.0002	0.0003	0.0005			
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	0.054	<0.010	0.058	0.058	0.059	<0.010	0.041	0.089	0.115			
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00009	< 0.00009	< 0.00009			
Magnesium	mg/L		15.1	13.8	16.6	17.4	16.5	13.1	20	18.7	20.5	13.4	15	13.5			
Manganese	mg/L	0.05 AO	0.011	0.009	0.010	0.010	<0.002	0.008	0.007	0.013	0.009	0.011	0.0102	0.0126			
Molybdenum	mg/L		0.010	0.010	0.009	0.008	0.031	0.010	0.004	0.008	0.006	0.00967	0.00991	0.012			
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0001	0.0001	0.0002			
Potassium	mg/L		3.07	2.83	3.11	3.46	3.29	2.63	3.51	3.1	3.41	3.54	2.98	2.9			
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.00004	< 0.00004	0.00006			
Silicon	mg/L		4.99	3.76	5.05	5.27	3.13	4.42	4.04	5.05	5.98	6.04	5.77	4.44			
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005			
Sodium	mg/L	200 AO	54.2	58.4	47.9	50.7	73.5	55.4	38.1	46.2	36.4	60.9	55.5	60.6			
Strontium	mg/L		0.474	0.442	0.609	0.576	0.712	0.416	0.496	0.595	0.769	0.454	0.472	0.405			
Sulphur	mg/L		2.19	2.44	2.34	2.27	22.6	5.14	2.72	2.57	1.95	6	2	2			
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005			
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	0.00007	0.00016			
Titanium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.01	0.003	<0.002	0.00143	0.00042	0.00326			
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000064	0.000031	0.000086			
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00133	0.00009	0.00026			
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.002	< 0.002	0.004			

Notes:
(1) MECP Ontario Drinking Water Standards.

Page 53 of 55 WSP Project No.: TY131010

⁽²⁾ Operational Guideline (OG) within ODWS.

⁽³⁾ Aesthetic Objective (AO) within ODWS.

⁽⁴⁾ Maximum Acceptable Concentration (MAC) within ODWS.

⁽⁵⁾ Interim Maximum Acceptable Concentration (IMAC) within ODWS.

⁽⁶⁾ ODWS exceedances indicated by **bold** entries.

⁽⁷⁾ ND indicates no data obtained.

Groundwater Geochemical Results OW-23-II

Parameters	Units	ODWS (1)		2014			2015			2016			2017			2018	
General Chemistry	Units	ODWS	June	July	Sep	May	July	Sep	May	July	Sep	May	July	Sep	May	July	Oct
Alkalinity	mg/L	30-500 OG (2)	224	218	214	220	221	277	224	222	212	231	232	224	240	209	201
Chloride	mg/L	250 AO ⁽³⁾	10.6	10.3	9.99	11.2	10.2	2.78	11.0	9.55	9.37	9.25	8.44	7.71	8.92	8.24	7.09
Dissolved Organic Carbon	mg/L	5 AO	1.8	1.4	1.6	1.6	2.3	1.4	1.7	2.0	1.5	1.4	2.0	2.0	2.1	2.5	2.3
Fluoride	mg/L	1.5 MAC ⁽⁴⁾	0.96	0.69	1.05	1.02	1.13	1.38	1.05	1.13	1.05	0.98	1.20	1.14	1.13	1.26	1.06
Sulphate	mg/L	500 AO	120	113	102	104	97.2	71.2	101	91.1	80	83.6	78.0	72.8	88.2	81.0	74.8
Hardness	mg/L	80-100 OG	160	158	145	143	142	229	142	131	122	125	119	116	132	125	123
Nitrate	mg/L	10 MAC	0.10	<0.25	<0.10	0.08	0.17	<0.25	<0.10	<0.10	0.18	<0.05	0.06	0.14	<0.05	0.13	0.11
Nitrite	mg/L	1 MAC	<0.05	<0.25	<0.10	<0.05	<0.10	<0.25	<0.10	<0.10	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.10
Organic Nitrogen	mg/L	0.15 OG	0.47	<0.10	0.15	0.10	0.21	0.20	<0.10	0.27	0.12	<0.10	<0.10	0.20	<0.10	<0.10	0.10
Orthophosphate	mg/L		<0.10	<0.50	<0.20	<0.10	<0.20	<0.50	<0.20	<0.20	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10	<0.20
рН	pH Units	6.5-8.5 OG	8.36	8.24	8.23	8.41	8.2	8.19	8.16	8.08	8.40	8.34	8.35	8.31	7.98	8.04	7.92
Electrical Conductivity	μS/cm		694	688	678	675	666	672	632	656	635	608	606	604	625	602	573
Total Ammonia	mg/L		0.06	0.07	0.03	<0.02	<0.02	<0.02	<0.02	0.040	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05
Total Dissolved Solids	mg/L	500 AO	364	400	358	362	352	342	352	360	338	334	320	314	344	338	374
Total Kjeldahl Nitrogen (TKN)	mg/L		0.53	<0.10	0.18	0.10	0.21	0.20	<0.10	0.31	0.12	<0.10	<0.10	0.20	<0.10	<0.10	0.15
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Metals																	
Aluminum	mg/L	0.1 OG	<0.004	<0.004	<0.004	0.009	0.018	<0.004	0.005	0.022	0.021	0.008	0.018	0.008	0.008	0.011	0.010
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Barium	mg/L	1 MAC	0.027	0.025	0.024	0.024	0.023	0.047	0.029	0.025	0.029	0.032	0.026	0.028	0.032	0.032	0.032
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron	mg/l	5 IMAC (5)	0.327	0.346	0.360	0.285	0.309	0.142	0.387	0.291	0.333	0.351	0.315	0.388	0.380	0.371	0.397
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium	mg/L		26.2	25.7	23.1	23.0	22.5	38.2	22.6	21.1	19.7	19.4	18.7	18.3	20.9	19.8	19.4
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	0.009	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.017	<0.003	<0.003	<0.003	<0.003
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.015	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	0.01 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.001	<0.001	<0.001
Magnesium	mg/L		22.9	22.9	21.3	20.7	20.9	32.4	20.8	18.9	17.8	18.6	17.6	17.0	19.5	18.3	18.1
Manganese	mg/L	0.05 AO	0.003	0.003	0.007	0.007	0.003	<0.002	0.011	0.021	<0.002	0.004	0.004	0.002	0.002	<0.002	<0.002
Molybdenum	mg/L		0.034	0.042	0.036	0.038	0.035	0.013	0.040	0.035	0.035	0.036	0.037	0.033	0.037	0.034	0.033
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Potassium	mg/L		4.59	4.52	4.37	4.36	4.15	4.86	4.16	4.31	4.04	3.96	3.76	3.48	3.68	3.83	3.86
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Silicon	mg/L		2.97	3.06	2.95	2.86	2.41	3.99	2.99	2.96	2.94	3.22	3.21	3.20	2.43	3.73	2.87
Silver	mg/L	200.40	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Sodium	mg/L	200 AO	92.4	92.7	90.7	91.1	86.0	61.5	93.1	86.3	85.8	85.0	78.9	74.0	77.3	77.8	80.8
Strontium	mg/L		0.817	0.831	0.744	0.674	0.75	3.15	0.758	0.698	0.788	0.793	0.702	0.688	0.705	0.749	0.812
Sulphur	mg/L		35.4	38.3	38.1	38.6	31.6	24.6	32.1	28.5	25.4	29.4	26.2	23.5	30.7	25.2	26.6
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L	0.00.1110	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002
Vanadium	mg/L	F 40	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	5 AO	0.007	<0.005	<0.005	<0.005	<0.005	0.009	<0.005	0.010	0.005	<0.005	0.026	0.006	<0.005	<0.005	<0.005

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 54 of 55 WSP Project No.: TY131010

Groundwater Geochemical Results OW-23-II

Parameters	Units	ODWS (1)		2019			2020			2021			2022			2023	
General Chemistry	Offics	ODWS	May	July	Sept	June	Aug	Oct	June	Aug	Oct	May	Aug	Oct	June	Aug	Oct
Alkalinity	mg/L	30-500 OG (2)	223	205	206	217	240	245	226	224	210	233	215	220	219	217	221
Chloride	mg/L	250 AO ⁽³⁾	8.44	8.40	7.75	8.78	8.2	6.89	8.78	8.03	8.4	12	10	10	13	12	12
Dissolved Organic Carbon	mg/L	5 AO	2.1	2.0	1.4	3.5	2.6	2.7	2.2	3.3	2.3	3.2	2.0	2.0	3.0	1.8	2.0
Fluoride	mg/L	1.5 MAC (4)	1.17	1.24	1.12	1.26	1.41	1.21	1.08	1.11	1.28	1.35	1.25	1.21	1.24	1.32	1.28
Sulphate	mg/L	500 AO	86.9	81.0	75.5	76.9	76.4	75.9	89.5	78.6	76.1	86	90	79	90	82	79
Hardness	mg/L	80-100 OG	128	125	115	122	80.2	111	115	127	120	141	137	137	147	131	129
Nitrate	mg/L	10 MAC	0.06	<0.10	<0.10	<0.10	0.22	0.05	0.08	0.11	0.07	0.10	0.22	0.11	0.13	0.10	0.10
Nitrite	mg/L	1 MAC	<0.05	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.10	0.13	<0.10	0.26	0.25	0.23	<0.10	<0.10	0.18	< 0.5	< 0.5	0.14	< 0.05	0.13	0.38
Orthophosphate	mg/L		<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10						< 0.03
рН	pH Units	6.5-8.5 OG	7.95	8.04	7.80	7.88	8.14	7.65	8.01	8.15	7.91	8.33	8.30	8.25	8.28	8.17	8.35
Electrical Conductivity	μS/cm		593	639	644	644	371	500	612	589	574	601	613	597	615	596	580
Total Ammonia	mg/L		<0.02	0.05	<0.02	<0.02	0.57	<0.02	<0.02	<0.02	<0.02	< 0.04	0.04	< 0.04	< 0.04	< 0.04	< 0.04
Total Dissolved Solids	mg/L	500 AO	304	328	322	318	240	308	350	340	344	366	357	366	383	380	349
Total Kjeldahl Nitrogen (TKN)	mg/L		<0.10	0.18	<0.10	0.26	0.82	0.23	<0.10	<0.10	0.18	< 0.5	< 0.05	0.15	< 0.05	0.13	0.40
Total Phosphorus	mg/L		<0.05	<0.05	<0.05	<0.050	<0.050	0.065	<0.050	<0.050	<0.050	0.07	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003
Metals															•		
Aluminum	mg/L	0.1 OG	<0.004	0.007	0.008	0.019	0.018	0.025	0.067	0.021	0.049	0.025	0.003	0.004	0.002	0.002	0.008
Arsenic	mg/L	0.01 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	0.0006	0.0005	0.0006	0.0006	0.0005	0.0005
Barium	mg/L	1 MAC	0.032	0.028	0.028	0.033	0.020	0.027	0.027	0.029	0.030	0.0395	0.0344	0.0324	0.0324	0.0294	0.0279
Beryllium	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00001	< 0.00001	0.00002	< 0.00001	< 0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.400	0.384	0.376	0.436	0.465	0.399	0.378	0.412	0.404	0.562	0.402	0.375	0.300	0.336	0.384
Cadmium	mg/L	0.005 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000016	0.000012	0.000011	0.000017	0.000018	0.000018
Calcium	mg/L		20.6	19.8	18.7	18.6	11.5	17.4	18.1	19.5	18.3	25.5	24.1	23.2	27.3	21.4	20.0
Chromium	mg/L	0.05 MAC	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	0.00041	0.00031	0.00046	0.0004	0.00059	0.00031
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000071	0.000028	0.000048	0.000022	0.000018	0.00006
Copper	mg/L	1 AO	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	0.0034	0.0006	0.0008	0.0015	0.0013	0.0016
Iron	mg/L	0.3 AO	<0.010	<0.010	<0.010	<0.010	0.042	0.019	0.016	0.031	<0.010	0.037	< 0.007	< 0.007	< 0.007	< 0.007	0.007
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Magnesium	mg/L		18.6	18.3	16.7	18.4	12.5	16.5	17	19.1	18	18.7	18.6	19.2	19.2	18.9	19.1
Manganese	mg/L	0.05 AO	<0.002	0.003	0.002	0.009	0.009	0.012	<0.002	<0.002	0.005	0.00354	0.00078	0.00148	0.00123	0.00029	0.00461
Molybdenum	mg/L		0.035	0.034	0.035	0.035	0.010	0.029	0.026	0.035	0.033	0.033	0.0323	0.0341	0.042	0.0353	0.0346
Nickel	mg/L		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	0.0008	0.0006	0.0006	0.0006	0.0006	0.0008
Potassium	mg/L		3.78	3.78	3.73	4.33	2.51	3.43	3.51	3.62	3.74	4.87	3.86	3.97	4.52	4.03	4.08
Selenium	mg/L	0.05 MAC	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.00021	0.00024	0.00027	0.0002	0.00017	0.00012
Silicon	mg/L		3.81	2.23	3.03	1.94	4.8	3.13	2.3	3.18	3.49	4.48	3.78	3.46	3.25	3.30	2.96
Silver	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	80.0	82.6	81.4	83.4	53.7	77.1	75.1	79.1	79.1	81.6	79.7	80.7	86.2	80.7	88.5
Strontium	mg/L		0.746	0.732	0.688	0.69	0.44	0.676	0.645	0.753	0.751	0.849	0.719	0.784	0.878	0.782	0.827
Sulphur	mg/L		29.3	26.7	25.2	24.7	2.31	25.3	28.1	33.8	22.9	40	29	29	32	29	28
Thallium	mg/L		<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00007	< 0.00006	< 0.00006	< 0.00006	0.00008	0.00009
Titanium	mg/L		<0.002	<0.002	<0.002	0.004	<0.002	<0.002	0.01	<0.002	0.003	0.0007	0.00019	0.00011	< 0.00007	0.00012	0.00008
Uranium	mg/L	0.02 MAC	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00137	0.00161	0.00159	0.00169	0.00155	0.00161
Vanadium	mg/L		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00068	0.00042	0.00043	0.00026	0.00027	0.00034
Zinc	mg/L	5 AO	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.007	<0.005	0.004	< 0.002	< 0.002	< 0.002	< 0.002	0.002
		1															

Notes:
(1) MECP Ontario Drinking Water Standards.

(2) Operational Guideline (OG) within ODWS.

(3) Aesthetic Objective (AO) within ODWS.

(4) Maximum Acceptable Concentration (MAC) within ODWS.

(5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.

(6) ODWS exceedances indicated by **bold** entries.

Page 55 of 55 WSP Project No.: TY131010

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Description Company Description Company Description Descript	Parameters			2003	2004	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Res
Markey May 1 100 200 201 391 592 593 593 594 595 592 593 594 595 595 595 595 595 595 595 595 595		Units	ODWS (1)					_			_					_						-			
Page Page		ma/l	20 500 00 (2)			· ·	1					<u> </u>						-		<u> </u>					
Description	,		(0)																			· ·			
December Peck Peck Peck S. Peck S. Peck S. S. S. S. S. S. S. S			1																			Obtained			
Pages Page																									
Septem			37.0																						
	-		500 AO			-											-								
Performance Propriety Property Prope	· ·			00.0	00.0	55.7	00.0	02.0		- 55	20														-
Member Mary 1988 1988 2988	-		1	50.5	6.9	342	310	327		-1	-1														-
March Marc	-																								
Common C																									-
Teal American Teal	-								VO.00																
Fig. Fig.	- °		0.10 00						<0.05																
Description Page Milang Sept Sept Milang Sept Sept Milang Sept																									-
Production 19	, , ,							0.00	30.1															10.00	-
Conductive Con	nH		65-85 OG	10.0	10.0	10.0	٧٥.١			0.01	0.02	40.01	10.01	40.01										8.30	
Number Martin M	Conductivity		0.0 0.0 00														-								
Mammare Mamm		p-0.0								<u> </u>					1.15					, , , , , , , , , , , , , , , , , , , 		<u> </u>			1 100
Particus Particus		ma/L	0.1 OG	0.16	<0.05	0.16	<0.004	<0.004	<0.004	<0.005	<0.005	<0.005	<0.005	<0.005	0.014	<0.004	<0.004	<0.004	<0.004	0.009	0.004		0.014	< 0.001	0.016
Barlum Parigu																									
Page Mary				<0.005	<0.005	0.057	0.048	0.041	<0.002																
Beamsh Might Mig																									
Perform May S. MARC 19.02 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001																									
Cadishium mg/L 0.005 MAC 0.005 0.005 0.005 0.005 0.002 0.0002 0.00001 0.00	-		5 IMAC ⁽⁵⁾																						
Calcisium	-																								-
Chromium	-																								-
Cobin Mg Cobin Mg Cobin Mg Cobin Mg Mg			0.05 MAC	<0.005																			<0.003		
Copper																									
Figure F	Copper		1 AO	0.006	<0.005		<0.002										-	<0.003	<0.003	<0.003			<0.003		
Lead mg/L 0.01 MAC 0.011			0.3 AO	0.08	0.02		1.03		0.04				5.9	4.6	2.0					1.49			1.65	0.053	-
Magnesium mg/L 0.76 0.08 30.2 26.8 28.5 <0.05 <0.05 <0.05 35 34 30 28.7 29.8 27.9 29.2 28.7 28.6 27.2 32.6 32.3 34.1 Manganese mg/L 0.05 AO 0.021 <0.002	Lead		0.01 MAC	<0.001	<0.001	<0.001	0.089	<0.002	<0.001	<0.0005	<0.0005	<0.0005	0.0006	<0.0005	<0.002	<0.002		<0.002	<0.002	<0.002			<0.001	0.00012	
Marganese mg/L 0.05 AO 0.021 < 0.005 0.061 0.023 0.026 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.00	Magnesium			0.76	0.08	30.2	26.8	28.5	<0.05	<0.05	<0.05	35	34	30	28.7	29.8	27.9	29.2	28.7	28.6	27.2		32.6	32.3	34.1
Nickel mg/L	Manganese	mg/L	0.05 AO	0.021	<0.005	0.061	0.023	0.026	<0.002	<0.002	<0.002	0.032	0.24	0.035	0.028	0.028	0.035	0.028	0.033	0.027	0.029		0.033	0.028	0.0308
Phosphorus mg/L 0.01 MAC 0.01 MAC 0.01 MAC 0.01 MAC 0.01 MAC 0.01 MAC 0.01 MAC 0.01 MAC 0.01 MAC 0.001	Molybdenum	mg/L		<0.02	<0.02	<0.02	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	0.001	0.00080	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.00076	0.00067
Selenium mg/L 0.01 MAC	Nickel	mg/L		<0.02	<0.02	<0.02	<0.003	<0.003	<0.003	<0.001	<0.001	<0.001	<0.001	0.0017	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003		<0.003	0.0029	0.0022
Silicon mg/L	Phosphorus	mg/L													<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		0.062	< 0.003	0.014
Silver mg/L	Selenium	mg/L	0.01 MAC							<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004		<0.004	< 0.00004	< 0.00004
Sodium mg/L 200 AO 163 168 15.1 14.2 15.6 198 370 190 18 23 16 14.8 15.6 15.0 14.0 15.5 16.7 15.5 16.7 15.5 16.8 18.1 17.4 Strontium mg/L 0.013 0.002 0.146 0.131 0.125 <0.005 <0.005 <0.001 <0.001 <0.001 0.15 0.16 0.14 0.144 0.148 0.141 0.136 0.141 0.136 0.141 0.15 0.144 0.17 0.16 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	Silicon	mg/L													6.61	6.72	7.14	6.69	6.94	6.49	6.33		7.48	6.36	7.30
Strontium mg/L 0.013 0.002 0.146 0.131 0.125 <0.005 <0.001 <0.001 0.15 0.16 0.14 0.144 0.148 0.141 0.136 0.141 0.15 0.144 0.15 0.144 0.17 0.16 0.18 Sulphur mg/L 0.005 <0.005 <0.005 <0.005 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0	Silver	mg/L		<0.005	<0.005	<0.005	<0.002	<0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.00005	< 0.00005
Sulphur mg/L mg/L 9.67 32.6 10.7 10.4 8.00 8.00 Thallium mg/L 0.005 0.05 0.05 0.05 0.05 0.001 0.002 0.001	Sodium	mg/L	200 AO	163	168	15.1	14.2	15.6	198	370	190	18	23	16	14.8	15.6	15.0	14.0	15.5	16.7	15.5		16.8	18.1	17.4
Thallium mg/L mg/L mg/L mg/L control of the limit control o	Strontium	mg/L		0.013	0.002	0.146	0.131	0.125	<0.005	<0.001	<0.001	0.15	0.16	0.14	0.144	0.148	0.141	0.136	0.141	0.15	0.144		0.17	0.16	0.18
Tin mg/L	Sulphur	mg/L													10.4	9.36	9.74	9.48	9.67	32.6	10.7		10.4	8.00	8.00
Titanium mg/L	Thallium	mg/L								<0.00005	<0.00005	<0.00005	0.00010	<0.00005	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		<0.006	< 0.000005	< 0.000005
Titanium mg/L	Tin			<0.05	<0.05	<0.05	<0.001	<0.002	<0.002		<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.00007	< 0.00006
Uranium mg/L 0.02 MAC	Titanium			<0.005	<0.005	<0.005	<0.001	<0.002	<0.002		<0.005	<0.005	<0.005	<0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.00005	< 0.00007
	Uranium		0.02 MAC							0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.000067	0.000062
	Vanadium	mg/L		<0.005	<0.005	<0.005	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	0.00070	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.00001	0.00003
	Zinc	mg/L	5 AO	0.231	0.026	<0.005	<0.004	0.022	0.01	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	0.023	0.037	0.012	0.017	0.005	<0.005		<0.005	0.033	0.004

- Notes:
 (1) MECP Ontario Drinking Water Standards.
- (2) Operational Guideline (OG) within ODWS.
- (3) Aesthetic Objective (AO) within ODWS.
- (4) Maximum Acceptable Concentration (MAC) within ODWS.
- (5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
- (6) ODWS exceedances indicated by **bold** entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Parameters	l lucita	anus (1)	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
General Chemistry	Units	ODWS (1)	Dec	June	Nov	June	July	June	June	June	June	June	May	June	May	May	May	May	May	June	June	May	June
Alkalinity	mg/L	30-500 OG ⁽²⁾	296	296	306	305	296	302	299	299	305	310	313	312	297	317	360	346	319	332	321	363	314
Total Dissolved Solids	mg/L	500 AO ⁽³⁾	376	409	392	350	406	373	383	391	384	385	382	380	378	366	342	356	346	378	364	400	406
Chloride	mg/L	250 AO	22.9	35.9	23.5	26.4	22.7	26	29	28	26	22	21.5	23.1	28.7	27.3	27.2	20.9	16.0	16.2	16.2	24.0	24.0
Dissolved Organic Carbon	mg/L	5 AO	0.9	1.1	1.0	1.0	1.1	1.1	1.1	1.3	1.0	1.0	1.1	1.5	1.3	1.4	1.3	1.9	2.1	1.9	1.5	1.3	2
Potassium	mg/L		2.0	3.0	1.94	2.17	2.37	2.3	2.2	2.3	2.6	2.4	2.47	2.37	2.28	2.16	2.38	2.15	1.96	2.25	2.23	2.18	2.37
Sulphate	mg/L	500 AO	25.8	29.4	26.8	26.5	26.0	26.0	31.0	29.0	24.0	23.0	26.2	27.5	30.3	28.9	27.0	26.3	23.8	27.2	25.7	36.0	30.0
Fluoride	mg/L	1.5 MAC (4)					0.26			0.2	0.2	0.25	<0.10	<0.10	0.16	0.27	<0.10	<0.05	0.14	0.17	<0.05	0.26	0.23
Hardness	mg/L	80 - 100 OG	358	401	318	336	351	330	340	370	360	360	372	360	342	365	351	347	306	345	342	351	354
Nitrate	mg/L	10 MAC	<0.2	<0.2	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.10	<0.05	<0.05	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.2	<0.2	<0.05	<0.05	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.10	<0.05	<0.05	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	<0.01	0.12	0.10	0.24		0.17	0.19	0.25	0.17	0.265	<0.10	<0.10	<0.10	0.17	0.10	<0.10	<0.10	0.29	0.30	< 0.5	< 0.05
Total Ammonia	mg/L		0.08	0.12	0.08	0.07	<0.05	0.23	0.11	0.05	0.13	0.085	0.08	0.10	0.06	0.08	0.06	0.07	0.09	<0.02	0.08	0.12	0.14
Total Kjeldahl Nitrogen (TKN	mg/L		0.07	0.24	0.18	0.31	<0.1	0.4	0.3	0.3	0.3	0.35	0.16	0.13	0.10	0.25	0.16	0.16	<0.10	0.29	0.38	< 0.05	0.15
Orthophosphate	mg/L		<0.3	<0.3	<0.1			<0.01	<0.01	<0.01	<0.01	<0.01	<0.20	<0.20	<0.10	<0.10	<0.20	<0.10	<0.20	<0.10	<0.10		< 0.03
рН	pH Units	6.5 - 8.5 OG											8.41	8.25	7.88	7.92	7.88	7.87	7.85	7.71	7.93	8.15	8.07
Conductivity	μS/cm												691	675	692	678	675	635	654	758	657	653	679
Metals																							
Aluminum	mg/L	0.1 OG	0.05	0.06	0.027	<0.004	<0.004	<0.005	0.016	<0.005	5.1	<0.005	<0.004	<0.004	<0.004	0.010	0.004	0.099	<0.004	0.020	0.020	0.003	0.002
Arsenic	mg/L	0.01 MAC						<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0012	0.0012
Barium	mg/L	1 MAC	0.051	0.055	0.051	0.038	0.05	0.056	0.054	0.055	0.059	0.057	0.057	0.056	0.060	0.059	0.063	0.065	0.068	0.055	0.045	0.0578	0.05782
Beryllium	mg/L		<0.0005	<0.0005	<0.001	<0.002	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007
Bismuth	mg/L		<0.2	<0.2	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00001	< 0.00001
Boron	mg/l	5 IMAC (5)	0.02	0.02	0.051	0.01	0.02	0.015	0.02	0.014	0.02	0.029	0.012	0.014	0.014	0.012	0.012	0.014	0.015	0.020	0.019	0.013	0.011
Cadmium	mg/L	0.005 MAC	<0.005	<0.005	<0.002	<0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000003	< 0.000003
Calcium	mg/L		86.2	101	73.4	79.1	82.6	78	85	86	92	87	87.5	84.8	82.2	89.0	83.3	83.0	74.1	82.7	81.2	87.6	87.8
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.003	<0.003	<0.003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00015	< 0.00008
Cobalt	mg/L		<0.005	<0.005	<0.001	<0.002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000025	0.000028
Copper	mg/L	1 AO	<0.005	<0.005	<0.002	0.003	<0.002	0.002	0.006	0.003	0.003	0.0019	<0.003	<0.003	<0.003	0.005	<0.003	0.005	<0.003	<0.003	<0.003	0.0024	0.0007
Iron	mg/L	0.3 AO	2.7	2.42	1.57	2.33	1.26	1.9	1.9	1.7	1.6	1.4	1.37	1.47	1.27	1.50	1.31	2.4	<0.010	0.023	1.40	1.14	1.18
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.002	<0.002	<0.001	<0.0005	0.0005	0.0006	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	< 0.00009	< 0.00009
Magnesium	mg/L		34.6	36.1	32.8	33.7	35.1	33	35	36	40	37	37.2	36.1	33.3	34.7	34.8	34.0	29.4	33.6	33.8	32.1	32.6
Manganese	mg/L	0.05 AO	0.047	0.05	0.038	0.03	0.02	0.03	0.026	0.024	0.056	0.026	0.026	0.030	0.027	0.028	0.027	0.052	0.057	0.031	0.030	0.0282	0.02731
Molybdenum	mg/L		0.02	<0.02	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	0.001	0.0011	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00119	0.00098
Nickel	mg/L												<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0002	0.0002
Phosphorus	mg/L												<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.061	<0.050	0.021	0.01
Selenium	mg/L	0.01 MAC						<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.012	<0.004	< 0.00004	< 0.00004
Silicon	mg/L												8.86	9.27	9.61	9.11	9.12	8.34	8.57	7.36	9.43	8.21	9.14
Silver	mg/L		<0.005	<0.005	<0.002	<0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	5.2	5.5	4.36	5.24	5.75	5.0	6.1	6.4	6.6	6.2	6.44	7.21	7.66	6.92	8.45	7.24	6.0	7.9	8.1	8.76	8.64
Strontium	mg/L		0.178	0.182	0.197	0.172	0.2	0.19	0.18	0.19	0.22	0.22	0.219	0.228	0.231	0.214	0.225	0.229	0.204	0.194	0.205	0.208	0.218
Sulphur	mg/L												7.7	7.80	9.94	9.09	9.74	26.3	9.39	9.55	9.77	8.00	9.00
Thallium	mg/L							<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	< 0.000005
Tin	mg/L		<0.05	<0.05	<0.001	<0.002	<0.002		<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	< 0.00006
Titanium	mg/L		<0.005	<0.005	<0.001	<0.002	<0.002		<0.005	<0.005	<0.005	<0.005	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	0.00012	0.00041
Uranium	mg/L	0.02 MAC						0.0002	0.0002	0.0002	0.0002	0.00020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000234	0.000248
Vanadium	mg/L		<0.005	<0.005	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00004	0.00004
Zinc	mg/L	5 AO	0.072	0.179	0.066	0.009	0.01	<0.005	<0.005	<0.005	<0.005	0.0056	<0.005	<0.005	<0.005	0.010	0.006	0.015	<0.005	0.009	<0.005	0.008	< 0.002

- Notes:
 (1) MECP Ontario Drinking Water Standards.
- (2) Operational Guideline (OG) within ODWS.
- (3) Aesthetic Objective (AO) within ODWS.
- (4) Maximum Acceptable Concentration (MAC) within ODWS.
- (5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
- (6) ODWS exceedances indicated by **bold** entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Parameters			2003	2004	2005	2006	2007	2008	2009	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
General Chemistry	Units	ODWS (1)	Dec	June	June	Aug	July	June	June	May	June	May	May	May	May	May	June	June	May	June
Alkalinity	mg/L	30-500 OG ⁽²⁾	272	272	270	269	259	271	274	271	275	No Sample	No Sample	292	307	291	No Sample	288	No Sample	285
Total Dissolved Solids	mg/L	500 AO ⁽³⁾	394	423	366	398	394	412	413	386	424	Obtained	Obtained	416	348	422	Obtained	426	Obtained	426
Chloride	mg/L	250 AO	7.4	8.4	7.65	8.99	9.78	9.0	8.0	9.72	8.25			7.81	8.06	7.54		8.59		10
Dissolved Organic Carbon	mg/L	5 AO	0.9	0.6	0.9	1.2	1.1	1.2	1.1	1.2	1.5			1.3	1.9	1.8		1.3		1
Potassium	mg/L		4.0	4.0	4.0	3.71	4.31	3.9	4.0	3.86	1.09			0.18	0.18	0.14		<0.50		0.207
Sulphate	mg/L	500 AO	89.8	93.0	69.8	90.3	89.3	101	88.0	81.4	87.9			85.3	86.1	85.4		85.9		84
Fluoride	mg/L	1.5 MAC (4)					0.94			0.68	0.68			0.61	1.29	0.76		0.9		0.96
Hardness	mg/L	80 - 100 OG	309	336	270	282	300	290	320	297	31			<0.5	<0.5	<0.5		<0.5		2.11
Nitrate	mg/L	10 MAC	<0.2	<0.2	<0.1	<0.05	< 0.05	<0.1	<0.1	<0.10	<0.10			<0.10	< 0.05	<0.10		<0.05		< 0.06
Nitrite	mg/L	1 MAC	<0.2	<0.2	<0.1	<0.05	<0.05	<0.01	<0.01	<0.10	<0.10			<0.10	< 0.05	<0.10		<0.05		< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.09	0.09	0.17	<0.38		0.34	0.09	<0.10	<0.10			<0.10	<0.10	<0.10		0.38		< 0.05
Total Ammonia	mg/L		0.19	0.21	0.23	0.18	0.11	0.36	0.21	0.23	0.04			<0.02	<0.02	<0.02		<0.02		0.04
Total Kjeldahl Nitrogen (TKN	mg/L		0.28	0.3	0.4	<0.5	0.13	0.7	0.3	0.28	<0.10			<0.10	<0.10	<0.10		0.38		0.05
Orthophosphate	mg/L		<0.3	<0.3	<0.3			<0.01	<0.01	<0.20	<0.20			<0.20	<0.10	<0.20		<0.10		< 0.03
рН	pH Units	6.5 - 8.5 OG								8.41	8.36			7.96	7.91	7.96		8.03		8.12
Conductivity	μS/cm				_					697	735			729	717	741		723		731
Metals		,																		
Aluminum	mg/L	0.1 OG	<0.05	<0.05	<0.1	0.006	<0.004	<0.005	<0.005	0.010	<0.004			<0.004	0.004	0.005		0.019		< 0.001
Arsenic	mg/L	0.01 MAC						<0.001	<0.001	<0.003	<0.003			<0.003	<0.003	<0.003		<0.003		0.0011
Barium	mg/L	1 MAC	0.052	0.054	0.05	0.03	0.050	0.053	0.053	0.056	0.005			0.003	<0.002	<0.002		<0.002		0.00049
Beryllium	mg/L		<0.0005	<0.0005	<0.005	<0.002	<0.001	<0.0005	<0.0005	<0.001	<0.001			<0.001	<0.001	<0.001		<0.001		< 0.000007
Bismuth	mg/L		<0.2	<0.2	<0.2	<0.002	<0.002	<0.001	<0.001	<0.002	<0.002			<0.002	<0.002	<0.002		<0.002		< 0.00001
Boron	mg/l	5 IMAC (5)	0.36	0.36		0.29	0.36	0.40	0.37	0.347	0.358			0.304	0.343	0.322		0.399		0.299
Cadmium	mg/L	0.005 MAC	<0.005	<0.005	<0.005	<0.002	<0.0001	<0.0001	<0.0001	<0.002	<0.002			<0.002	<0.002	<0.002		<0.002		0.000003
Calcium	mg/L		68.5	77.5	58.1	61.9	66.6	64.0	66.0	66.0	6.94			0.09	0.08	0.10		0.11		0.42
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.01	<0.003	<0.003	<0.005	<0.005	<0.003	<0.003			<0.003	<0.003	<0.003		<0.003		< 0.00008
Cobalt	mg/L		<0.005	<0.005	<0.02	<0.002	<0.0005	<0.0005	<0.0005	<0.001	<0.001			<0.001	<0.001	<0.001		<0.001		0.000027
Copper	mg/L	1 AO	<0.005	< 0.005	<0.02	<0.003	<0.002	<0.001	0.002	0.003	<0.003			0.011	0.007	0.010		0.005		0.0043
Iron	mg/L	0.3 AO	0.54	0.44	0.41	0.566	0.34	0.44	0.50	0.574	0.036			<0.010	<0.010	<0.010		0.013		0.046
Lead	mg/L	0.01 MAC	0.006	<0.001	<0.05	<0.002	<0.001	<0.0005	<0.0005	0.002	<0.002			<0.002	<0.002	0.004		0.002		0.00046
Magnesium	mg/L		33.5	34.6	31.1	30.9	32.4	31.0	32.0	32.2	3.43			<0.05	<0.05	<0.05		<0.05		0.258
Manganese	mg/L	0.05 AO	0.02	0.024	0.02	0.014	0.02	0.016	0.016	0.019	0.003			<0.002	<0.002	<0.002		<0.002		0.00057
Molybdenum	mg/L		<0.02	<0.02		0.004	0.01	0.005	0.005	0.005	0.004			0.004	0.004	0.004		0.004		0.0037
Nickel	mg/L		<0.02	<0.02		<0.003	<0.003	<0.001	<0.001	<0.003	<0.003			<0.003	<0.003	0.008		<0.003		0.0006
Phosphorus	mg/L									<0.05	<0.05			<0.05	<0.05	<0.05		0.136		< 0.003
Selenium	mg/L	0.01 MAC						<0.002	<0.002	<0.004	<0.004			<0.004	<0.004	<0.004		<0.004		< 0.00004
Silicon	mg/L									6.56	5.84			5.99	5.61	5.80		6.92		5.94
Silver	mg/L		<0.005	<0.005		<0.002	<0.0001	<0.0001	<0.0001	<0.002	<0.002			<0.002	<0.002	<0.002		<0.002		< 0.00005
Sodium	mg/L	200 AO	27.4	28.8	32.1	28.2	31.3	27.0	27.0	26.9	160			178	173	164		162		162
Strontium	mg/L		5.5	5.47		6.06	5.36	5.6	5.4	5.6	0.558			<0.005	0.005	<0.005		0.005		0.02785
Sulphur	mg/L									27.6	25.6			29.0	86.1	27.4		28.2		30
Thallium	mg/L							<0.00005	<0.00005	<0.006	<0.006			<0.006	<0.006	<0.006		<0.006		< 0.000005
Tin	mg/L		<0.05	<0.05		<0.002	<0.002		<0.001	0.052	<0.002			<0.002	<0.002	<0.002		<0.002		< 0.00006
Titanium	mg/L		<0.005	<0.005		<0.002	<0.002		<0.005	0.002	<0.002			<0.002	<0.002	<0.002		0.007		< 0.00007
Uranium	mg/L	0.02 MAC						0.0002	0.0002	<0.002	<0.002			<0.002	<0.002	<0.002		<0.002		0.000225
Vanadium	mg/L		<0.005	<0.005		<0.002	<0.002	<0.001	<0.001	0.002	<0.002			<0.002	<0.002	<0.002		<0.002		0.00003
Zinc	mg/L	5 AO	0.018	0.083	<0.01	0.011	0.01	<0.005	0.006	0.271	<0.005			0.011	0.011	0.083		<0.005		0.005

- Notes:
 (1) MECP Ontario Drinking Water Standards.
- (2) Operational Guideline (OG) within ODWS.
- (3) Aesthetic Objective (AO) within ODWS.
- (4) Maximum Acceptable Concentration (MAC) within ODWS.
- (5) Interim Maximum Acceptable Concentration (IMAC) within
- (6) ODWS exceedances indicated by **bold** en

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Parameters	l luita	ODIMO (1)	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
General Chemistry	Units	ODWS (1)	Dec	Dec	Nov	June	Oct	June	June	June	June	June	May	June	May	May	May	May	May	June	June	May	June
Alkalinity	mg/L	30-500 OG ⁽²⁾	261	280	247	288	249	280	294	298	284	290	264	271	265	No Sample	235	283	300	287	311	No Sample	301
Total Dissolved Solids	mg/L	500 AO ⁽³⁾	278	320	388	294	264	301	305	327	311	326	270	274	280	Obtained	244	274	242	302	320	Obtained	334
Chloride	mg/L	250 AO	4.8	4.3	13.5	2.88	1.97	5.0	3.0	3.0	4.0	4.0	4.47	3.22	2.93		3.64	3.60	2.02	3.58	2.65		6
Dissolved Organic Carbon	mg/L	5 AO	2.8	2.3	5.0	3.0	2.4	3.5	2.4	2.5	2.4	2.3	2.6	2.6	2.6		3.3	3.0	2.6	3.3	2.6		3
Potassium	mg/L		<1	2.7	0.94	1.1	1.05	1.2	0.9	1.2	1.2	1.0	1.02	0.96	0.99		1.08	0.97	0.88	1.18	1.21		1.14
Sulphate	mg/L	500 AO	17.3	27	63.4	18.7	19.2	16.0	10.0	19.0	15.0	21.0	11.3	9.92	9.01		15.8	12.2	9.04	14.4	11.2		19
Fluoride	mg/L	1.5 MAC (4)		0.34			0.09			<0.1	<0.1	<0.1	<0.05	<0.10	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05		< 0.06
Hardness	mg/L	80 - 100 OG	29	280	270	282	268	260	290	320	300	310	291	277	265		232	269	225	285	308		314
Nitrate	mg/L	10 MAC	<0.2	<0.05	<0.05	0.06	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.10	<0.05		<0.05	<0.05	<0.05	<0.05	0.42		0.07
Nitrite	mg/L	1 MAC	<0.2	<0.01	<0.05	<0.05	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.10	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05		< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.14	0.20	0.20	0.19		0.19	0.18	0.18	0.18	0.34	<0.10	<0.10	<0.10		0.13	0.24	<0.10	0.24	0.44		0.09
Total Ammonia	mg/L		<0.03	<0.02	<0.05	<0.05	<0.02	0.21	<0.05	<0.05	<0.05	<0.05	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02		0.04
Total Kjeldahl Nitrogen (TKN	mg/L		0.17	0.23	0.25	0.24	<0.1	0.4	0.2	0.2	0.2	0.34	<0.10	<0.10	<0.10		0.13	0.24	<0.10	0.24	0.44		0.13
Orthophosphate	mg/L		<0.3	<0.5	<0.1		<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.20	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10		< 0.03
рН	pH Units	6.5 - 8.5 OG											8.20	8.13	7.76		7.88	7.74	7.67	7.82	7.75		7.96
Conductivity	μS/cm												530	520	525		457	494	464	612	587		582
Metals																							
Aluminum	mg/L	0.1 OG	0.08	<0.05	0.014	0.006	0.006	0.007	0.006	<0.005	0.009	0.0073	0.016	0.007	<0.004	(800.0	0.009	0.006	0.020	0.019		0.002
Arsenic	mg/L	0.01 MAC						<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<	<0.003	<0.003	<0.003	<0.003	<0.003		< 0.0002
Barium	mg/L	1 MAC	<0.005	0.034	0.018	0.012	0.016	0.017	0.016	0.018	0.018	0.017	0.016	0.015	0.016	(0.016	0.016	0.016	0.018	0.015		0.01806
Beryllium	mg/L		<0.0005	<0.001	<0.001	<0.002	<0.002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<	<0.001	<0.001	<0.001	<0.001	<0.001		< 0.000007
Bismuth	mg/L		<0.2	<0.1	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<	<0.002	<0.002	<0.002	<0.002	<0.002		< 0.00001
Boron	mg/l	5 IMAC (5)	0.02	0.04	0.045	<0.01	0.015	0.033	0.02	0.014	0.03	0.021	0.026	0.036	0.022	(0.030	0.035	0.032	0.040	0.028		0.025
Cadmium	mg/L	0.005 MAC	<0.005	<0.005	<0.002	<0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<	<0.002	<0.002	<0.002	<0.002	<0.002		0.000014
Calcium	mg/L		10.9	71	73.4	74.3	70.7	71	74	84	87	81	78.1	73.2	70.6		60.4	71.5	60.3	74.6	80.2		84.1
Chromium	mg/L	0.05 MAC	<0.005	0.005	<0.003	<0.003	0.003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<	<0.003	<0.003	<0.003	<0.003	<0.003		0.00022
Cobalt	mg/L		<0.005	<0.01	<0.001	<0.002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<	<0.001	<0.001	<0.001	<0.001	<0.001		0.000026
Copper	mg/L	1 AO	0.116	0.14	0.019	0.12	0.011	0.01	0.003	0.003	0.006	0.0097	0.004	0.02	0.006	(0.012	0.021	0.007	0.013	0.007	1	0.0045
Iron	mg/L	0.3 AO	0.04	<0.01	0.292	0.237	0.17	<0.1	<0.1	<0.1	<0.1	<0.1	<0.010	<0.010	<0.010	<	: 0.010	<0.010	<0.010	<0.010	<0.010	1	< 0.007
Lead	mg/L	0.01 MAC	<0.001	0.021	0.002	0.004	<0.001	0.0008	<0.0005	<0.0005	<0.0005	0.00060	<0.002	<0.002	<0.002	<	<0.002	<0.002	<0.001	<0.001	<0.001	1	0.0004
Magnesium	mg/L		0.44	24	20.9	23.5	22.2	21	22	26	26	25	23.4	22.9	21.5	+	19.6	22.0	18.1	24	26.2		25.3
Manganese	mg/L	0.05 AO	0.01	0.008	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	+	<0.002	<0.002	<0.002	<0.002	<0.002		0.00004
Molybdenum	mg/L		<0.02	<0.01	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.0005	<0.002	<0.002	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002		0.00022
Nickel	mg/L		<0.02	<0.01	<0.003	<0.003	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	+	<0.003	<0.003	<0.003	<0.003	<0.003		0.0007
Phosphorus	mg/L							_	_				<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.050	0.199		< 0.003
Selenium	mg/L	0.01 MAC						<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004		<0.004	<0.004	<0.004	<0.004	0.009		0.00016
Silicon	mg/L												4.73	4.42	4.78	+	3.96	3.89	4.06	4.53	5.02		4.52
Silver	mg/L	065.15	<0.005	<0.01	<0.002	<0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002		< 0.00005
Sodium	mg/L	200 AO	129	6.8	8.8	5.25	4.07	7.7	5.3	5.8	7.1	6.9	6.41	6.12	4.92		5.34	4.95	4.34	5.57	5.08		5.11
Strontium	mg/L		0.01	0.45	0.127	0.114	0.118	0.12	0.1	0.13	0.13	0.12	0.114	0.121	0.118	+	0.104	0.124	0.101	0.131	0.113		0.135
Sulphur	mg/L												3.53	2.59	3.04		5.67	12.2	6.09	6.57	5.22		6
Thallium	mg/L		_			_	_	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006	<0.006	<0.006		< 0.000005
Tin	mg/L		<0.05	<0.05	0.001	<0.002	<0.002		<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002		< 0.00006
Titanium	mg/L	0.05.11.5	<0.005	<0.01	0.001	<0.002	<0.002		<0.005	<0.005	<0.005	<0.005	<0.002	<0.002	<0.002	+	<0.002	<0.002	<0.002	<0.002	<0.002		0.0001
Uranium	mg/L	0.02 MAC			_	_	_	0.0004	0.0004	0.0006	0.0006	0.00060	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002		0.000579
Vanadium 	mg/L			<0.005	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	0.00060	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002		0.0003
Zinc	mg/L	5 AO	0.138	0.011	0.052	0.046	0.019	0.009	<0.005	<0.005	<0.005	0.013	<0.005	0.009	0.005		0.009	0.009	0.008	0.019	0.007	<u> </u>	< 0.002

- Notes:
 (1) MECP Ontario Drinking Water Standards.
- (2) Operational Guideline (OG) within ODWS.
- (3) Aesthetic Objective (AO) within ODWS.
- (4) Maximum Acceptable Concentration (MAC) within ODWS.
- (5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
- (6) ODWS exceedances indicated by **bold** entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Parameters			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
General Chemistry	Units	ODWS (1)	Dec	Sept	June	Aug	July	June	June	June	June	June	May	June	May	May	May	May	May	June	June	May	June
Alkalinity	mg/L	30-500 OG ⁽²⁾	329	333	337	328	313	325	325	327	316	330	319	351	310	342	330	344	325	325	322	333	322
Total Dissolved Solids	mg/L	500 AO ⁽³⁾	356	345	321	294	288	329	328	341	324	335	294	304	302	294	296	292	290	312	322	289	357
Chloride	mg/L	250 AO	<0.5	0.7	0.79	0.83	0.96	2.0	1.0	1.0	<1	1.0	1.3	1.43	1.38	1.46	1.28	1.45	0.99	1.40	1.06	< 1	< 1
Dissolved Organic Carbon	mg/L	5 AO	1.2	1.1	1.0	1.6	1.2	1.2	1.2	1.3	1.1	1.4	1.1	1.5	1.3	1.3	1.3	1.7	1.9	1.9	1.4	1.2	1
Potassium	mg/L		<1	3.0	3.0	2.95	3.32	3.0	3.1	3.2	3.3	3.3	3.13	3.15	3.10	2.93	3.1	3.02	2.68	3.2	3.3	2.98	3.3
Sulphate	mg/L	500 AO	8.3	8.5	8.0	8.37	8.48	9.0	9.0	8.0	7.0	9.0	8.91	9.18	8.53	8.99	9.59	9.58	8.85	9.9	9.49	10	11
Fluoride	mg/L	1.5 MAC (4)					0.44			0.4	0.4	0.44	0.32	0.27	0.37	0.42	0.19	0.48	0.35	0.44	0.39	0.49	0.43
Hardness	mg/L	80 - 100 OG	1.4	331	290	285	301	290	300	330	300	310	303	306	291	305	293	297	254	305	334	303	317
Nitrate	mg/L	10 MAC	<0.2	<0.2	<0.1	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	< 0.06	< 0.06
Nitrite	mg/L	1 MAC	<0.2	<0.2	<0.1	<0.05	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03
Organic Nitrogen	mg/L	0.15 OG	0.05	0.01	0.07	<0.26		0.14	2.51	0.16		0.22	<0.10	0.10	<0.10	0.13	<0.10	0.17	0.13	0.25	0.38	< 0.5	0.06
Total Ammonia	mg/L		<0.03	0.3	0.33	0.24	0.12	0.36	0.29	0.24	0.3	0.21	0.25	0.22	0.22	0.25	0.20	0.23	0.24	0.16	0.24	0.22	0.26
Total Kjeldahl Nitrogen (TKN	mg/L		0.08	0.31	0.4	<0.5	<0.1	0.5	2.8	0.4	0.3	0.43	0.23	0.32	0.23	0.38	0.29	0.4	0.37	0.41	0.62	0.29	0.32
Orthophosphate	mg/L		<0.3	<0.3	<0.3			<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.20	<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10		< 0.03
рН	pH Units	6.5 - 8.5 OG											8.31	8.19	7.83	7.85	7.94	7.91	7.80	7.91	8.05	8.11	8.07
Conductivity	μS/cm												611	594	596	595	587	584	568	664	620	563	605
Metals																							
Aluminum	mg/L	0.1 OG	<0.05	<0.05	<0.1	0.005	<0.004	<0.005	<0.005	<0.005	<0.005	<0.005	<0.004	<0.004	<0.004	0.008	<0.004	<0.004	0.005	0.014	0.009	< 0.001	< 0.001
Arsenic	mg/L	0.01 MAC							0.003	0.004	0.003	0.0038	0.004	0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0031	0.0029
Barium	mg/L	1 MAC	<0.005	0.081	0.08	0.065	0.08	0.079	0.079	0.083	0.082	0.086	0.081	0.076	0.079	0.077	0.081	0.080	0.076	0.077	0.061	0.0762	0.07729
Beryllium	mg/L		<0.0005	<0.0005	<0.005	<0.002	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.000007	< 0.000007
Bismuth	mg/L		<0.2	<0.2	<0.2	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00002	< 0.00001
Boron	mg/l	5 IMAC (5)	0.08	0.07		0.078	0.09	0.069	0.08	0.09	0.08	0.075	0.082	0.086	0.083	0.079	0.074	0.091	0.084	0.087	0.101	0.068	0.07
Cadmium	mg/L	0.005 MAC	<0.005	<0.005	<0.005	<0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.000003	0.000003
Calcium	mg/L		0.45	75.3	61.7	62.9	67.3	66	67	74	73	73	68.5	68.2	65.5	69.9	65.1	66.2	57.0	67.4	74.0	69.8	73.8
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.01	<0.003	<0.003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0002	0.00009
Cobalt	mg/L		<0.005	<0.005	<0.02	<0.002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000103	0.000136
Copper	mg/L	1 AO	<0.005	<0.005	<0.02	<0.003	0.02	0.011	0.13	0.001	0.02	0.03	0.005	0.064	<0.003	<0.003	0.003	0.004	<0.003	<0.003	<0.003	0.0075	0.0007
Iron	mg/L	0.3 AO	0.01	1.6	1.44	1.55	1.33	1.9	1.6	1.6	2.6	1.9	1.46	1.36	1.55	1.36	1.39	1.51	<0.010	<0.010	2.31	2.20	1.22
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.05	<0.002	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	0.00060	<0.002	0.006	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	< 0.00009	< 0.00009
Magnesium	mg/L		0.07	34.7	31.9	31	32.4	32	34	35	36	35	32.1	33.0	30.9	31.7	31.6	32.1	27.1	33.1	36.3	31.3	32.1
Manganese	mg/L	0.05 AO	<0.005	0.015	0.01	0.01	0.01	0.015	0.011	0.012	0.02	0.014	0.012	0.012	0.015	0.011	0.013	0.013	0.012	0.013	0.019	0.0206	0.01188
Molybdenum	mg/L		<0.02	<0.02		0.002	0.003	0.003	0.003	0.002	0.003	0.0026	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.00296	0.00222
Nickel	mg/L												<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	0.0005	0.0003
Phosphorus	mg/L												<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	0.135	< 0.003	< 0.003
Selenium	mg/L	0.01 MAC						<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.00004	< 0.00004
Silicon	mg/L												4.93	4.74	4.92	4.63	4.59	4.43	4.41	4.38	5.47	4.22	4.7
Silver	mg/L		<0.005	<0.005		<0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00005	< 0.00005
Sodium	mg/L	200 AO	152	11.2	10.6	11.3	12.1	10.0	11.0	10.0	12.0	11.0	11.1	11.8	11.2	10.4	10.9	11.2	10.2	10.9	11.5	11.4	9.56
Strontium	mg/L		0.002	1.22		1.39	1.24	1.3	1.2	1.3	1.4	1.4	1.4	1.37	1.40	1.29	1.31	1.39	1.21	1.36	1.32	1.4	1.48
Sulphur	mg/L												2.99	2.38	3.02	3.07	3.41	9.58	4.16	5.39	4.58	2.00	3.00
Thallium	mg/L							<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.000005	+
Tin	mg/L		<0.05	<0.05		<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.00006	< 0.00006
Titanium	mg/L		<0.005	<0.005		<0.002	<0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	0.007	< 0.00005	< 0.00007
Uranium	mg/L	0.02 MAC						0.0008	0.0007	0.0008	0.0008	0.00080	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000771	0.000815
Vanadium	mg/L		<0.005	<0.005		<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	0.0006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00001	< 0.00001
Zinc	mg/L	5 AO	<0.005	0.038	<0.01	0.012	0.02	0.007	0.009	0.01	0.011	0.02	0.016	0.034	0.019	0.014	0.019	0.016	0.058	0.022	0.023	0.045	0.008

- Notes:
 (1) MECP Ontario Drinking Water Standards.
- (2) Operational Guideline (OG) within ODWS.
- (3) Aesthetic Objective (AO) within ODWS.
- (4) Maximum Acceptable Concentration (MAC) within ODWS.
- (5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
- (6) ODWS exceedances indicated by **bold** entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Parameters	1126	(1)	2003	2004	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
General Chemistry	Units	ODWS (1)	Dec	June	June	July	June	June	June	June	June	May	June	May	May	May	May	May	June	June	May	June
Alkalinity	mg/L	30-500 OG ⁽²⁾	258	273	280	261	269	271	270	261	270	270	271	264	279	285	299	281	No Sample	278	287	No Sample
Total Dissolved Solids	mg/L	500 AO ⁽³⁾	394	412	377	380	409	404	393	379	396	378	392	384	364	346	378	354	Obtained	396	389	Obtained
Chloride	mg/L	250 AO	7.6	8.7	7.02	8.54	9.0	8.0	8.0	9.0	9.0	8.52	8.11	7.75	9.32	8.29	8.51	8.04		8.78	12.0	
Dissolved Organic Carbon	mg/L	5 AO	1.1	1.2	0.9	1.1	1.0	1.0	1.1	1.1	1.4	1.0	1.4	1.4	1.3	1.4	1.5	1.8		1.2	1.2	
Potassium	mg/L		4.0	4.0	4.0	4.5	4.1	4.2	4.1	4.1	4.3	3.98	3.98	3.86	3.75	4.15	3.9	3.58		3.78	3.85	
Sulphate	mg/L	500 AO	85.0	86.2	75.7	82.2	93.0	91.0	74.0	74.0	81.0	82.3	87.1	95.0	87.1	83.7	85.4	85.6		86.3	87.0	
Fluoride	mg/L	1.5 MAC (4)				0.9			0.9	1.0	0.94	0.70	0.63	0.79	0.97	0.59	1.21	0.75		0.81	0.96	
Hardness	mg/L	80 - 100 OG	329	322	270	294	290	290	300	280	290	295	297	287	301	297	298	266		294	315	
Nitrate	mg/L	10 MAC	<0.2	<0.2	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.05	<0.05	<0.10	< 0.05	<0.10		<0.05	0.15	
Nitrite	mg/L	1 MAC	<0.2	<0.2	<0.1	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	<0.05	<0.05	<0.10	< 0.05	<0.10		<0.05	0.08	
Organic Nitrogen	mg/L	0.15 OG	0.05	0.05	0.05		0.13	0.06	0.17	0.09	0.33	0.10	<0.10	<0.10	0.14	<0.10	0.17	0.22		0.45	< 0.5	
Total Ammonia	mg/L		0.22	0.23	0.25	0.07	0.37	0.24	0.23	0.21	0.15	0.18	0.15	0.16	0.19	0.16	0.18	0.17		0.19	0.16	
Total Kjeldahl Nitrogen (TKN	mg/L		0.27	0.28	0.3	<0.1	0.5	0.3	0.4	0.3	0.48	0.28	<0.10	0.17	0.33	0.24	0.35	0.39		0.64	0.16	
Orthophosphate	mg/L		<0.3	<0.3	<0.3		<0.01	<0.01	<0.01	<0.01	<0.01	<0.20	<0.20	<0.10	<0.10	<0.20	<0.10	<0.20		<0.10		
рН	pH Units	6.5 - 8.5 OG										8.20	8.16	7.95	7.90	7.93	7.86	7.78		7.88	8.17	
Conductivity	μS/cm											698	676	680	678	668	663	674		671	654	
Metals																						
Aluminum	mg/L	0.1 OG	0.08	<0.05	<0.1	0.01	<0.005	<0.005	<0.005	0.008	<0.005	0.032	<0.004	0.010	<0.004	<0.004	<0.004	0.007		0.038	0.002	
Arsenic	mg/L	0.01 MAC					<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	0.0021	
Barium	mg/L	1 MAC	0.052	0.053	0.05	0.06	0.055	0.055	0.051	0.054	0.057	0.053	0.050	0.052	0.053	0.055	0.055	0.060		0.043	0.0547	
Beryllium	mg/L		<0.0005	<0.0005	<0.005	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	< 0.000007	
Bismuth	mg/L		<0.2	<0.2	<0.2	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.00001	
Boron	mg/l	5 IMAC (5)	0.370	0.380		0.360	0.440	0.380	0.360	0.360	0.390	0.352	0.361	0.330	0.358	0.317	0.352	0.354		0.426	0.303	
Cadmium	mg/L	0.005 MAC	<0.005	<0.005	<0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.000008	
Calcium	mg/L		75.9	72.4	57.1	64	64	67	67	65	70	64.8	64.2	63.0	66.9	62.9	64.5	58.4		62.8	74.3	
Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.01	<0.003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	0.00026	
Cobalt	mg/L		<0.005	<0.005	<0.02	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	0.000353	
Copper	mg/L	1 AO	<0.005	<0.005	<0.02	0.07	<0.001	0.003	0.006	0.003	0.005	<0.003	0.006	0.004	<0.003	0.005	<0.003	<0.003		<0.003	0.0503	
Iron	mg/L	0.3 AO	2.88	2.83	3.53	5.77	2.3	1.4	1.1	1.5	0.95	0.808	0.722	1.06	1.04	0.577	0.584	<0.010		0.748	1.90	
Lead	mg/L	0.01 MAC	<0.001	<0.001	<0.05	0.001	<0.0005	<0.0005	<0.0005	<0.0005	0.0006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001		<0.001	0.00176	
Magnesium	mg/L		33.9	34.3	31.9	32.7	32	34	33	35	36	32.4	33.2	31.4	32.6	33.9	33.2	29.2		33.2	31.4	
Manganese	mg/L	0.05 AO	0.054	0.047	0.04	0.03	0.035	0.027	0.024	0.026	0.024	0.024	0.024	0.026	0.021	0.021	0.024	0.025		0.022	0.0226	
Molybdenum	mg/L		0.02	<0.02		0.01	0.005	0.005	0.005	0.004	0.0053	0.005	0.004	0.005	0.004	0.004	0.004	0.004		0.005	0.00543	
Nickel	mg/L											<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	0.0019	<u> </u>
Phosphorus	mg/L											<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.050	0.005	<u> </u>
Selenium	mg/L	0.01 MAC					<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004		<0.004	< 0.00004	<u> </u>
Silicon	mg/L											5.85	5.64	5.89	5.58	5.71	5.28	5.74		7.18	5.38	<u> </u>
Silver	mg/L		<0.005	<0.005		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	< 0.00005	<u> </u>
Sodium	mg/L	200 AO	28.9	30.2	28.3	32.0	29.0	30.0	29.0	31.0	32.0	28.7	29.6	28.1	27.4	28.7	28.2	26.2		27.5	28.7	<u> </u>
Strontium	mg/L		5.34	5.34		5.36	5.6	5.6	5.3	5.5	5.7	5.54	5.47	5.34	5.13	5.10	5.67	5.15		5.289	5.38	<u> </u>
Sulphur	mg/L											26.3	24.8	28.2	28.3	28.6	85.4	26.8		28.4	26	<u> </u>
Thallium	mg/L						<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006		<0.006	0.000032	
Tin	mg/L		<0.05	<0.05		<0.002		<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.00023	
Titanium	mg/L		<0.005	<0.005		<0.002		<0.005	<0.005	<0.005	<0.005	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.00005	
Uranium	mg/L	0.02 MAC					0.0003	0.0003	0.0002	0.0002	0.0003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.000292	
Vanadium	mg/L		<0.005	<0.005		<0.002	<0.001	<0.001	<0.001	<0.001	0.0005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	0.00003	
Zinc	mg/L	5 AO	0.252	0.122	0.04	0.94	0.037	0.034	0.023	0.027	0.014	0.062	0.016	0.251	0.015	0.021	0.015	0.007		0.007	0.030	

- Notes:
 (1) MECP Ontario Drinking Water Standards.
- (2) Operational Guideline (OG) within ODWS.
- (3) Aesthetic Objective (AO) within ODWS.
- (4) Maximum Acceptable Concentration (MAC) within ODWS.
- (5) Interim Maximum Acceptable Concentration (IMAC) within
- (6) ODWS exceedances indicated by **bold** en

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Server Converse Wester Server	Parameters	1124	(1)	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014 2	2015	2016	2017	2018	2019	2020	2021	2022	2023
Tree Members 19 19 19 19 19 19 19 19 19 19 19 19 19	General Chemistry	Units	ODWS (1)	Dec	Sept	June	June	July	June	June	July	June	June	May	June M	Мау	May	May	May	May	June	June	May	June
Section March Ma	Alkalinity	mg/L	30-500 OG (2)	350	361	349	346	337	339	350	347	333	360	358	No sample	341	356	349	375	351	No Sample	No Sample	362	342
	Total Dissolved Solids	mg/L	500 AO ⁽³⁾	360	374	340	316	328	345	373	366	350	372	344	obtained 3	328	344	316	362	384	Obtained	Obtained	351	389
Profession Prof.	Chloride	mg/L	250 AO	1.0	1.7	1.6	1.27	1.38	2.0	2.0	2.0	1.0	2.0	2.06	1	1.98	2.10	1.80	2.51	1.81			2	2
Section Sect	Dissolved Organic Carbon	mg/L	5 AO	1.1	1.5	1.1	1	1.2	1.2	1.2	1.3	1.2	1.7	1.2		1.4	1.5	1.3	3.0	2.1			1.4	1
	Potassium	mg/L		2.0	3.0	2.0	2.13	2.25	2.2	2.1	2.3	2.4	2.2	2.14	2	2.06	2.03	2.23	2.1	0.3			2.16	2.32
	Sulphate	mg/L	500 AO	13.0	12.7	12.3	13.4	13.5	12.0	13.0	12.0	11.0	13.0	13.7	1	13.9	14.7	13.8	14.7	13.3			18	15
Windows Might 191466 1912 1	Fluoride	mg/L	1.5 MAC (4)					0.22			0.2	0.3	0.24	0.12	C	0.18	0.22	<0.10	0.83	0.17			0.28	0.25
Weight Marker Ma	Hardness	mg/L	80 - 100 OG	349	362	320	341	346	310	370	360	340	360	360		334	354	328	343	8.40			349	347
Types Margine may 1 1940 1940 1940 1940 1940 1940 1940 19	Nitrate	mg/L	10 MAC	<0.2	<0.2	<0.1	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.10	<	<0.05	<0.05	<0.10	1.04	<0.10			< 0.06	< 0.06
Page Page	Nitrite	mg/L	1 MAC	<0.2	<0.2	<0.1	<0.05	<0.05	0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<	<0.05	<0.05	<0.10	<0.05	<0.10			< 0.03	< 0.03
Final Profession Noneger 17 17 18 18 18 18 18 18	Organic Nitrogen	mg/L	0.15 OG	0.04	0.05	0.08	0.55		0.16	0.22	0.19			<0.10	<	<0.10	0.16	<0.10	0.10	<0.10			< 0.5	0.05
Charlespender	Total Ammonia	mg/L		0.08	0.09	0.12	0.1	<0.05	0.24	0.08	0.11	0.1	<0.05	0.05	C	0.03	0.07	0.03	0.05	<0.02			0.08	0.14
Series (1968) (1	Total Kjeldahl Nitrogen (TKI	mg/L		0.12	0.14	0.2	0.65	<0.1	0.4	0.3	0.3	<0.1	<0.1	0.12	<	<0.10	0.23	0.12	0.15	<0.10			0.05	0.19
Cambellow March	Orthophosphate	mg/L		<0.3	<0.3	<0.3			<0.01	<0.01	<0.01	<0.01	<0.01	<0.20	<	<0.10	<0.10	<0.20	<0.10	<0.20				< 0.03
Note Property Pr	рН	pH Units	6.5 - 8.5 OG											8.23	7	7.78	7.86	7.87	7.92	7.86			7.86	7.98
Martine Mart	Conductivity	μS/cm												679	(661	654	631	626	663			632	648
Negric Magnic Ma	Metals		.				1			1					<u> </u>	I						<u> </u>		
Serium mgL 1 MAC 0.081 0.085 0.08 0.091 0.07 0.087 0.083 0.086 0.091 0.091 0.080 0.091 0.088 0.098 0.098 0.098 0.004 0.0005 0.00	Aluminum	mg/L	0.1 OG	<0.05	0.2	<0.1	<0.004	<0.004	<0.005	<0.005	0.005	<0.005	<0.005	0.005	<(0.004	<0.004	<0.004	<0.004	<0.004			0.002	< 0.001
Serylism Fig.	Arsenic	mg/L	0.01 MAC						0.003	0.003	0.003	0.003	0.0039	0.003	0	0.004	0.003	0.003	<0.003	0.003			0.0038	0.0035
Semina Migra Mig	Barium	mg/L	1 MAC	0.081	0.085	0.08	0.061	0.07	0.087	0.083	0.086	0.095	0.092	0.091	0	0.088	0.083	0.089	0.088	0.004			0.0927	0.08941
Semun	Beryllium	mg/L		<0.0005	<0.0005	<0.005	<0.002	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0	0.001	<0.001	<0.001	<0.001	<0.001		<	0.000007	< 0.000007
Cardelum mgl. 0.005 MAC 0.005 0.005 0.005 0.005 0.005 0.005 0.000	Bismuth	mg/L		<0.2	<0.2	<0.2	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0	0.002	<0.002	<0.002	<0.002	<0.002			< 0.00001	< 0.00001
Calcium mgL mgL mgL mgL mgL mgL mgL mgL mgL mg	Boron	mg/l	5 IMAC (5)	0.03	0.03		0.015	0.04	0.037	0.03	0.03	0.03	0.024	0.026	0	0.030	0.032	0.033	0.036	0.038			0.051	0.026
Chromium mg/L 0.05 MAC 4.005 4	Cadmium	mg/L	0.005 MAC	<0.005	<0.005	<0.005	<0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<(0.002	<0.002	<0.002	<0.002	<0.002		<	0.000003	< 0.000003
Cobail Mg/L	Calcium	mg/L		83.7	86.1	74.2	82.4	83.9	76	88	85	93	89	87.7	8	81.3	87.4	78.4	82.3	2.21			86.6	84.7
Copper	Chromium	mg/L	0.05 MAC	<0.005	<0.005	<0.01	<0.003	0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<(0.003	<0.003	<0.003	<0.003	<0.003			0.00014	< 0.00008
Troin mgil 0.3 AO 2.34 1.95 1.55 1.97 0.005 1.9 1.7 2.2 2.1 1.7 2.11 1.30 1.35 1.22 1.47 0.010 1.55 1.48 1.55 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48	Cobalt	mg/L		<0.005	<0.005	<0.02	<0.002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<(0.001	<0.001	<0.001	<0.001	<0.001			0.00026	0.00017
Part Figure Fig	Copper	mg/L	1 AO	<0.005	0.011	<0.02	0.016	0.004	0.004	0.009	0.011	0.004	0.0034	0.008	0	0.009	0.023	0.006	0.031	<0.003			0.0257	0.0022
Manganesium mg/L 0.05 AO 0.023 0.056 0.02 0.019 0.02 0.018 0.018 0.02 0.019 0.02 0.018 0.020 0.019 0.02 0.019 0.02 0.019 0.02 0.018 0.02 0.019 0.02 0.019 0.02 0.0019 0.00	Iron	mg/L	0.3 AO	2.34	1.95	1.55	1.97	<0.005	1.9	1.7	2.2	2.1	1.7	2.11	1	1.30	1.35	1.22	1.47	<0.010			1.55	1.48
Marganese mg/L 0.05 AO 0.023	Lead	mg/L	0.01 MAC	<0.001	0.001	<0.05	0.003	<0.001	0.0007	<0.0005	0.0006	<0.0005	<0.0005	<0.002	<(0.002	0.003	<0.002	0.002	<0.001			0.00324	0.00024
Molybedenum mg/L	Magnesium	mg/L		33.9	35.7	32.7	32.9	33.2	30	36	37	38	36	34.3	3	31.8	33.0	32.2	33.5	0.71			32.2	32.9
Nickel mg/L	Manganese	mg/L	0.05 AO	0.023	0.056	0.02	0.019	0.02	0.018	0.018	0.02	0.019	0.018	0.022	0	0.018	0.017	0.017	0.019	<0.002			0.0189	0.01607
Phosphorus mg/L	Molybdenum	mg/L		<0.02	<0.02		<0.002	<0.002	0.002	0.002	0.002	0.002	0.0019	<0.002	<0	0.002	<0.002	<0.002	<0.002	<0.002			0.00194	0.00173
Selenium mg/L 0.01 MAC	Nickel	mg/L												<0.003	<0	0.003	<0.003	<0.003	<0.003	<0.003			0.0006	0.0003
Silicon mg/L	Phosphorus	mg/L												<0.05	<	<0.05	<0.05	<0.05	<0.05	<0.05			0.004	< 0.003
Silver mg/L	Selenium	mg/L	0.01 MAC						<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0	0.004	<0.004	<0.004	<0.004	<0.004			< 0.00004	< 0.00004
Solium mg/L 200 AO 6.9 7.5 6.8 7.19 7.45 6.7 8.1 8.1 8.6 7.7 7.32 7.32 6.84 7.23 7.12 143 7.0016 7.08 6.65 7.00000 7.08 7.000000 7.00000 7.00000 7.00000 7.00000 7.	Silicon	mg/L												5.21	5	5.32	4.92	4.95	4.71	4.96			4.93	5.28
Sodium mg/L 200 AO 6.9 7.5 6.8 7.19 7.45 6.7 8.1 8.1 8.6 7.7 7.32 7.32 7.23 6.84 7.23 7.12 143 7.016 7.08 6.65 7.0014 7.0	Silver	mg/L		<0.005	<0.005		<0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	<0	0.002	<0.002	<0.002	<0.002	<0.002			< 0.00005	< 0.00005
Sulphur mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Sodium	mg/L	200 AO	6.9	7.5	6.8	7.19	7.45	6.7	8.1	8.1	8.6	7.7	7.32	+		6.84	7.23	7.12	143			7.08	6.65
Thallium mg/L	Strontium	mg/L		0.331	0.383		0.359	0.34	0.48	0.35	0.41	0.51	0.4	0.379	0).446	0.439	0.536	0.477	0.016			0.502	0.519
Thallium mg/L	Sulphur	mg/L												4.54	4	4.52	4.80	5.0	14.7	4.53			4	5
Tin mg/L	Thallium								<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.006	<(0.006	<0.006	<0.006	<0.006	<0.006			0.000016	0.000011
Titanium mg/L	Tin			<0.05	<0.05		<0.002	<0.002		<0.001	<0.001	<0.001	<0.001	<0.002	<(0.002	<0.002	<0.002	<0.002	<0.002			0.00083	< 0.00006
Uranium mg/L 0.02 MAC Image: Control of the control	Titanium			<0.005	<0.005										-							1.		
Vanadium mg/L < 0.005 < 0.005 < 0.005 < 0.000 < 0.002 < 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0001 0.00001	Uranium		0.02 MAC						0.0012						-									0.001306
	Vanadium			<0.005	<0.005		<0.002	<0.002							-									
	Zinc	mg/L	5 AO		0.085	0.08	0.14	0.09							-								0.399	0.163

- Notes:
 (1) MECP Ontario Drinking Water Standards.
- (2) Operational Guideline (OG) within ODWS.
- (3) Aesthetic Objective (AO) within ODWS.
- (4) Maximum Acceptable Concentration (MAC) within ODWS.
- (5) Interim Maximum Acceptable Concentration (IMAC) within ODWS.
- (6) ODWS exceedances indicated by **bold** entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

June 2023 Groundwater Duplicate Data

						Jun-23				
Parameters	Units	OW-24-I	NL GW DUP-1	Relative Percent Difference (%)	OW-30-III	NL GW DUP-2	Relative Percent Difference (%)	OW-1R-III	NL GW DUP-3	Relative Percent Difference (%)
General Chemistry										
Alkalinity	mg/L	233	236	(1.279)	182	182	0.000	797	805	(0.999)
Chloride	mg/L	< 1	< 1	NC	< 1	< 1	NC	99	130	(27.074)
Dissolved Organic Carbon	mg/L	2.0	3.0	(40.000)	3	3	0.000	18	18	0.000
Fluoride	mg/L	0.35	0.36	(2.817)	0.22	0.23	(4.444)	0.08	< 0.06	NC
Sulphate	mg/L	24	26.0	(8.000)	19	18	5.405	91	89.0	2.222
Hardness	mg/L	248	245	1.217	200.0	203	(1.489)	712	692	2.849
Nitrate	mg/L	< 0.06	< 0.06	NC	< 0.06	< 0.06	NC	0.4	0.39	2.532
Nitrite	mg/L	< 0.03	< 0.03	NC	< 0.03	< 0.03	NC	0.11	0.1	9.524
Organic Nitrogen	mg/L	< 0.05	< 0.05	NC	0.13	0.05	88.889	0.86	0.83	3.550
Ha	pH Units	8.09	8.02	0.869	7.9	7.96	(0.757)	7.85	7.78	0.896
Electrical Conductivity	μS/cm	470	465	1.070	371	371	0.000	1850	1890	(2.139)
Total Ammonia	mg/L	0.11	0.07	44.444	0.06	0.07	(15.385)	18.1	18.60	(2.725)
Total Dissolved Solids	mg/L	309	280	9.847	229	220	4.009	1130	1090	3.604
Total Kjeldahl Nitrogen (TKN)	mg/L	0.06	< 0.05	NC	0.19	0.12	45.161	18.90	19.4	(2.611)
Total Phosphorus	mg/L	0.06	< 0.03	NC	< 0.03	0.04	NC	< 0.03	< 0.03	NC
Metals	g/ =	0.00	1 10.00		1 0.00	0.0.	<u>'</u>	10.00	1 0.00	I
	ma/l	0.002	0.001	66.667	< 0.001	< 0.001	NC	0.002	0.003	(40,000)
Aluminum	mg/L		0.001							(40.000)
Arsenic	mg/L	0.0003		0.000	< 0.0002	< 0.0002	NC	0.0004	0.0004	0.000
Barium	mg/L	0.028	0.030	(5.217)	0.071	0.069	2.712	0.12	0.122	(1.653)
Beryllium	mg/L	< 0.000007	< 0.000007	NC NC	0.000014	0.000015	(6.897)	< 0.000007	< 0.000007	NC NC
Bismuth	mg/L	< 0.00001	< 0.00001	NC	< 0.00001	< 0.00001	NC (7,000)	< 0.00001	< 0.00001	NC 47.000
Boron	mg/l	0.037	0.038	(2.667)	0.025	0.027	(7.692)	1.1	0.919	17.930
Cadmium	mg/L	< 0.000003	< 0.000003	NC 2.277	< 0.000003	< 0.000003	NC (2.222)	0.000034	0.000037	(8.451)
Calcium	mg/L	68.7	68	0.877	54.3	55.6	(2.366)	176.0	170	3.468
Chromium	mg/L	0.00017	0.00012	34.483	0.00014	0.00017	(19.355)	0.00057	0.00056	1.770
Cobalt	mg/L	0.000089	0.000098	(9.626)	0.000024	0.000026	(8.000)	0.00484	0.00523	(7.746)
Copper	mg/L	0.0007	0.0005	33.333	0.0004	< 0.0002	NC (2.2.12)	0.0088	0.009	(2.247)
Iron	mg/L	0.198	0.195	1.527	1.55	1.560	(0.643)	0.013	0.012	8.000
Lead	mg/L	< 0.00009	< 0.00009	NC	< 0.00009	< 0.00009	NC	0.0003	0.00031	(3.279)
Magnesium	mg/L	18.5	18.2	1.635	15.5	15.6	(0.643)	66.1	64.7	2.141
Manganese	mg/L	0.0318	0.034	(6.393)	0.0634	0.065	(2.799)	0.905	0.97500	(7.447)
Molybdenum	mg/L	0.00222	0.00235	(5.689)	0.00064	0.0005	24.561	0.00077	0.00087	(12.195)
Nickel	mg/L	0.0005	0.0005	0.000	0.0001	0.0001	0.000	0.0274	0.0286	(4.286)
Potassium	mg/L	2.53	2.52	0.396	3.20	3.20	0.000	79.40	78.6	1.013
Selenium	mg/L	< 0.00004	< 0.00004	NC	< 0.00004	< 0.00004	NC	0.00038	0.00033	14.085
Silicon	mg/L	6.90	7.01	(1.582)	6.38	5.99	6.306	7.42	6.60	11.698
Silver	mg/L	< 0.00005	< 0.00005	NC	< 0.00005	< 0.00005	NC	< 0.00005	< 0.00005	NC
Sodium	mg/L	8.07	8.14	(0.864)	4.7	4.85	(2.717)	95.8	95.9	(0.104)
Strontium	mg/L	0.36	0.368	(2.198)	0.971	0.983	(1.228)	0.873	0.914	(4.589)
Sulphur	mg/L	7.0	7	0.000	6.00	6.00	0.000	32.0	31.0	3.175
Thallium	mg/L	< 0.000005	< 0.000005	NC	< 0.000005	< 0.000005	NC	0.000233	0.000255	(9.016)
Tin	mg/L	< 0.00006	< 0.00006	NC	< 0.00006	< 0.00006	NC	0.00012	0.00014	(15.385)
Titanium	mg/L	0.00015	0.0001	40.000	< 0.00007	0.00008	NC	0.00016	0.00019	(17.143)
Uranium	mg/L	0.000359	0.000373	(3.825)	0.000053	0.000051	3.846	0.00139	0.00139	0.000
Vanadium	mg/L	0.0003	0.0004	(28.571)	0.00011	0.00013	(16.667)	0.00041	0.0004	2.469
Zinc	mg/L	< 0.002	< 0.002	NC	< 0.002	< 0.002	NC	0.047	0.043	8.889

Notes:
(1) NC - not calculable as one or both concentrations are below the laboratory method detection limit.
(2) Relative percent differences execeeding 50% are presented as bold and shaded entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

August 2023 Groundwater Duplicate Data

						Aug-23				
Parameters	Units	OW-10-I	NL GW DUP-1	Relative Percent Difference (%)	OW-30-II	NL GW DUP-2	Relative Percent Difference (%)	OW-17-I	NL GW DUP-3	Relative Percent Difference (%)
General Chemistry										
Alkalinity	mg/L	282	217	26.052	184	187	(1.617)	240	248	(3.279)
Chloride	mg/L	2.00	3.00	(40.000)	< 1	< 1	NC	< 1	< 1	NC
Dissolved Organic Carbon	mg/L	1.20	1.4	(15.385)	2.4	2.5	(4.082)	2.7	2.2	20.408
Fluoride	mg/L	0.33	0.69	(70.588)	0.24	0.24	0.000	0.36	0.35	2.817
Sulphate	mg/L	91	89	2.222	18	18	0.000	18	21	(15.385)
Hardness	mg/L	369	363	1.639	192	192	0.000	244	244	0.000
Nitrate	mg/L	< 0.06	< 0.06	NC	< 0.06	< 0.06	NC	< 0.06	< 0.06	NC
Nitrite	mg/L	< 0.03	< 0.03	NC	< 0.03	< 0.03	NC	< 0.03	< 0.03	NC
Organic Nitrogen	mg/L	0.06	< 0.05	NC	0.14	< 0.05	NC	0.12	< 0.05	NC
pH	pH Units	7.95	8.37	(5.147)	8.00	7.77	2.917	8.02	8.18	(1.975)
Electrical Conductivity	μS/cm	678	557	19.595	366	363	0.823	466	446	4.386
Total Ammonia	mg/L	0.10	0.11	(9.524)	0.06	0.06	0.000	0.05	0.05	0.000
Total Dissolved Solids	mg/L	431	320	29.561	217	237	(8.811)	266	306	(13.986)
Total Kjeldahl Nitrogen (TKN)	mg/L	0.16	0.14	13.333	0.2	0.08	85.714	0.17	0.08	72.000
Total Phosphorus	mg/L	< 0.03	< 0.03	NC	< 0.03	< 0.03	NC	< 0.03	< 0.03	NC NC
Metals	g/L	10.00	1 0.00	<u>-</u>	1 0.00	10.00	-	1 0.00	1 0.00	-
		. 0.004	1 .0.004	NC	0.004	1 0.004	0.000	0.004	1 0.002	(00.007)
Aluminum	mg/L	< 0.001 < 0.0002	< 0.001 < 0.0002	NC NC	0.001 < 0.0002	0.001 < 0.0002	0.000 NC	0.001 0.0008	0.002 0.0004	(66.667)
Arsenic	mg/L		II.							66.667
Barium	mg/L	0.0315	0.0306	2.899	0.0646	0.0636	1.560	0.0296	0.0303	(2.337)
Beryllium	mg/L	< 0.000007	< 0.000007	NC NC	0.000009	0.000012	(28.571)	< 0.000007	< 0.000007	NC NC
Bismuth	mg/L	< 0.00001	< 0.00001	NC 0.005	< 0.00001	< 0.00001	NC	< 0.00001	< 0.00001	NC 10.010
Boron	mg/l	0.204	0.202	0.985	0.031	0.025	21.429	0.032	0.027	16.949
Cadmium	mg/L	< 0.000003	< 0.000003	NC 4.074	< 0.000003	< 0.000003	NC (2.004)	0.000004	< 0.000003	NC (0.450)
Calcium	mg/L	94.8	93.6	1.274	50.6	50.8	(0.394)	65.2	65.5	(0.459)
Chromium	mg/L	0.00025	0.00028	(11.321)	0.0004	0.00018	75.862	0.00032	0.00021	41.509
Cobalt	mg/L	0.000018	0.000017	5.714	0.000053	0.00005	5.825	0.000189	0.000128	38.486
Copper	mg/L	0.0008	0.0002	120.000	0.0007	0.0003	80.000	0.0009	0.0003	100.000
Iron	mg/L	0.274	0.273	0.366	1.50	1.52	(1.325)	0.437	0.657	(40.219)
Lead	mg/L	< 0.00009	< 0.00009	NC	< 0.00009	< 0.00009	NC	< 0.00009	< 0.00009	NC
Magnesium	mg/L	32.2	31.4	2.516	16	16	0.000	19.7	19.5	1.020
Manganese	mg/L	0.0201	0.0196	2.519	0.0786	0.0772	1.797	0.0414	0.0397	4.192
Molybdenum	mg/L	0.00007	0.00046	(147.170)	0.00119	0.00044	92.025	0.00198	0.00145	30.904
Nickel	mg/L	0.0002	0.0001	66.667	0.0002	0.0002	0.000	0.0003	0.0003	0.000
Potassium	mg/L	5.32	5.31	0.188	3.10	3.11	(0.322)	3.30	3.46	(4.734)
Selenium	mg/L	< 0.00004	< 0.00004	NC	< 0.00004	0.00005	NC	< 0.00004	< 0.00004	NC
Silicon	mg/L	3.65	3.66	(0.274)	6.62	6.61	0.151	9.21	9.32	(1.187)
Silver	mg/L	< 0.00005	< 0.00005	NC	< 0.00005	< 0.00005	NC	< 0.00005	< 0.00005	NC
Sodium	mg/L	4.82	4.65	3.590	4.2	4.13	1.681	3.74	3.65	2.436
Strontium	mg/L	1.23	1.240	(0.810)	0.881	0.887	(0.679)	0.501	0.504	(0.597)
Sulphur	mg/L	32.0	31	3.175	6	6	0.000	6	6	0.000
Thallium	mg/L	< 0.00005	< 0.000005	NC	< 0.000005	< 0.000005	NC	< 0.00005	< 0.000005	NC
Tin	mg/L	0.00009	< 0.00006	NC	0.00007	< 0.00006	NC	0.00022	0.00012	58.824
Titanium	mg/L	0.00068	0.0001	148.718	0.00009	0.00008	11.765	0.00007	0.00014	(66.667)
Uranium	mg/L	0.000017	0.000019	(11.111)	0.000053	0.000051	3.846	0.000039	0.000026	40.000
Vanadium	mg/L	0.00004	0.00004	0.000	0.00021	0.00016	27.027	0.00016	0.00012	28.571
Zinc	mg/L	0.002	< 0.002	NC	0.002	< 0.002	NC	0.002	< 0.002	NC

Notes:
(1) NC - not calculable as one or both concentrations are below the laboratory method detection limit.
(2) Relative percent differences execeeding 50% are presented as bold and shaded entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

October 2023 Groundwater Duplicate Data

						Oct-23				
Parameters	Units	OW-10-II	NL GW DUP-1	Relative Percent Difference (%)	OW-30-III	NL GW DUP-2	Relative Percent Difference (%)	OW-25-I	NL GW DUP-3	Relative Percent Difference (%)
General Chemistry										
Alkalinity	mg/L	288	288	0.000	185	185	0.000	233	258	(10.183)
Chloride	mg/L	2.00	3	(40.000)	< 1	<1	NC	< 1	1	NC
Dissolved Organic Carbon	mg/L	2	2	0.000	2	2	0.000	3	2	40.000
Fluoride	mg/L	0.07	0.06	15.385	0.22	0.22	0.000	0.65	0.65	0.000
Sulphate	mg/L	110	110	0.000	17	18	(5.714)	< 2	< 2	NC
Hardness	mg/L	444	442	0.451	211	211	0.000	185	188	(1.609)
Nitrate	mg/L	< 0.06	< 0.06	NC	< 0.06	< 0.06	NC	< 0.06	< 0.06	NC
Nitrite	mg/L	< 0.03	< 0.03	NC	< 0.03	< 0.03	NC	< 0.03	< 0.03	NC
Organic Nitrogen	mg/L	0.36	0.19	61.818	0.11	< 0.05	NC	0.05	0.05	0.000
nH	pH Units	8.00	8.04	(0.499)	7.95	7.89	0.758	8.22	8.13	1.101
Electrical Conductivity	μS/cm	724	726	(0.276)	370	369	0.271	424	427	(0.705)
Total Ammonia	mg/L	< 0.04	< 0.04	NC	< 0.04	0.04	NC NC	0.35	0.35	0.000
Total Dissolved Solids	mg/L	503	480	4.680	217	214	1.392	246	269	(8.932)
Total Kjeldahl Nitrogen (TKN)	mg/L	0.38	0.21	57.627	0.14	< 0.05	NC	0.4	0.40	0.000
Total Phosphorus	mg/L	< 0.003	< 0.003	NC	0.006	0.005	18.182	0.03	0.029	3.390
·	IIIg/L	< 0.003	< 0.003	110	0.000	0.003	10.102	0.03	0.029	3.390
Metals							(22.22)			
Aluminum	mg/L	0.001	0.001	0.000	0.002	0.004	(66.667)	0.001	0.001	0.000
Arsenic	mg/L	< 0.0002	< 0.0002	NC	< 0.0002	< 0.0002	NC	< 0.0002	0.0002	NC
Barium	mg/L	0.019	0.0194	(2.083)	0.052	0.054	(3.766)	0.0381	0.0384	(0.784)
Beryllium	mg/L	< 0.000007	< 0.000007	NC	0.000018	0.00001	NC	< 0.000007	< 0.000007	NC
Bismuth	mg/L	< 0.00001	< 0.00001	NC	< 0.00001	< 0.00001	NC	< 0.00001	< 0.00001	NC
Boron	mg/l	0.03	0.028	6.897	0.026	0.028	(7.407)	0.138	0.137	0.727
Cadmium	mg/L	< 0.000003	< 0.000003	NC	0.000003	< 0.000003	NC	< 0.000003	< 0.000003	NC
Calcium	mg/L	138	137	0.727	55.7	55.7	0.000	39.8	40.6	(1.990)
Chromium	mg/L	< 0.00008	< 0.00008	NC	0.00012	0.00011	8.696	0.00013	0.00012	8.000
Cobalt	mg/L	0.000105	0.000115	(9.091)	0.000027	0.000024	11.765	0.000014	0.000012	15.385
Copper	mg/L	0.0014	0.0039	(94.340)	0.001	0.0019	(62.069)	0.0021	0.0014	40.000
Iron	mg/L	0.073	0.08	(2.703)	0.864	0.86	0.464	0.19	0.190	0.000
Lead	mg/L	< 0.00009	< 0.00009	NC	< 0.00009	< 0.00009	NC	< 0.00009	< 0.00009	NC
Magnesium	mg/L	24.3	24.4	(0.411)	18	17.5	0.570	20.8	21.1	(1.432)
Manganese	mg/L	0.0179	0.0187	(4.372)	0.0691	0.0711	(2.853)	0.01160	0.0113	2.620
Molybdenum	mg/L	0.00017	0.00024	(34.146)	0.00047	0.0005	0.000	0.0020	0.002	(5.327)
Nickel	mg/L	0.0007	0.001	(35.294)	0.0002	0.0003	(40.000)	0.0004	0.0002	66.667
Potassium	mg/L	1.03	1.020	0.976	3.280	3.280	0.000	4.13	4.07	1.463
Selenium	mg/L	0.00005	0.00005	0.000	< 0.00004	< 0.00004	NC	< 0.00004	< 0.00004	NC
Silicon	mg/L	2.32	2.27	2.179	5.95	5.92	0.505	7.55	7.28	3.641
Silver	mg/L	< 0.00005	< 0.00005	NC	< 0.00005	< 0.00005	NC	< 0.00005	< 0.00005	NC
Sodium	mg/L	2.32	2.26	2.620	4.77	4.6	2.763	33.0	32.8	0.608
Strontium	mg/L	0.219	0.218	0.458	0.89	0.87	2.052	0.88	0.882	(0.683)
Sulphur	mg/L	44	44	0.000	5	5	0.000	< 3	< 3	NC
Thallium	mg/L	< 0.00005	< 0.00005	NC	< 0.00005	< 0.00005	NC	< 0.00005	< 0.00005	NC
Tin	mg/L	< 0.00006	< 0.00006	NC	< 0.00006	0.00012	NC	< 0.00006	< 0.00006	NC
Titanium	mg/L	< 0.00007	0.00007	NC	0.00009	< 0.00072	NC	0.00009	0.00007	25.000
Uranium	mg/L	0.000247	0.000248	(0.404)	0.00003	0.000039	(2.597)	0.00003	0.00007	(13.953)
Vanadium	mg/L	0.000247	0.000248	0.000	0.0001	0.00011	(9.524)	0.00007	0.000040	(13.333)
Zinc	mg/L	< 0.002	0.003	NC	< 0.002	0.002	(9.324) NC	0.002	< 0.002	NC

Notes:
(1) NC - not calculable as one or both concentrations are below the laboratory method detection limit.
(2) Relative percent differences execeeding 50% are presented as bold and shaded entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

2023 Residential Supply Well Duplicate Data

Parameters Units General Chemistry Alkalinity mg/L Total Dissolved Solids mg/L Chloride mg/L Dissolved Organic Carbon mg/L Potassium mg/L Sulphate mg/L	361 463 31 1.0 2.07 28 0.14 391	378 446 31 2.0 2.08 28	(4.601) 3.740 0.000 (66.667) (0.482)
Alkalinity mg/L Total Dissolved Solids mg/L Chloride mg/L Dissolved Organic Carbon mg/L Potassium mg/L	463 31 1.0 2.07 28 0.14	446 31 2.0 2.08 28	3.740 0.000 (66.667)
Total Dissolved Solids mg/L Chloride mg/L Dissolved Organic Carbon mg/L Potassium mg/L	463 31 1.0 2.07 28 0.14	446 31 2.0 2.08 28	3.740 0.000 (66.667)
Chloride mg/L Dissolved Organic Carbon mg/L Potassium mg/L	31 1.0 2.07 28 0.14	31 2.0 2.08 28	0.000 (66.667)
Dissolved Organic Carbon mg/L Potassium mg/L	1.0 2.07 28 0.14	2.0 2.08 28	(66.667)
Potassium mg/L	2.07 28 0.14	2.08 28	` '
	28 0.14	28	(0.482)
Sulphate	0.14		1 7
Outpriate IIIg/L			0.000
Fluoride mg/L	391	0.11	24.000
Hardness mg/L		387	1.028
Nitrate mg/L	< 0.06	< 0.06	NC
Nitrite mg/L	< 0.03	< 0.03	NC
Organic Nitrogen mg/L	0.13	0.15	(14.286)
Total Ammonia mg/L	< 0.04	0.07	NC
Total Kjeldahl Nitrogen (TKN) mg/L	0.16	0.22	(31.579)
pH pH Units	8.04	8.04	0.000
Conductivity µS/cm	768	775	(0.907)
Metals			
Aluminum mg/L	0.016	0.004	120.000
Arsenic mg/L	< 0.0002	< 0.0002	NC
Barium mg/L	0.069	0.06912	0.519
Beryllium mg/L	< 0.000007	< 0.000007	NC
Bismuth mg/L	< 0.00001	< 0.00001	NC
Boron mg/l	0.009	0.007	25.000
Cadmium mg/L	< 0.000003	< 0.00003	NC
Calcium mg/L	100	99.8	0.200
Chromium mg/L	< 0.00008	0.00009	NC
Cobalt mg/L	0.000071	0.000063	11.940
Copper mg/L	0.0031	0.0007	126.316
Iron mg/L	2.15	1.980	8.232
Lead mg/L	0.00013	< 0.00009	NC
Magnesium mg/L	34.1	34	1.775
Manganese mg/L	0.0308	0.0306	0.750
Molybdenum mg/L	0.00067	0.00067	0.000
Nickel mg/L	0.0022	0.001	93.333
Phosphorus mg/L	0.014	0.012	15.385
Selenium mg/L	< 0.00004	< 0.00004	NC
Silicon mg/L	7.3	7.1	2.356
Silver mg/L	< 0.00005	< 0.00005	NC
Sodium mg/L	17	17	2.326
Strontium mg/L	0.18	0.17	3.390
Sulphur mg/L	8	8	0.000
Thallium mg/L	< 0.00005	< 0.000005	NC
Tin mg/L	< 0.00006	< 0.00006	NC
Titanium mg/L	< 0.00007	< 0.00007	NC
Uranium mg/L	0.000062	0.000065	(4.724)
Vanadium mg/L	0.00003	0.00003	40.000
Zinc mg/L	0.000	0.002	66.667

Notes

⁽¹⁾ NC - not calculable as one or both concentrations are below the laboratory method detection limit.

⁽²⁾ Relative percent differences execeeding 50% are presented as bold and shaded entries.

Appendix G

Summary of Surface Water Geochemical Analyses

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-1

Parameters			2	2				20	17							20	18			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	1-May	6-Jun	17-Jul	17-Aug	19-Sep	18-Oct	17-Nov	18-Dec	1-May	31-May	3-Jul	2-Aug	31-Aug	1-Oct	31-Oct	30-Nov
Alkalinity (as CaCO3)	mg/L				50	70	75	86	97	98	115	Frozen	63	75	71	Unsafe to	71	76	Frozen	Frozen
BOD (5)	mg/L				<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	sample	<5	<5		
Chemical Oxygen Deman	mg/L				25	26	26	22	18	17	17		22	19	15		<5	<5		
Total Dissolved Solids	mg/L				68	94	90	122	130	136	150		80	104	92		104	124		
Total Suspended Solids	mg/L				25	21	18	26	16	<10	23		146	43	26		44	10		
Ammonia as N	mg/L				<0.02	<0.02	0.07	<0.02	0.02	0.09	<0.02		0.08	<0.02	<0.02		<0.02	<0.02		
Nitrate as N	mg/L				0.12	<0.05	<0.05	<0.05	<0.05	0.16	0.56		0.29	0.2	<0.05		<0.05	<0.05		
Nitrite as N	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05		<0.05	<0.05		
Total Kjeldahl Nitrogen	mg/L				0.33	0.26	0.34	0.48	0.46	0.42	0.67		0.38	0.24	0.27		0.37	0.46		
Chloride	mg/L		180	120	4.30	3.94	4.03	6.36	5.24	6.47	6.65		7.47	5.33	2.99		7.86	9.81		
Sulphate	mg/L				4.23	3.76	3.88	4.04	4.36	4.22	4.33		2.48	3.38	4.79		14.60	5.84		
Phenols	mg/L	0.001	0.961	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001		<0.001	<0.001		
Total Phosphorus	mg/L	0.03			0.05	0.05	0.05	0.05	0.05	0.03	0.05		0.12	0.06	0.06		0.11	0.03		
рН	pH Units	6.5 - 8.5		6.5 - 9.0	7.45	7.54	7.72	7.24	7.80	7.66	7.64		7.22	7.00	7.80		7.63	7.63		
Electrical Conductivity	uS/cm				124	166	156	197	211	209	219		150	158	166		200	213		
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003		<0.003						<0.003		<0.003					
Barium	mg/L		2.3		0.011		0.010						0.025		0.016					
Boron	mg/L	0.2	3.55	1.5	<0.010		<0.010						<0.010		<0.010					
Cadmium	mg/L	0.0002	0.00021		<0.0001		<0.0001						<0.0001		<0.0001					
Chromium	mg/L	0.0089	0.064		<0.003		<0.003						0.003		<0.003					
Copper	mg/L	0.005	0.0069		<0.002		<0.002						0.004		0.003					
Iron	mg/L	0.3		0.3	0.34	0.39	0.36	0.29	0.28	0.26	0.37		1.07	0.53	0.46		0.92	0.25		
Lead	mg/L	0.005	0.002		<0.001		<0.001						0.001		<0.001					
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001		<0.0001						<0.0001		<0.0001					
Zinc	mg/L	0.03	0.089	0.03	<0.005		0.006						0.007		<0.005					

- (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Site in Ontario, Table 3.1.
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by italicized entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-1

Parameters		4	2	2				20	19							20	20			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Apr	26-May	26-Jun	25-Jul	25-Aug	24-Sep	23-Oct	22-Nov	6-Apr	6-May	5-Jun	6-Jul	11-Aug	8-Sep	2-Oct	6-Nov
Alkalinity (as CaCO3)	mg/L				60	63	64	65	75	88	100	92	64	33	58	74	49	74	117	84
BOD (5)	mg/L				<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2	3	4	2	<5
Chemical Oxygen Deman	mg/L				30	22	23	11	12	<5	20	6	16	20	31	16	11	11	28	31
Total Dissolved Solids	mg/L				128	98	122	102	86	126	156	116	110	72	98	120	106	110	102	118
Total Suspended Solids	mg/L				237	41	144	14	32	18	38	55	106	28	20	34	48	28	80	12
Ammonia as N	mg/L				<0.02	0.08	0.04	0.19	0.12	0.08	0.06	<0.02	<0.02	<0.02	<0.02	0.04	0.05	<0.02	<0.02	0.02
Nitrate as N	mg/L				0.48	0.2	0.06	<0.05	<0.05	<0.05	0.42	0.43	0.8	0.08	0.08	0.06	<0.05	<0.05	0.41	0.40
Nitrite as N	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	mg/L				<0.10	0.42	0.38	0.51	0.48	0.40	0.22	0.21	0.70	0.32	0.45	0.49	0.60	0.35	0.51	0.39
Chloride	mg/L		180	120	10.6	4.33	3.94	2.94	3.33	7.42	10.3	5.89	6.39	3.36	5.28	4.31	3.74	5.85	5.32	4.07
Sulphate	mg/L				12.6	2.98	3.46	4.22	5.72	4.96	6.97	5.70	3.28	2.86	5.11	10.8	24.7	4.01	3.38	3.59
Phenols	mg/L	0.001	0.961	0.004	0.001	0.002	0.007	<0.001	<0.001	0.001	0.002	<0.001	0.002	<0.001	0.002	0.001	0.005	0.006	<0.001	0.001
Total Phosphorus	mg/L	0.03			0.21	0.04	0.10	0.06	0.06	0.05	0.05	0.03	0.12	0.06	0.05	0.06	0.13	0.02	0.08	<0.10
рН	pH Units	6.5 - 8.5		6.5 - 9.0	7.27	6.94	7.47	7.79	7.73	7.28	7.75	7.45	7.57	6.63	7.48	7.56	7.06	7.54	6.92	7.79
Electrical Conductivity	uS/cm				183	124	142	166	219	232	226	197	178	122	168	165	143	169	183	184
Metals		1																		
Arsenic	mg/L	0.1	0.15	0.005	<0.003	<0.003	<0.003	<0.003			<0.003		<0.003		<0.003	<0.003				
Barium	mg/L		2.3		0.02	0.014	0.014	0.011			0.016		0.039		0.012	0.019				
Boron	mg/L	0.2	3.55	1.5	<0.010	<0.010	0.010	<0.010			<0.010		<0.010		<0.010	<0.010				
Cadmium	mg/L	0.0002	0.00021		<0.0001	<0.0001	<0.0001	<0.0001			<0.0001		<0.0001		<0.0001	<0.0001				
Chromium	mg/L	0.0089	0.064		<0.003	<0.003	0.003	<0.003			<0.003		0.012		<0.003	0.004				
Copper	mg/L	0.005	0.0069		0.003	0.002	<0.002	<0.002			0.003		0.005		0.001	0.002				
Iron	mg/L	0.3		0.3	0.60	0.49	0.42	0.53	0.32	0.34	0.37	0.34	4.22	1.49	0.871	1.41	1.47	0.818	1.70	1.04
Lead	mg/L	0.005	0.002		<0.001	<0.001	<0.001	<0.001			<0.001		0.001		<0.001	<0.001				
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001	<0.0001	<0.0001	<0.0001			<0.0001		<0.0001		<0.0001	<0.0001				
Zinc	mg/L	0.03	0.089	0.03	0.007	<0.005	0.005	<0.005			<0.005		0.010		<0.005	<0.005				

- (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Developme
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by italicized entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-1

Parameters		4	2	2				20)21						2022				2023	
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Mar	23-Apr	26-May	22-Jun	10-Aug	7-Sep	3-Oct	4-Nov	22-Apr	31-May	31-Aug	26-Sep	27-Oct	19-Jun	30-Aug	17-Oct
Alkalinity (as CaCO3)	mg/L				86	60	127	113	67	79	88	92	62	68	90	80	88	64	89	71
BOD (5)	mg/L				5	<2.00	<2.00	<2	<2.00	3	<2.00	<2.00	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
Chemical Oxygen Deman	mg/L				29	<5	<5	14	25	11	5	17	17	25	12	16	31	20	24	50
Total Dissolved Solids	mg/L				130	70	111	112	104	102	124	120	83	151	97	91	114	123	137	111
Total Suspended Solids	mg/L				161	20	31	32	13	24	19	<10	42	256	46	31	16	22	27	13
Ammonia as N	mg/L				0.02	<0.02	<0.02	<0.02	0.11	0.02	<0.02	<0.02	< 0.1	0.06	< 0.04	0.04	< 0.04	0.06	0.04	< 0.04
Nitrate as N	mg/L				0.63	0.10	0.06	<0.05	<0.05	<0.05	0.17	0.11	0.42	0.14	< 0.06	< 0.06	0.16	< 0.06	0.011	0.185
Nitrite as N	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003	< 0.003
Total Kjeldahl Nitrogen	mg/L				0.19	0.19	0.28	0.35	0.22	0.23	0.27	0.27	< 0.5	0.23	0.2	0.23	0.3	0.18	0.22	0.20
Chloride	mg/L		180	120	4.61	4.54	5.4	4.18	3.06	3.5	6.39	8.25	7	7	5	10	11	7	9	7
Sulphate	mg/L				3.24	3.45	3.82	3.69	2.84	4.04	4.58	4.63	2	< 2	5	6	9	6	5	< 2
Phenols	mg/L	0.001	0.961	0.004	0.002	0.004	<0.001	<0.001	<0.001	0.001	0.002	0.002	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002
Total Phosphorus	mg/L	0.03			0.28	<0.02	0.04	0.11	0.03	0.04	0.04	0.02	0.064	0.140	0.042	0.034	0.021	0.030	0.035	0.025
рН	pH Units	6.5 - 8.5		6.5 - 9.0	7.13	7.52	7.84	6.95	7.26	7.23	7.58	7.41	7.80	7.78	7.95	7.88	7.95	7.96	8.03	7.74
Electrical Conductivity	uS/cm				176	141	190	195	148	172	204	207	140	150	208	193	210	153	198	160
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003				<0.003				0.0016		0.001			0.0011	0.0010	0.0007
Barium	mg/L		2.3		0.053				0.014				0.0267		0.0264			0.0148	0.0180	0.0162
Boron	mg/L	0.2	3.55	1.5	<0.010				<0.010				0.018		0.011			0.010	0.008	0.008
Cadmium	mg/L	0.0002	0.00021		<0.0001				<0.0001				0.00002		0.000009			0.000008	0.000011	0.000006
Chromium	mg/L	0.0089	0.064		0.016				<0.003				0.00594		0.00452			0.00208	0.00193	0.00185
Copper	mg/L	0.005	0.0069		0.0070				0.002				0.0045		0.0027			0.0020	0.0018	0.0024
Iron	mg/L	0.3		0.3	5.44	0.727	1.12	1.47	0.908	0.97	0.56	0.385	2.27	6.02	1.84	1.46	0.464	0.828	0.827	0.756
Lead	mg/L	0.005	0.002		0.002				<0.001				0.00129		0.00079			0.00038	0.00046	0.0004
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001				<0.0001				0.00001		0.00001			< 0.00001	0.00002	< 0.00001
Zinc	mg/L	0.03	0.089	0.03	0.019				0.007				0.011		0.005			0.003	0.003	0.006

- (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Developme
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by italicized entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-2

Parameters	Unito	Dwo o1	4 D) 12	OW 0 03	Trigger				20	17							20	18			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	Concentration ⁷ (mg/L)	1-May	6-Jun	17-Jul	17-Aug	19-Sep	18-Oct	17-Nov	18-Dec	1-May	31-May	3-Jul	2-Aug	31-Aug	1-Oct	31-Oct	30-Nov
Alkalinity (as CaCO3)	mg/L					185	303	397	363	362	355	290	Frozen	124	275	Dry	Dry	294	315	266	Frozen
BOD (5)	mg/L																				
Chemical Oxygen Demar	mg/L					9	8	28	26	31	20	<5		17	<5			14	6	15	
Total Dissolved Solids	mg/L					220	306	1270	398	384	386	326		132	308			470	538	302	
Total Suspended Solids	mg/L					10	<10	<10	182	<10	161	<10		249	<10			57	<10	24	
Ammonia as N	mg/L					<0.02	<0.02	0.05	<0.02	0.12	<0.02	<0.02		<0.02	<0.02			0.03	<0.02	<0.02	
Nitrate as N	mg/L					<0.05	<0.05	<0.5	<0.25	<0.10	<0.10	<0.10		0.08	<0.10			<0.25	<0.25	<0.05	
Nitrite as N	mg/L					<0.05	<0.05	<0.5	<0.25	<0.10	<0.10	<0.10		<0.05	<0.10			<0.25	<0.25	<0.05	
Total Kjeldahl Nitrogen	mg/L					0.17	0.14	0.33	0.48	1.05	0.50	0.32		0.14	0.27			0.46	0.45	<0.10	
Chloride	mg/L		180	120	96	28.8	20.9	<u>559</u>	29.6	48.1	25.7	27.5		12.6	29.3			80.9	68.8	31.1	
Sulphate	mg/L					9.09	5.68	25.2	5.09	4.81	12.2	6.79		2.57	5.06			27.00	18.1	10.50	
Phenols	mg/L	0.001	0.961	0.004		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001			<0.001	<0.001	<0.001	
Total Phosphorus	mg/L	0.03				0.02	0.02	0.03	0.06	0.50	0.14	0.02		0.19	0.04			0.19	0.03	0.02	
рН	pH Units	6.5 - 8.5		6.5 - 9.0		8.21	8.46	8.18	8.22	8.32	8.39	8.04		7.67	7.94			8.07	8.10	7.81	
Electrical Conductivity	uS/cm					459	649	2330	753	793	679	545		272	547			850	884	543	
Metals																					
Arsenic	mg/L	0.1	0.15	0.005		<0.003		<0.003						<0.003							
Barium	mg/L		2.3			0.017		0.024						0.029							
Boron	mg/L	0.2	3.55	1.5	1.2	<0.010		0.017						<0.010							
Cadmium	mg/L	0.0002	0.00021			0.0007		<0.0001						<0.0001							
Chromium	mg/L	0.0089	0.064			<0.003		0.004						0.003							
Copper	mg/L	0.005	0.0069			0.003		<0.002						0.004							
Iron	mg/L	0.3		0.3		0.12	0.04	0.06	0.41	0.04	0.63	0.08		0.75	0.19	,		0.75	0.05	0.18	
Lead	mg/L	0.005	0.002			<0.001		<0.001						0.002							
Dissolved Mercury	mg/L	0.0002	0.00077			<0.0001		<0.0001						<0.0001							
Zinc	mg/L	0.03	0.089	0.03		0.019		0.012						0.012							

Notes

- (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Site in Ontario, Table 3.1.
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by *italicized* entries.
- (7) Trigger Level Monitoring Program was initiated in 2023, and represents 80% of the CWQG (Wood, 2020)
- (8) Exceedance of the Trigger Concnetration are indicated by shaded entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-2

Parameters	I I - it -	1	2	3	Trigger				20)19							20)20			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	Concentration' (mg/L)	25-Apr	26-May	26-Jun	25-Jul	25-Aug	24-Sep	23-Oct	22-Nov	6-Apr	6-May	5-Jun	6-Jul	11-Aug	8-Sep	2-Oct	6-Nov
Alkalinity (as CaCO3)	mg/L					136	257	275	Dry	292	287	Dry	234	142	196	303	Dry	330	298	346	328
BOD (5)	mg/L																				
Chemical Oxygen Deman	mg/L					12	8	22		21	101		<5	10	<5	8		<5	13	<5	19
Total Dissolved Solids	mg/L					188	224	286		402	446		358	220	222	326		432	354	280	344
Total Suspended Solids	mg/L					<10	26	152		50	23		37	<10	<10	83		<10	18	170	<10
Ammonia as N	mg/L					<0.02	<0.02	<0.02		0.08	0.15		<0.02	<0.02	<0.02	<0.02		0.05	<0.02	<0.02	<0.02
Nitrate as N	mg/L					0.27	<0.05	<0.05		<0.10	<0.25		0.17	<0.05	<0.05	<0.10		<0.25	<0.10	<0.05	<0.10
Nitrite as N	mg/L					<0.05	<0.05	<0.05		<0.10	<0.25		<0.10	<0.05	<0.05	<0.10		<0.25	<0.10	<0.05	<0.10
Total Kjeldahl Nitrogen	mg/L					<0.10	<0.10	0.27		0.71	1.67		0.17	0.17	0.18	0.41		0.45	0.33	0.43	0.25
Chloride	mg/L		180	120	96	12.3	8.41	5.9		61.5	54.6		73.3	28.0	15.8	17.5		<u>227</u>	37.1	13.5	12.8
Sulphate	mg/L					3.47	3.43	7.10		7.87	8.41		16.8	6.54	4.86	4.35		7.21	6.15	9.80	4.0
Phenols	mg/L	0.001	0.961	0.004		<0.001	<0.001	<0.001		0.003	0.003		<0.001	<0.001	<0.001	0.002		0.003	0.002	0.087	<0.001
Total Phosphorus	mg/L	0.03				0.03	<0.02	0.09		0.03	0.32		0.03	0.02	<0.02	0.06		0.05	0.02	0.33	0.03
рН	pH Units	6.5 - 8.5		6.5 - 9.0		7.82	7.88	7.94		8.10	8.09		7.98	7.77	7.60	8.08		7.94	8.10	7.81	8.15
Electrical Conductivity	uS/cm					302	416	515		809	757		637	428	530	672		1110	670	530	631
Metals																					
Arsenic	mg/L	0.1	0.15	0.005		<0.003	<0.003	<0.003						<0.003		<0.003					
Barium	mg/L		2.3			0.015	0.016	0.026						0.015		0.016					
Boron	mg/L	0.2	3.55	1.5	1.2	<0.010	0.013	0.018						0.015		0.020					
Cadmium	mg/L	0.0002	0.00021			<0.0001	<0.0001	<0.0001						<0.0001		<0.0001					
Chromium	mg/L	0.0089	0.064			<0.003	<0.003	0.005						<0.003		<0.003					
Copper	mg/L	0.005	0.0069			<0.002	<0.002	<0.002						0.001		0.001					
Iron	mg/L	0.3		0.3		0.18	0.07	0.30		0.06	0.07		0.24	0.246	0.206	0.424		0.427	0.088	4.53	0.432
Lead	mg/L	0.005	0.002			<0.001	<0.001	0.001						<0.001		<0.001					
Dissolved Mercury	mg/L	0.0002	0.00077			<0.0001	<0.0001	<0.0001						<0.0001		<0.0001					
Zinc	mg/L	0.03	0.089	0.03		0.007	<0.005	0.012						<0.005		<0.005					

Notes

- (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Development of Soil and Grou
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by *italicized* entries.
- (7) Trigger Level Monitoring Program was initiated in 2023, and represents 80% of the
- (8) Exceedance of the Trigger Concnetration are indicated by shaded entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-2

Parameters	I I it -	1	2	3	Trigger	•			20)21						2022				2023	
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	Concentration ⁷ (mg/L)	25-Mar	23-Apr	26-May	22-Jun	10-Aug	7-Sep	3-Oct	4-Nov	22-Apr	31-May	31-Aug	26-Sep	27-Oct	19-Jun	30-Aug	17-Oct
Alkalinity (as CaCO3)	mg/L					158	271	309	Dry	285	285	342	352	158	300	274	311	DRY	341	292	324
BOD (5)	mg/L													< 4	< 4	< 4	< 4		< 4	< 4	< 4
Chemical Oxygen Deman	mg/L					19	<5	<5		10	13	<5	<5	17	< 8	22	12		14	37	15
Total Dissolved Solids	mg/L					202	314	348		322	312	566	370	171	357	1070	446		431	383	340
Total Suspended Solids	mg/L					54	<10	<10		29	<10	<10	<10	14	5	6	12		2	12	7
Ammonia as N	mg/L					<0.02	<0.02	<0.02		0.14	<0.02	<0.02	<0.02	< 0.1	< 0.04	0.08	< 0.04		0.05	0.04	< 0.04
Nitrate as N	mg/L					0.11	<0.10	<0.05		0.5	<0.05	<0.05	<0.05	0.09	< 0.06	0.16	< 0.06		< 0.06	< 0.006	0.019
Nitrite as N	mg/L					<0.05	<0.10	<0.05		<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.3	< 0.03		< 0.03	< 0.003	< 0.003
Total Kjeldahl Nitrogen	mg/L					0.26	0.16	0.49		0.22	0.18	0.31	0.12	< 0.5	0.14	0.27	0.28		0.25	0.52	0.43
Chloride	mg/L		180	120	96	9.6	38.4	23.1		17	24.7	50	18.3	14	27	<u>480</u>	59		36	7	18
Sulphate	mg/L					2.73	5.52	4.36		3.14	1.06	5.62	7.6	5	5	64	36		2	2	3
Phenols	mg/L	0.001	0.961	0.004		0.002	0.005	0.003		<0.001	0.004	0.033	0.036	< 0.001	< 0.001	< 0.001	0.001		< 0.001	0.002	0.002
Total Phosphorus	mg/L	0.03				0.2	<0.02	<0.02		<0.02	0.03	0.03	0.02	0.025	< 0.03	0.056	0.024		0.027	0.033	0.016
рН	pH Units	6.5 - 8.5		6.5 - 9.0		7.68	8.03	8.20		7.91	8.04	8.00	7.97	8.12	8.39	8.33	8.32		8.20	8.41	8.20
Electrical Conductivity	uS/cm					296	606	643		576	617	761	688	311	594	2140	810		780	551	624
Metals																					
Arsenic	mg/L	0.1	0.15	0.005		<0.003				<0.003				0.0006		0.0006			0.0009	0.0005	0.0005
Barium	mg/L		2.3			0.034				0.028				0.0212		0.0896			0.0204	0.0200	0.0178
Boron	mg/L	0.2	3.55	1.5	1.2	<0.010				0.023				0.010		0.017			0.018	0.020	0.014
Cadmium	mg/L	0.0002	0.00021			<0.0001				<0.0001				0.000011		0.000008			< 0.000003	0.000017	0.000008
Chromium	mg/L	0.0089	0.064			0.008				<0.003				0.00267		0.00032			0.00044	0.00069	0.00061
Copper	mg/L	0.005	0.0069			0.003				0.002				0.0025		0.0021			0.0012	0.0017	0.0021
Iron	mg/L	0.3		0.3		2.63	0.072	0.194		0.810	0.048	0.019	0.192	0.941	0.154	0.247	0.155		0.158	0.249	0.242
Lead	mg/L	0.005	0.002			0.001				<0.001				0.00062		< 0.00009			< 0.00009	0.00019	0.00022
Dissolved Mercury	mg/L	0.0002	0.00077			<0.0001				<0.0001				< 0.00001		< 0.00001			< 0.00001	0.00002	< 0.00001
Zinc	mg/L	0.03	0.089	0.03		0.016				0.014				0.010		0.006			0.004	0.003	0.007

Notes:

- (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Development of Soil and Grou
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by *italicized* entries.
- (7) Trigger Level Monitoring Program was initiated in 2023, and represents 80% of the
- (8) Exceedance of the Trigger Concnetration are indicated by shaded entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-3

Parameters	11-24-	1	2	3				20	117							20	018			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	1-May	6-Jun	17-Jul	17-Aug	19-Sep	18-Oct	17-Nov	18-Dec	1-May	31-May	3-Jul	2-Aug	31-Aug	1-Oct	31-Oct	30-Nov
Alkalinity (as CaCO3)	mg/L				214	300	Dry	Dry	Dry	Dry	Dry	Frozen	157	305	Dry	Dry	Dry	Dry	293	Frozen
BOD (5)	mg/L																			
Chemical Oxygen Deman	mg/L				6	12							12	<5					16	
Total Dissolved Solids	mg/L				330	318							156	358					346	
Total Suspended Solids	mg/L				<10	<10							221	<10					20	
Ammonia as N	mg/L				<0.02	<0.02							<0.02	<0.02					<0.02	
Nitrate as N	mg/L				<0.10	<0.05							0.08	<0.10					<0.25	
Nitrite as N	mg/L				<0.10	<0.05							<0.05	<0.10					<0.25	
Total Kjeldahl Nitrogen	mg/L				0.17	0.20							0.15	0.20					0.17	
Chloride	mg/L		180	120	71.6	49.6							38.8	59.4					54.4	
Sulphate	mg/L				9.26	6.52							3.32	6.14					9.9	
Phenols	mg/L	0.001	0.961	0.004	<0.001	<0.001							<0.001	<0.001					<0.001	
Total Phosphorus	mg/L	0.03			0.01	0.04							0.14	<0.02					0.04	
рН	pH Units	6.5 - 8.5		6.5 - 9.0	8.11	8.39							7.77	7.90					7.81	
Electrical Conductivity	uS/cm				665	746							410	665					663	
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003								<0.003							
Barium	mg/L		2.3		0.021								0.032							
Boron	mg/L	0.2	3.55	1.5	<0.010								<0.010							
Cadmium	mg/L	0.0002	0.00021		<0.0001								<0.0001							
Chromium	mg/L	0.0089	0.064		0.004								0.003							
Copper	mg/L	0.005	0.0069		<0.002								0.004							
Iron	mg/L	0.3		0.3	0.10	0.08							0.74	0.14					0.21	
Lead	mg/L	0.005	0.002		<0.001								0.001							
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001								<0.0001							
Zinc	mg/L	0.03	0.089	0.03	0.008								0.013							

Notes

(1) PWQO - Provincial Water Quality Objectives.

(2) APV - Aquatic Protection Value from Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Site in Ontario, Table 3.1.

⁽³⁾ CWQG - Canadian Water Quality Guidelines.

⁽⁴⁾ Exceedences of the PWQO are indicated by **BOLD** entries.

⁽⁵⁾ Exceedences of the APV are indicated by <u>underlined</u> entries.

⁽⁶⁾ Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-3

Parameters		1	2	3				20	119							20)20			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Apr	26-May	26-Jun	25-Jul	25-Aug	24-Sep	23-Oct	22-Nov	6-Apr	6-May	5-Jun	6-Jul	11-Aug	8-Sep	2-Oct	6-Nov
Alkalinity (as CaCO3)	mg/L				159	268	337	Dry	Dry	Dry	325	260	157	Dry	318	Dry	Dry	365	363	301
BOD (5)	mg/L																			
Chemical Oxygen Deman	mg/L				14	7	19				<5	<5	7		14			14	<5	19
Total Dissolved Solids	mg/L				198	254	402				454	438	284		464			524	374	338
Total Suspended Solids	mg/L				<10	<10	61				112	<10	<10		20			30	636	<10
Ammonia as N	mg/L				<0.02	0.04	<0.02				<0.02	<0.02	<0.02		<0.02			<0.02	<0.02	<0.02
Nitrate as N	mg/L				0.31	<0.05	<0.10				<0.25	<0.10	0.2		<0.25			<0.25	<0.10	<0.10
Nitrite as N	mg/L				<0.05	<0.05	<0.10				<0.25	<0.10	<0.05		<0.25			<0.25	<0.10	<0.10
Total Kjeldahl Nitrogen	mg/L				<0.10	0.14	0.63				0.17	0.16	0.26		0.42			0.35	0.43	0.30
Chloride	mg/L		180	120	30.1	32.8	62.5				81.3	103	46.1		98.3			117	67.3	36.3
Sulphate	mg/L				4.64	4.44	2.94				11.5	14.0	6.23		6.33			4.73	4.41	4.21
Phenols	mg/L	0.001	0.961	0.004	<0.001	<0.001	0.001				0.001	<0.001	<0.001		0.001			0.001	0.003	<0.001
Total Phosphorus	mg/L	0.03			0.03	<0.02	0.08				0.09	0.04	0.04		0.07			0.03	0.07	<0.04
рН	pH Units	6.5 - 8.5		6.5 - 9.0	7.82	7.89	7.95				8.06	7.89	7.82		7.96			8.12	7.85	8.09
Electrical Conductivity	uS/cm				402	507	778				808	764	523		968			983	693	661
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003	<0.003	<0.003				<0.003		<0.003		<0.003					
Barium	mg/L		2.3		0.02	0.019	0.025				0.035		0.028		0.028					
Boron	mg/L	0.2	3.55	1.5	<0.010	0.011	0.013				0.012		<0.010		0.013					
Cadmium	mg/L	0.0002	0.00021		<0.0001	<0.0001	<0.0001				<0.0001		<0.0001		<0.0001					
Chromium	mg/L	0.0089	0.064		<0.003	<0.003	0.010				<0.003		<0.003		<0.003					
Copper	mg/L	0.005	0.0069		<0.002	<0.002	<0.002				0.004		0.002		0.002					
Iron	mg/L	0.3		0.3	0.35	0.07	0.06				0.14	0.04	0.87		0.596			0.478	0.493	0.222
Lead	mg/L	0.005	0.002		<0.001	0.001	<0.001				<0.001		<0.001		<0.001					
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001	<0.0001	<0.0001				<0.0001		<0.0001		<0.0001					
Zinc	mg/L	0.03	0.089	0.03	0.007	<0.005	0.006				0.006		0.006		0.007					

Notes

(1) PWQO - Provincial Water Quality Objectives.

(2) APV - Aquatic Protection Value from Rationale for the Developme

(3) CWQG - Canadian Water Quality Guidelines.

(4) Exceedences of the PWQO are indicated by **BOLD** entries.

(5) Exceedences of the APV are indicated by <u>underlined</u> entries.

(6) Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-3

Parameters		1	2	3				20	21						2022				2023	
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Mar	23-Apr	26-May	22-Jun	10-Aug	7-Sep	3-Oct	4-Nov	22-Apr	31-May	31-Aug	26-Sep	27-Oct	19-Jun	30-Aug	17-Oct
Alkalinity (as CaCO3)	mg/L				155	290	322	Dry	290	Dry	365	371	172	307	DRY	DRY	DRY	DRY	298	330
BOD (5)	mg/L												< 4	< 4					< 4	6
Chemical Oxygen Demand	mg/L				21	<5	<5		19		<5	<5	22	16					40	21
Total Dissolved Solids	mg/L				192	382	394		378		576	480	189	403					340	400
Total Suspended Solids	mg/L				33	17	27		616		<10	12	16	5					441	22
Ammonia as N	mg/L				<0.02	<0.02	<0.02		0.05		<0.02	<0.02	< 0.1	0.04					0.04	< 0.04
Nitrate as N	mg/L				0.13	<0.10	<0.05		<0.05		<0.05	<0.05	< 0.06	< 0.06					< 0.006	0.016
Nitrite as N	mg/L				<0.05	<0.10	<0.05		<0.05		<0.05	<0.05	< 0.03	< 0.03					< 0.003	0.004
Total Kjeldahl Nitrogen	mg/L				0.19	0.14	0.54		0.3		0.37	0.20	< 0.5	0.19					0.55	0.32
Chloride	mg/L		180	120	15	57.6	47.7		58.6		133	75.3	23	58					19	43
Sulphate	mg/L				2.93	5.73	4.18		2.8		6.88	6.93	5	6					2	5
Phenols	mg/L	0.001	0.961	0.004	0.003	0.005	0.003		<0.001		0.030	0.036	< 0.001	< 0.001					0.002	0.001
Total Phosphorus	mg/L	0.03			0.12	<0.02	<0.02		<0.02		0.03	0.02	0.017	< 0.03					0.059	0.022
рН	pH Units	6.5 - 8.5		6.5 - 9.0	7.68	8.00	8.15		7.97		7.91	7.84	8.21	8.35					8.35	8.10
Electrical Conductivity	uS/cm				327	696	734		698		1060	902	363	714					552	720
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003				<0.003				0.0004						0.0008	0.0005
Barium	mg/L		2.3		0.029				0.031				0.0194						0.0277	0.0218
Boron	mg/L	0.2	3.55	1.5	<0.010				0.021				0.008						0.015	0.014
Cadmium	mg/L	0.0002	0.00021		<0.0001				<0.0001				0.000011						0.000026	0.000009
Chromium	mg/L	0.0089	0.064		0.006				0.005				0.00198						0.00145	0.00068
Copper	mg/L	0.005	0.0069		0.002				0.003				0.0027						0.0028	0.0026
Iron	mg/L	0.3		0.3	1.68	0.18	0.138		1.65		<0.010	0.18	0.692	0.137					0.537	0.261
Lead	mg/L	0.005	0.002		<0.001				<0.001				0.00044						0.00048	0.00024
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001				<0.0001				< 0.00001						0.00001	< 0.00001
Zinc	mg/L	0.03	0.089	0.03	0.015				0.01				0.011						0.006	0.004

Notes

(1) PWQO - Provincial Water Quality Objectives.

(2) APV - Aquatic Protection Value from Rationale for the Developme

(3) CWQG - Canadian Water Quality Guidelines.

(4) Exceedences of the PWQO are indicated by **BOLD** entries.

(5) Exceedences of the APV are indicated by <u>underlined</u> entries.

(6) Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-4

Parameters		1	3	2				20	117							20)18			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	1-May	6-Jun	17-Jul	17-Aug	19-Sep	18-Oct	17-Nov	18-Dec	1-May	31-May	3-Jul	2-Aug	31-Aug	1-Oct	31-Oct	30-Nov
Alkalinity (as CaCO3)	mg/L											Frozen			Dry					Frozen
BOD (5)	mg/L																			
Chemical Oxygen Deman	mg/L				9	24	47	48	38	30	7		6	<5		24	21	8	18	
Total Dissolved Solids	mg/L				1100	1020	1100	1110	1080	912	1090		896	1090		1770	1450	1200	1090	
Total Suspended Solids	mg/L				<10	118	43	18	351	728	11		<10	<10		26	10	24	48	
Ammonia as N	mg/L				<0.02	<0.02	0.06	0.04	0.04	0.04	<0.02		0.08	<0.02		<0.02	<0.02	<0.02	<0.02	
Nitrate as N	mg/L				0.6	<0.25	<0.25	<0.25	<0.5	<0.25	1.0		1.4	1.0		<1.0	<0.5	<0.5	0.9	
Nitrite as N	mg/L				<0.5	<0.25	<0.25	<0.25	<0.5	<0.25	<0.5		<0.25	<0.5		<1.0	<0.5	<0.5	<0.5	
Total Kjeldahl Nitrogen	mg/L				0.26	0.31	0.48	0.68	0.62	0.54	0.44		0.5	0.23		0.6	0.56	1	0.14	
Chloride	mg/L		180	120	<u>533</u>	<u>480</u>	<u>456</u>	<u>482</u>	<u>517</u>	<u>368</u>	<u>525</u>		<u>456</u>	<u>533</u>		<u>885</u>	<u>734</u>	<u>547</u>	<u>463</u>	
Sulphate	mg/L				22.5	11.8	6.65	13.7	8.4	18.8	19.5		15.5	12.5		2.5	32.8	18.4	23.8	
Phenols	mg/L	0.001	0.961	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	0.001	<0.001	<0.001	
Total Phosphorus	mg/L	0.03			0.02	0.06	0.22	0.08	0.13	0.08	0.03		0.03	0.02		0.24	0.08	0.15	0.04	
pН	pH Units	6.5 - 8.5		6.5 - 9.0	8.15	8.32	8.18	8.16	8.21	8.26	8.11		7.96	7.89		8.03	8.00	8.07	7.91	
Electrical Conductivity	uS/cm				2230	2190	2050	2120	2040	1670	1930		1830	1940		3330	2650	2300	1980	
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003		0.004						<0.003							
Barium	mg/L		2.3		0.064		0.115						0.069							
Boron	mg/L	0.2	3.55	1.5	<0.010		0.015						<0.010							
Cadmium	mg/L	0.0002	0.00021		<0.0001		0.0001						<0.0001							
Chromium	mg/L	0.0089	0.064		0.010		0.009						<0.003							
Copper	mg/L	0.005	0.0069		0.002		<u>0.010</u>						0.002							
Iron	mg/L	0.3		0.3	<0.01	0.26	4.34	0.23	0.90	0.52	0.19		0.17	0.04		4.36	0.68	0.86	0.36	
Lead	mg/L	0.005	0.002		<0.001		0.004						<0.001							
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001		<0.0001						<0.0001							
Zinc	mg/L	0.03	0.089	0.03	<0.005		0.026						<0.005							

⁽¹⁾ PWQO - Provincial Water Quality Objectives.

⁽²⁾ APV - Aquatic Protection Value from Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Site in Ontario, Table 3.1.

⁽³⁾ CWQG - Canadian Water Quality Guidelines.

⁽⁴⁾ Exceedences of the PWQO are indicated by **BOLD** entries.

⁽⁵⁾ Exceedences of the APV are indicated by <u>underlined</u> entries.

⁽⁶⁾ Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-4

Parameters		1	. =2	3				20)19							20	020			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Apr	26-May	26-Jun	25-Jul	25-Aug	24-Sep	23-Oct	22-Nov	6-Apr	6-May	5-Jun	6-Jul	11-Aug	8-Sep	2-Oct	6-Nov
Alkalinity (as CaCO3)	mg/L							Dry	Dry											
BOD (5)	mg/L																			
Chemical Oxygen Deman	mg/L				16	9	17			23	32	<5	8	<5	23	23	13	17	6	14
Total Dissolved Solids	mg/L				906	874	1110			1190	858	892	682	1110	1660	1210	1190	1020	826	714
Total Suspended Solids	mg/L				<10	<10	14			35	307	21	<10	13	96	44	19	21	80	<10
Ammonia as N	mg/L				<0.02	<0.02	<0.02			0.03	0.03	0.04	<0.02	<0.02	<0.02	0.03	0.08	<0.02	<0.02	<0.02
Nitrate as N	mg/L				2.1	2.3	1.1			<0.5	<0.25	0.71	3.02	0.70	<1.0	<0.5	<0.5	<0.5	<0.25	0.48
Nitrite as N	mg/L				<0.5	<0.5	<0.5			<0.5	<0.25	<0.25	<0.25	<0.5	<1.0	<0.5	<0.5	<0.5	<0.25	<0.25
Total Kjeldahl Nitrogen	mg/L				<0.10	0.3	0.56			0.69	0.38	0.27	0.38	0.28	1.28	0.64	0.61	0.69	0.42	0.28
Chloride	mg/L		180	120	<u>425</u>	<u>436</u>	<u>561</u>			<u>637</u>	<u>344</u>	<u>378</u>	223	<u>537</u>	<u>796</u>	<u>594</u>	<u>548</u>	<u>459</u>	<u>313</u>	<u>249</u>
Sulphate	mg/L				19	17.0	11.10			27.5	27.8	21.4	13.3	19.5	14.1	13.6	5.4	7.5	9.8	14.6
Phenols	mg/L	0.001	0.961	0.004	<0.001	<0.001	<0.001			0.002	0.002	<0.001	<0.001	<0.001	0.002	0.001	0.002	<0.001	<0.001	<0.001
Total Phosphorus	mg/L	0.03			<0.02	<0.02	0.06			0.11	0.22	0.06	0.04	<0.02	0.09	0.40	0.06	0.04	0.04	<0.10
рН	pH Units	6.5 - 8.5		6.5 - 9.0	7.92	7.91	7.93			7.97	8.00	7.92	7.88	7.88	7.90	8.09	7.99	8.23	7.94	8.12
Electrical Conductivity	uS/cm				1780	1770	2200			2520	1510	1630	1330	2680	3270	2050	1960	1970	1330	1420
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003	<0.003	0.004				<0.003		<0.003		<0.003	<0.003				
Barium	mg/L		2.3		0.062	0.061	0.074				0.045		0.047		0.082	0.084				
Boron	mg/L	0.2	3.55	1.5	<0.010	0.014	0.015				0.017		<0.010		0.018	0.013				
Cadmium	mg/L	0.0002	0.00021		<0.0001	<0.0001	<0.0001				<0.0001		<0.0001		<0.0001	<0.0001				
Chromium	mg/L	0.0089	0.064		0.005	<0.003	0.007				<0.003		<0.003		0.004	0.011				
Copper	mg/L	0.005	0.0069		0.003	0.004	0.003				0.012		0.005		0.004	0.013				
Iron	mg/L	0.3		0.3	0.11	0.04	0.26			0.49	0.49	0.19	0.455	0.419	1.23	5.88	0.48	0.338	1.77	0.319
Lead	mg/L	0.005	0.002		<0.001	<0.001	<0.001				0.001		<0.001		0.002	0.002				
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001	<0.0001	<0.0001				<0.0001		<0.0001		<0.0001	<0.0001				
Zinc	mg/L	0.03	0.089	0.03	<0.005	<0.005	0.009				0.006		<0.005		0.006	0.022				

- (1) PWQO Provincial Water Quality Objectives.
- (2) APV Aquatic Protection Value from Rationale for the Developme
- (3) CWQG Canadian Water Quality Guidelines.
- (4) Exceedences of the PWQO are indicated by **BOLD** entries.
- (5) Exceedences of the APV are indicated by <u>underlined</u> entries.
- (6) Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-4

Parameters			2					20)21						2022				2023	
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Mar	23-Apr	26-May	22-Jun	10-Aug	7-Sep	3-Oct	4-Nov	22-Apr	31-May	31-Aug	26-Sep	27-Oct	19-Jun	30-Aug	17-Oct
Alkalinity (as CaCO3)	mg/L												278	302	Insufficient	299	322	323	263	339
BOD (5)	mg/L												< 4	< 4	Volume	< 4	16	< 4	< 4	6
Chemical Oxygen Deman	mg/L				16	<5	<5	52	22	23	<5	<5	10	28		26	23	26	47	14
Total Dissolved Solids	mg/L				1100	1700	1430	1750	1020	1360	1060	982	1580	1250		1280	1070	2050	1120	923
Total Suspended Solids	mg/L				<10	<10	31	66	19	<10	<10	<10	30	8		6	1610	23	20	67
Ammonia as N	mg/L				0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.1	0.05		0.04	< 0.04	0.08	0.04	< 0.04
Nitrate as N	mg/L				<0.5	<1.0	<0.14	<0.14	<0.07	<0.14	<0.07	<0.07	0.21	< 0.06		< 0.06	< 0.06	< 0.06	< 0.006	0.02
Nitrite as N	mg/L				<0.5	<1.0	<0.11	<0.11	<0.05	<0.11	<0.05	<0.05	< 0.03	< 0.03		< 0.3	< 0.03	< 0.3	< 0.03	<0.03
Total Kjeldahl Nitrogen	mg/L				0.26	0.24	0.26	0.76	0.39	0.28	0.41	0.22	< 0.5	< 0.05		0.29	0.17	< 0.05	< 0.05	< 0.05
Chloride	mg/L		180	120	<u>520</u>	<u>764</u>	<u>671</u>	<u>747</u>	<u>444</u>	<u>647</u>	<u>511</u>	<u>419</u>	<u>740</u>	<u>580</u>		<u>550</u>	<u>480</u>	<u>1400</u>	<u>600</u>	<u>410</u>
Sulphate	mg/L				17.6	27.5	10.1	4.8	6.3	6.5	11.9	17.0	35	21		50	36	15	26	19
Phenols	mg/L	0.001	0.961	0.004	0.002	0.004	0.003	0.003	<0.001	0.006	0.026	0.028	< 0.001	< 0.001		0.007	0.002	0.003	0.003	0.003
Total Phosphorus	mg/L	0.03			0.05	<0.02	0.03	0.74	0.04	0.04	0.04	0.02	0.039	< 0.03		0.048	1.72	0.067	0.079	0.046
рН	pH Units	6.5 - 8.5		6.5 - 9.0	7.83	8.00	7.98	7.28	8.02	7.95	7.89	7.94	8.07	8.33		8.19	8.04	8.10	8.23	8.08
Electrical Conductivity	uS/cm				2040	2810	2640	3050	1920	2720	2010	1900	2860	2350		2420	2120	3580	2300	1830
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003				<0.003				0.0006					0.0012	0.001	0.0005
Barium	mg/L		2.3		0.075				0.041				0.108					0.0857	0.0554	0.0540
Boron	mg/L	0.2	3.55	1.5	<0.010				0.025				0.009					0.019	0.019	0.015
Cadmium	mg/L	0.0002	0.00021		<0.0001				<0.0001				0.000031					0.000010	0.000028	0.000022
Chromium	mg/L	0.0089	0.064		<0.003				<0.003				0.00243					0.00126	0.00189	0.00144
Copper	mg/L	0.005	0.0069		0.002				0.003				0.0047					0.0021	0.0173	0.0069
Iron	mg/L	0.3		0.3	0.213	0.07	0.35	14.8	0.41	0.805	0.434	0.469	1.24	0.211		0.617	50.4	0.845	1.23	0.92
Lead	mg/L	0.005	0.002		<0.001				<0.001				0.00077					0.00019	0.00138	0.00062
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001				<0.0001			_	< 0.00001					< 0.00001	0.00002	0.00006
Zinc	mg/L	0.03	0.089	0.03	0.006				<0.005				0.012					0.003	0.008	0.007

Notes

(1) PWQO - Provincial Water Quality Objectives.

(2) APV - Aquatic Protection Value from Rationale for the Developme

(3) CWQG - Canadian Water Quality Guidelines.

(4) Exceedences of the PWQO are indicated by **BOLD** entries.

(5) Exceedences of the APV are indicated by <u>underlined</u> entries.

(6) Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-5

Parameters	Huite	nua a 1	4 = 1 + 2	2002 23				20	17							20)18			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	1-May	6-Jun	17-Jul	17-Aug	19-Sep	18-Oct	17-Nov	18-Dec	1-May	31-May	3-Jul	2-Aug	31-Aug	1-Oct	31-Oct	30-Nov
Alkalinity (as CaCO3)	mg/L				101	111	112	107	40	158	189	Frozen	Frozen	139	72	29	85	110	Frozen	Frozen
BOD (5)	mg/L				<5	<5	<5	<5	<5	<5	<5			<5	<5	<5	<5	<5		
Chemical Oxygen Deman	mg/L																			
Total Dissolved Solids	mg/L				150	130	152	148	82	192	232			204	112	66	152	190		
Total Suspended Solids	mg/L				70	17	14	<10	13	23	30			102	48	11	16	15		
Ammonia as N	mg/L				0.02	<0.02	0.04	<0.02	0.06	0.05	0.05			<0.02	0.02	<0.02	<0.02	0.03		
Nitrate as N	mg/L				1.18	0.25	0.32	0.61	0.11	0.32	1.77			1.95	<0.05	0.06	<0.05	0.10		
Nitrite as N	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10			<0.05	<0.05	<0.05	<0.05	<0.05		
Total Kjeldahl Nitrogen	mg/L				0.42	0.42	0.48	0.80	0.90	0.50	0.77			0.48	0.41	0.36	0.37	0.78		
Chloride	mg/L		180	120	9.08	5.98	13.6	6.67	5.13	10.1	11.3			18.6	7.68	2.94	18.5	18.1		
Sulphate	mg/L				7.77	5.44	9.50	5.88	7.04	6.97	11.1			6.96	6.14	4.88	11.20	11.20		
Phenols	mg/L	0.001	0.961	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			0.001	<0.001	<0.001	0.001	<0.001		
Total Phosphorus	mg/L	0.03			0.06	0.06	0.08	0.04	0.09	0.06	0.07			0.13	0.07	0.04	0.11	0.08		
рН	pH Units	6.5 - 8.5		6.5 - 9.0	7.84	7.89	7.78	7.76	7.22	7.96	7.91			7.29	7.83	7.12	7.60	7.70		
Electrical Conductivity	uS/cm				248	258	271	243	112	321	366			314	195	87	253	316		
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003		<0.003								<0.003					
Barium	mg/L		2.3		0.024		0.017								0.026					
Boron	mg/L	0.2	3.55	1.5	<0.010		0.015								0.016					
Cadmium	mg/L	0.0002	0.00021		0.0001		<0.0001								<0.0001					
Chromium	mg/L	0.0089	0.064		<0.003		<0.003								<0.003					
Copper	mg/L	0.005	0.0069		0.003		0.002								0.005					
Iron	mg/L	0.3		0.3	0.70	0.49	0.25	0.24	0.21	0.39	0.37			1.17	0.8	0.24	0.47	0.34		
Lead	mg/L	0.005	0.002		<0.001		<0.001								0.001					
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001		<0.0001								<0.0001					
Zinc	mg/L	0.03	0.089	0.03	0.007		0.011								0.01					

⁽¹⁾ PWQO - Provincial Water Quality Objectives.

⁽²⁾ APV - Aquatic Protection Value from Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Site in Ontario, Table 3.1.

⁽³⁾ CWQG - Canadian Water Quality Guidelines.

⁽⁴⁾ Exceedences of the PWQO are indicated by **BOLD** entries.

⁽⁵⁾ Exceedences of the APV are indicated by <u>underlined</u> entries.

⁽⁶⁾ Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-5

Parameters		1	2	3				20	119							20	20			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Apr	26-May	26-Jun	25-Jul	25-Aug	24-Sep	23-Oct	22-Nov	6-Apr	6-May	5-Jun	6-Jul	11-Aug	8-Sep	2-Oct	6-Nov
Alkalinity (as CaCO3)	mg/L				Frozen	132	83	31	77	50	138	Frozen	Unsafe to	84	112	105	38	126	179	165
BOD (5)	mg/L					<5	<5	<5	<5	<5	<5		sample	<5	<5	<2	<2	3	2	<5
Chemical Oxygen Demand	mg/L																			
Total Dissolved Solids	mg/L					234	136	48	138	104	278			154	154	194	102	188	184	198
Total Suspended Solids	mg/L					62	26	20	560	20	66			94	24	25	12	20	42	29
Ammonia as N	mg/L					0.10	0.02	0.18	0.19	0.07	0.04			<0.02	<0.02	0.04	0.07	0.05	0.07	0.04
Nitrate as N	mg/L					0.78	0.24	0.05	<0.05	<0.05	1.4			0.50	0.49	0.31	0.12	0.22	0.99	1.12
Nitrite as N	mg/L					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	mg/L					0.49	0.44	0.55	1.30	0.57	0.44			0.47	0.63	0.47	0.30	0.49	0.67	0.52
Chloride	mg/L		180	120		7.61	8.07	2.36	8.42	8.89	24.2			5.09	9.98	16.7	3.71	20.3	13.0	8.18
Sulphate	mg/L					5.36	6.38	4.39	8.09	6.95	11.9			5.19	6.65	13.4	5.27	9.76	10.5	8.0
Phenols	mg/L	0.001	0.961	0.004		0.002	0.002	0.002	0.002	0.002	0.004			0.001	0.003	0.002	0.002	0.001	<0.001	<0.001
Total Phosphorus	mg/L	0.03				0.08	0.07	0.07	0.27	0.07	0.08			0.09	0.09	0.07	0.03	0.04	0.08	<0.10
рН	pH Units	6.5 - 8.5		6.5 - 9.0		7.51	7.37	7.50	7.19	7.08	7.68			7.83	7.51	7.70	7.56	8.22	7.22	7.91
Electrical Conductivity	uS/cm					244	195	95	195	159	343			239	306	267	103	314	306	355
Metals																				
Arsenic	mg/L	0.1	0.15	0.005		<0.003	<0.003	<0.003			<0.003				<0.003	<0.003				
Barium	mg/L		2.3			0.024	0.023	0.012			0.033				0.022	0.029				
Boron	mg/L	0.2	3.55	1.5		<0.010	<0.010	<0.010			0.013				0.011	<0.010				
Cadmium	mg/L	0.0002	0.00021			<0.0001	<0.0001	<0.0001			<0.0001				<0.0001	<0.0001				
Chromium	mg/L	0.0089	0.064			<0.003	<0.003	<0.003			<0.003				<0.003	0.004				
Copper	mg/L	0.005	0.0069			0.003	<0.002	0.003			0.0060				0.003	0.003				
Iron	mg/L	0.3		0.3		0.55	0.21	0.45	2.39	0.36	0.54			3.9	1.10	1.44	1.11	0.988	2.83	1.55
Lead	mg/L	0.005	0.002			<0.001	<0.001	<0.001			<0.001				<0.001	<0.001				
Dissolved Mercury	mg/L	0.0002	0.00077			<0.0001	<0.0001	<0.0001			<0.0001				<0.0001	<0.0001				
Zinc	mg/L	0.03	0.089	0.03		<0.005	0.009	<0.005			<0.005				<0.005	<0.005				

Notes

(1) PWQO - Provincial Water Quality Objectives.

(2) APV - Aquatic Protection Value from Rationale for the Developme

(3) CWQG - Canadian Water Quality Guidelines.

(4) Exceedences of the PWQO are indicated by **BOLD** entries.

(5) Exceedences of the APV are indicated by <u>underlined</u> entries.

(6) Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-5

Parameters	Umita	-w1	4 = 1/2	2002 23				20	21						2022				2023	
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Mar	23-Apr	26-May	22-Jun	10-Aug	7-Sep	3-Oct	4-Nov	22-Apr	31-May	31-Aug	26-Sep	27-Oct	19-Jun	30-Aug	17-Oct
Alkalinity (as CaCO3)	mg/L				Unsafe to	105	141	72	60	134	52	160	138	100	65	26	130	26	66	128
BOD (5)	mg/L				sample	11	4	<2	4	3	<2.00	2	< 4	< 4	< 4	< 4	< 4	< 4	< 4	5
Chemical Oxygen Deman	mg/L												16	26	20	25	21	19	30	37
Total Dissolved Solids	mg/L					144	198	88	120	176	86	182	257	206	106	66	194	66	149	217
Total Suspended Solids	mg/L					21	40	<10	47	22	<10	11	314	117	7	8	184	46	9	30
Ammonia as N	mg/L					0.02	<0.02	<0.02	0.1	0.05	<0.02	0.04	< 0.1	0.06	< 0.04	0.04	0.04	< 0.04	0.05	0.04
Nitrate as N	mg/L					0.48	0.11	0.26	0.27	<0.05	0.26	0.45	1.6	0.65	< 0.06	0.20	0.57	0.170	0.066	0.875
Nitrite as N	mg/L					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003	0.007
Total Kjeldahl Nitrogen	mg/L					0.34	2.26	0.32	0.36	0.43	0.34	0.39	< 0.5	0.24	0.16	0.25	0.33	0.14	0.28	0.47
Chloride	mg/L		180	120		8.1	13.7	8.45	4.27	7.81	2.7	11.7	51	17	13	5	18	6	17	12
Sulphate	mg/L					5.64	9.39	5.4	5.20	7.56	5.0	8.4	10	9	11	6	15	7	9	14
Phenols	mg/L	0.001	0.961	0.004		0.002	0.001	<0.001	<0.001	0.002	<0.001	0.005	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	0.002
Total Phosphorus	mg/L	0.03				0.04	0.16	0.06	0.07	0.09	0.03	0.04	0.215	0.08	0.04	0.033	0.043	0.061	0.030	0.057
рН	pH Units	6.5 - 8.5		6.5 - 9.0		8.00	7.98	6.82	7.44	7.63	7.47	7.87	8.02	8.08	7.78	7.51	8.05	7.56	8.04	7.86
Electrical Conductivity	uS/cm					239	330	144	150	282	93	335	403	239	190	77	322	75	193	288
Metals																				
Arsenic	mg/L	0.1	0.15	0.005					<0.003				0.0013		0.0011			0.0013	0.0011	0.0008
Barium	mg/L		2.3						0.027				0.108		0.0188			0.0287	0.0181	0.0308
Boron	mg/L	0.2	3.55	1.5					0.010				0.013		0.012			0.007	0.012	0.013
Cadmium	mg/L	0.0002	0.00021						<0.0001				0.00007		0.000018			0.000035	0.000014	0.000016
Chromium	mg/L	0.0089	0.064						0.005				0.0216		0.00128			0.00633	0.00124	0.00411
Copper	mg/L	0.005	0.0069						0.004				<u>0.0111</u>		0.0023			0.0070	0.0032	0.0041
Iron	mg/L	0.3		0.3		1.4	0.94	1.17	2.05	0.687	0.626	0.765	8.06	4.63	0.578	0.896	1.06	2.66	0.495	1.60
Lead	mg/L	0.005	0.002						<0.001				0.00417		0.00035			0.00238	0.00043	0.00075
Dissolved Mercury	mg/L	0.0002	0.00077						<0.0001				0.00001		< 0.00001			< 0.00001	0.00001	< 0.00001
Zinc	mg/L	0.03	0.089	0.03					0.008				0.027		< 0.002			0.012	0.003	0.006

Notes

(1) PWQO - Provincial Water Quality Objectives.

(2) APV - Aquatic Protection Value from Rationale for the Developme

(3) CWQG - Canadian Water Quality Guidelines.

(4) Exceedences of the PWQO are indicated by **BOLD** entries.

(5) Exceedences of the APV are indicated by <u>underlined</u> entries.

(6) Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-6

Parameters		4	2	2				20	17							20	18			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	1-May	6-Jun	17-Jul	17-Aug	19-Sep	18-Oct	17-Nov	18-Dec	1-May	31-May	3-Jul	2-Aug	31-Aug	1-Oct	31-Oct	30-Nov
Alkalinity (as CaCO3)	mg/L				102	98	108	78	38	135	190	Frozen	Frozen	140	71	27	78	106	Frozen	Frozen
BOD (5)	mg/L				<5	<5	<5	<5	<5	<5	<5			<5	<5	<5	<5	<5		
Chemical Oxygen Demand	mg/L																			
Total Dissolved Solids	mg/L				140	146	152	108	76	162	242			192	92	70	142	184		
Total Suspended Solids	mg/L				40	11	17	11	11	20	49			81	26	<10	10	13		
Ammonia as N	mg/L				0.02	<0.02	0.02	0.02	0.10	<0.02	0.04			<0.02	0.03	<0.02	0.04	<0.02		
Nitrate as N	mg/L				1.09	0.24	0.31	0.39	0.12	0.24	1.82			1.99	<0.05	0.07	<0.05	0.10		
Nitrite as N	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05	<0.05	<0.05	<0.05		
Total Kjeldahl Nitrogen	mg/L				0.44	0.46	0.50	0.74	0.86	0.66	0.75			0.45	0.25	0.40	0.42	0.83		
Chloride	mg/L		180	120	8.54	5.14	11.8	5.07	5.10	7.86	10.9			9.06	2.92	2.34	15.8	15.8		
Sulphate	mg/L				7.51	16.9	9.09	5.56	7.12	6.72	11.0			6.67	4.32	4.77	10.40	13.60		
Phenols	mg/L	0.001	0.961	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			0.002	<0.001	<0.001	0.001	<0.001		
Total Phosphorus	mg/L	0.03			0.07	0.06	0.07	0.05	0.07	0.10	0.07			0.12	0.05	0.04	0.07	0.08		
рН	pH Units	6.5 - 8.5		6.5 - 9.0	8.01	8.05	8.01	7.91	7.58	8.02	7.89			7.38	7.80	7.32	7.76	7.79		
Electrical Conductivity	uS/cm				249	256	258	183	111	275	363			286	166	81	237	306		
Metals																				
Arsenic	mg/L	0.1	0.15	0.005	<0.003		<0.003								<0.003					
Barium	mg/L		2.3		0.022		0.015								0.015					
Boron	mg/L	0.2	3.55	1.5	<0.010		0.011								<0.010					
Cadmium	mg/L	0.0002	0.00021		<0.0001		<0.0001								<0.0001					
Chromium	mg/L	0.0089	0.064		<0.003		0.004								<0.003					
Copper	mg/L	0.005	0.0069		0.003		0.002								0.003					
Iron	mg/L	0.3		0.3	0.71	0.42	0.24	0.21	0.21	0.41	0.53			0.96	0.39	0.29	0.37	0.35		
Lead	mg/L	0.005	0.002		<0.001		<0.001								<0.001					
Dissolved Mercury	mg/L	0.0002	0.00077		<0.0001		<0.0001								<0.0001					
Zinc	mg/L	0.03	0.089	0.03	<0.005		0.007								0.008					

⁽¹⁾ PWQO - Provincial Water Quality Objectives.

⁽²⁾ APV - Aquatic Protection Value from Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Site in Ontario, Table 3.1.

⁽³⁾ CWQG - Canadian Water Quality Guidelines.

⁽⁴⁾ Exceedences of the PWQO are indicated by **BOLD** entries.

⁽⁵⁾ Exceedences of the APV are indicated by <u>underlined</u> entries.

⁽⁶⁾ Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-6

Parameters		1	2	3				20	19							20)20			
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Apr	26-May	26-Jun	25-Jul	25-Aug	24-Sep	23-Oct	22-Nov	6-Apr	6-May	5-Jun	6-Jul	11-Aug	8-Sep	2-Oct	6-Nov
Alkalinity (as CaCO3)	mg/L				Frozen	135	83	28	72	48	132	Frozen	Unsafe to	87	108	96	35	123	179	164
BOD (5)	mg/L					<5	<5	<5	<5	<5	<5		sample	<5	<5	<2	2	3	4	<5
Chemical Oxygen Deman	mg/L																			
Total Dissolved Solids	mg/L					160	134	64	108	98	214			132	152	168	80	172	176	214
Total Suspended Solids	mg/L					55	20	12	93	26	24			63	18	25	13	12	34	20
Ammonia as N	mg/L					0.07	0.05	0.16	0.13	0.03	0.04			0.04	<0.02	0.05	0.06	0.05	0.06	0.04
Nitrate as N	mg/L					0.76	0.3	0.05	<0.05	<0.05	1.39			0.53	0.47	0.43	0.12	0.18	0.99	1.09
Nitrite as N	mg/L					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	mg/L					<0.10	0.44	0.62	0.90	0.69	0.37			0.33	0.56	0.52	0.37	0.42	0.60	0.48
Chloride	mg/L		180	120		8.36	8.13	2.05	9.52	8.82	10.6			6.17	9.35	11.0	3.68	13.6	10.7	8.12
Sulphate	mg/L					5.36	6.49	4.51	7.98	7.43	11.0			5.56	6.35	17.80	5.09	9.40	10.4	7.77
Phenols	mg/L	0.001	0.961	0.004		0.002	0.002	0.002	0.002	0.002	0.004			0.001	0.003	0.005	0.001	0.001	<0.001	0.002
Total Phosphorus	mg/L	0.03				0.09	0.09	0.06	0.15	0.13	0.10			0.12	0.05	<0.02	0.24	0.03	0.08	<0.10
рН	pH Units	6.5 - 8.5		6.5 - 9.0		7.66	7.59	7.39	7.64	7.29	7.81			7.71	7.73	7.47	7.05	8.20	7.27	8.01
Electrical Conductivity	uS/cm					251	197	85	240	158	292			253	278	234	102	293	297	351
Metals																				
Arsenic	mg/L	0.1	0.15	0.005		<0.003	<0.003	<0.003			<0.003				<0.003	<0.003				
Barium	mg/L		2.3			0.027	0.026	0.010			0.031				0.020	0.035				
Boron	mg/L	0.2	3.55	1.5		<0.010	0.010	<0.010			0.013				<0.010	<0.010				
Cadmium	mg/L	0.0002	0.00021			<0.0001	<0.0001	<0.0001			<0.0001				<0.0001	<0.0001				
Chromium	mg/L	0.0089	0.064			<0.003	<0.003	<0.003			<0.003				0.003	0.006				
Copper	mg/L	0.005	0.0069			0.004	<0.002	0.002			0.004				0.002	0.004				
Iron	mg/L	0.3		0.3		0.59	0.26	0.38	1.02	0.52	0.56			3.44	0.991	2.44	1.35	0.864	2.95	1.51
Lead	mg/L	0.005	0.002			<0.001	<0.001	<0.001			<0.001				<0.001	<0.001				
Dissolved Mercury	mg/L	0.0002	0.00077			<0.0001	<0.0001	<0.0001			<0.0001				<0.0001	<0.0001				
Zinc	mg/L	0.03	0.089	0.03		0.006	0.01	<0.005			<0.005				<0.005	0.007				

Notes

(1) PWQO - Provincial Water Quality Objectives.

(2) APV - Aquatic Protection Value from Rationale for the Developme

(3) CWQG - Canadian Water Quality Guidelines.

(4) Exceedences of the PWQO are indicated by **BOLD** entries.

(5) Exceedences of the APV are indicated by <u>underlined</u> entries.

(6) Exceedences of the CWQG are indicated by *italicized* entries.

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

Surface Water Geochemical Results SW-6

Parameters		1	2	3				20	21						2022				2023	
General Chemistry	Units	PWQO ¹	APV ²	CWQG ³	25-Mar	23-Apr	26-May	22-Jun	10-Aug	7-Sep	3-Oct	4-Nov	22-Apr	31-May	31-Aug	26-Sep	27-Oct	19-Jun	30-Aug	17-Oct
Alkalinity (as CaCO3)	mg/L				Unsafe to	107	141	80	58	128	46	118	145	99	61	26	127	26	62	130
BOD (5)	mg/L				sample	<2.00	3	2	3	4	<2.00	<2.00	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
Chemical Oxygen Deman	mg/L												13	30	21	24	25	23	26	42
Total Dissolved Solids	mg/L					142	190	148	114	166	80	148	231	149	91	66	177	77	120	< 30
Total Suspended Solids	mg/L					22	12	36	23	18	<10	10	112	72	10	7	19	42	11	31
Ammonia as N	mg/L					0.02	0.03	<0.02	0.18	0.03	<0.02	0.04	< 0.1	0.05	< 0.04	< 0.04	0.06	< 0.04	< 0.04	0.04
Nitrate as N	mg/L					0.49	0.16	0.16	0.28	0.05	0.25	0.39	1.55	0.72	< 0.06	0.21	0.58	0.180	0.067	0.902
Nitrite as N	mg/L					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.003	0.008
Total Kjeldahl Nitrogen	mg/L					0.41	0.36	0.34	0.30	0.29	0.36	0.32	< 0.5	0.27	0.17	0.22	0.60	0.25	0.32	0.28
Chloride	mg/L		180	120		7.9	13	5.3	8.67	7.74	2.42	7.32	19	15	12	3	17	3	13	11
Sulphate	mg/L					5.75	10.20	5.53	5.51	7.55	4.9	7.50	9	6	10	7	15	6	9	11
Phenols	mg/L	0.001	0.961	0.004		0.001	0.001	<0.001	<0.001	0.001	<0.001	0.002	< 0.001	0.001	< 0.001	0.002	0.002	< 0.001	0.002	0.001
Total Phosphorus	mg/L	0.03				0.04	0.05	0.16	0.04	0.07	0.04	0.04	0.195	0.06	0.031	0.041	0.037	0.047	0.031	0.051
рН	pH Units	6.5 - 8.5		6.5 - 9.0		7.94	8.09	6.67	7.59	7.49	7.30	7.70	8.05	7.97	7.76	7.53	8.06	7.58	7.99	7.92
Electrical Conductivity	uS/cm					244	327	153	154	281	88	252	304	236	177	74	318	72	170	290
Metals																				
Arsenic	mg/L	0.1	0.15	0.005					<0.003				0.0013		0.0011			0.0011	0.0011	0.0007
Barium	mg/L		2.3						0.021				0.0907		0.0179			0.0201	0.0174	0.0307
Boron	mg/L	0.2	3.55	1.5					<0.010				0.011		0.011			0.006	0.011	0.013
Cadmium	mg/L	0.0002	0.00021						<0.0001				0.000063		0.00001			0.000035	0.00001	0.000014
Chromium	mg/L	0.0089	0.064						0.003				0.0186		0.00154			0.00343	0.00135	0.00356
Copper	mg/L	0.005	0.0069						0.004				<u>0.0101</u>		0.0025			0.0041	0.0023	0.0040
Iron	mg/L	0.3		0.3		1.4	0.326	4.18	1.27	0.506	0.411	0.783	7.25	4.34	0.638	0.899	1.05	1.45	0.551	1.55
Lead	mg/L	0.005	0.002						<0.001				0.00365		0.00037			0.00076	0.00032	0.00082
Dissolved Mercury	mg/L	0.0002	0.00077						<0.0001				0.00001		0.00002			< 0.00001	0.00001	< 0.00001
Zinc	mg/L	0.03	0.089	0.03					<0.005				0.029		0.002			0.008	0.003	0.008

Notes

(1) PWQO - Provincial Water Quality Objectives.

(2) APV - Aquatic Protection Value from Rationale for the Developme

(3) CWQG - Canadian Water Quality Guidelines.

(4) Exceedences of the PWQO are indicated by **BOLD** entries.

(5) Exceedences of the APV are indicated by <u>underlined</u> entries.

(6) Exceedences of the CWQG are indicated by *italicized* entries.

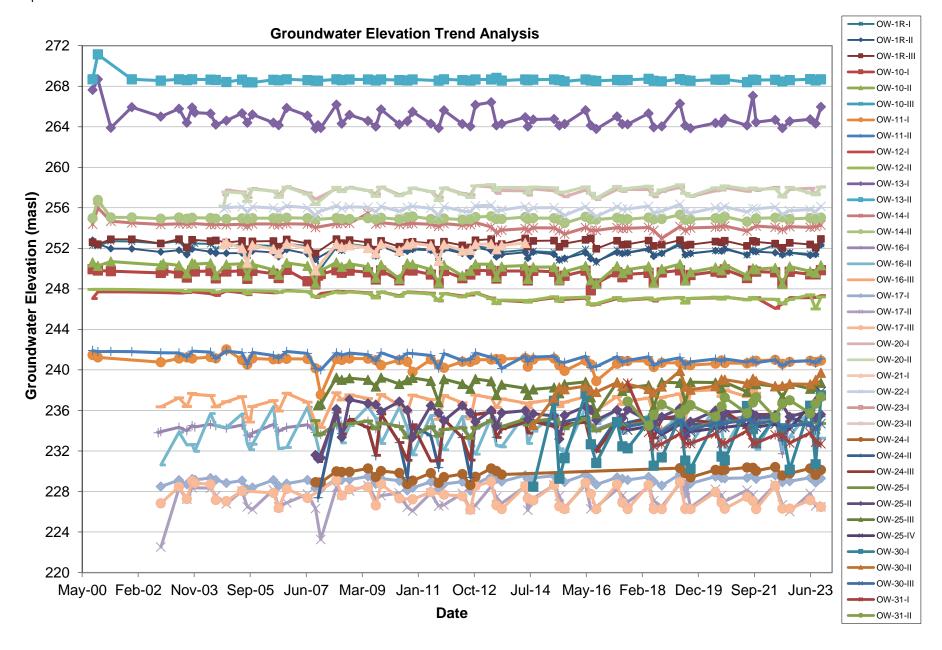
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

2023 Surface Water Duplicate Data

			Jun-23			Aug-23			Oct-23	
Parameters	Units	SW-5	NL SW DUP	Relative Percent Difference (%)	SW-1	NL SW DUP	Relative Percent Difference (%)	SW-4	NL SW DUP	Relative Percent Difference (%)
General Chemistry										
Alkalinity (as CaCO3)	mg/L	26	25	3.922	89	87	2.273	339	342	(0.881)
BOD (5)	mg/L	< 4	< 4	NC	< 4	< 4	NC	6	< 4	NC
Chemical Oxygen Demand	mg/L	19	38	(66.667)	24	25	(4.082)	14	22	(44.444)
Total Dissolved Solids	mg/L	66	83	(22.819)	137	34	120.468	923	900	2.523
Total Suspended Solids	mg/L	46	39	16.471	27	25	7.692	67	30	76.289
Ammonia as N	mg/L	< 0.04	0.04	NC	0.04	0.04	0.000	< 0.04	< 0.04	NC
Nitrate as N	mg/L	0.17	0.17	0.000	0.01	0.12	(166.154)	0.02	0.02	22.222
Nitrite as N	mg/L	< 0.03	< 0.03	NC	< 0.003	< 0.003	NC	<0.03	< 0.03	NC
Total Kjeldahl Nitrogen	mg/L	0.14	0.14	0.000	0.22	0.26	(16.667)	< 0.05	< 0.05	NC
Chloride	mg/L	6	5	18.182	9	9	0.000	410	420	(2.410)
Sulphate	mg/L	7	6	15.385	5	5	0.000	19	19	0.000
Phenols	mg/L	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC	0.003	0.004	(28.571)
Total Phosphorus	mg/L	0.061	0.05	19.820	0.035	0.03	22.222	0.046	0.05	(2.151)
рН	pH Units	7.56	7.67	(1.445)	8.03	8.02	0.125	8.08	8.07	0.124
Electrical Conductivity	uS/cm	75	77	(2.632)	198	216	(8.696)	1830	1840	(0.545)
Metals										
Arsenic	mg/L	0.0013	0.0012	8.000	0.001	0.0009	10.526	0.0005	0.0006	(18.182)
Barium	mg/L	0.0287	0.0228	22.913	0.018	0.0182	(1.105)	0.054	0.052	3.774
Boron	mg/L	0.007	0.006	15.385	0.008	0.008	0.000	0.015	0.014	6.897
Cadmium	mg/L	0.000035	0.000037	(5.556)	0.000011	0.000009	20.000	0.000022	0.000022	0.000
Chromium	mg/L	0.00633	0.00426	39.093	0.00193	0.00231	(17.925)	0.00144	0.002	(32.558)
Copper	mg/L	0.007	0.0048	37.288	0.0018	0.0018	0.000	0.0069	0.0047	37.931
Iron	mg/L	2.66	1.8	38.565	0.827	0.896	(8.009)	0.92	1.02	(10.309)
Lead	mg/L	0.00238	0.00172	32.195	0.00046	0.00046	0.000	0.00062	0.0005	21.429
Dissolved Mercury	mg/L	< 0.00001	< 0.00001	NC	0.00002	0.00001	66.667	0.00006	< 0.00001	NC
Zinc	mg/L	0.012	0.008	40.000	0.003	0.004	(28.571)	0.007	0.006	15.385

Notes:

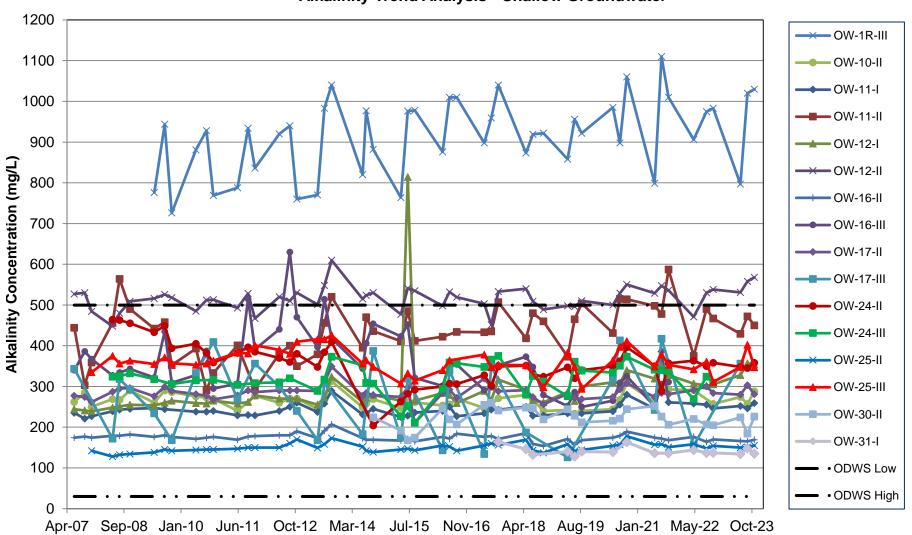
⁽¹⁾ NC - not calculable as one or both concentrations are below the laboratory method detection limit.


⁽²⁾ Relative percent differences execeeding 50% are presented as bold and shaded entries.

Appendix H

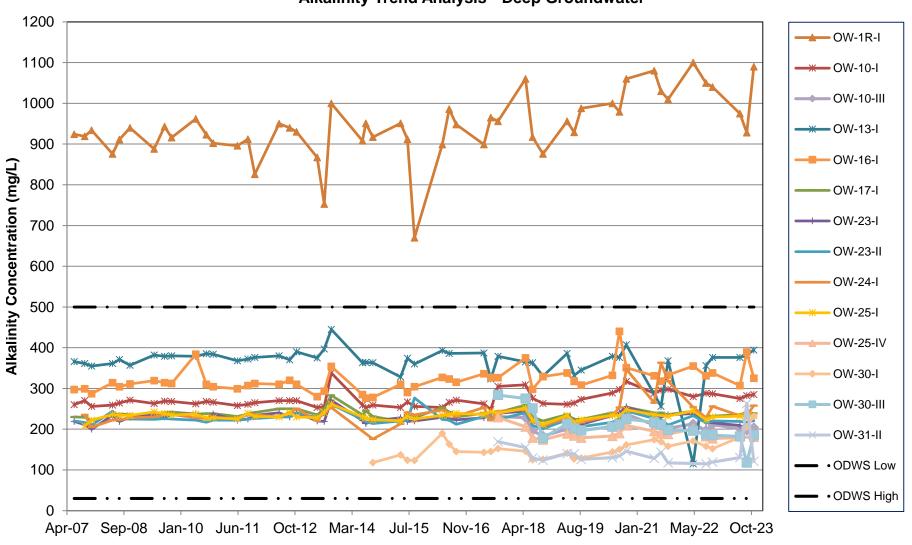
Trend Analysis

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024



2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

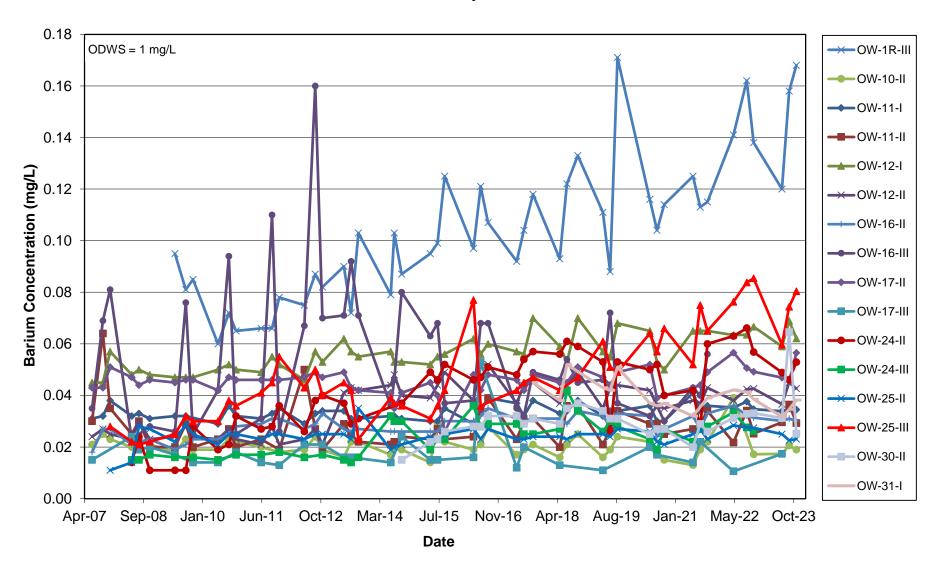
Alkalinity Trend Analysis - Shallow Groundwater



Date

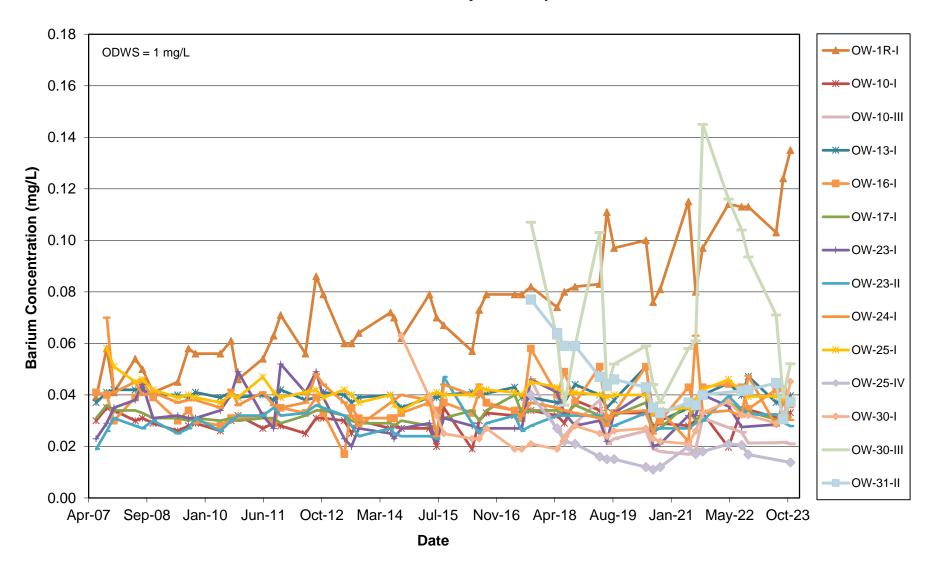
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Alkalinity Trend Analysis - Deep Groundwater

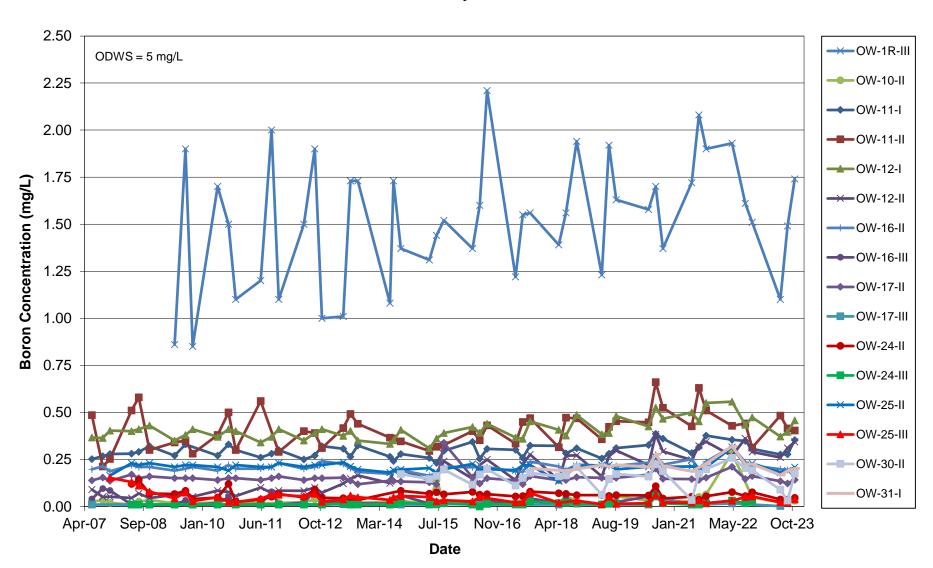


Date

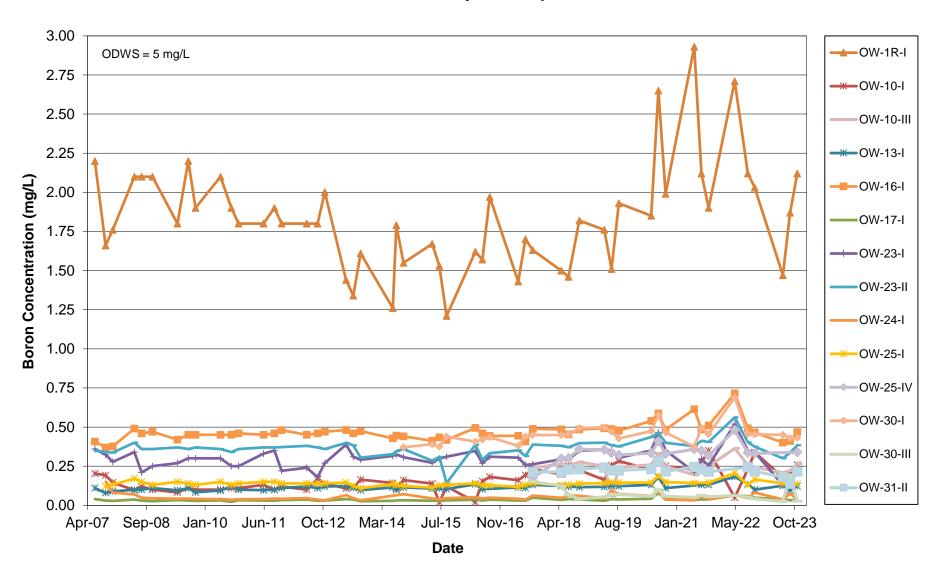
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Barium Trend Analysis - Shallow Groundwater

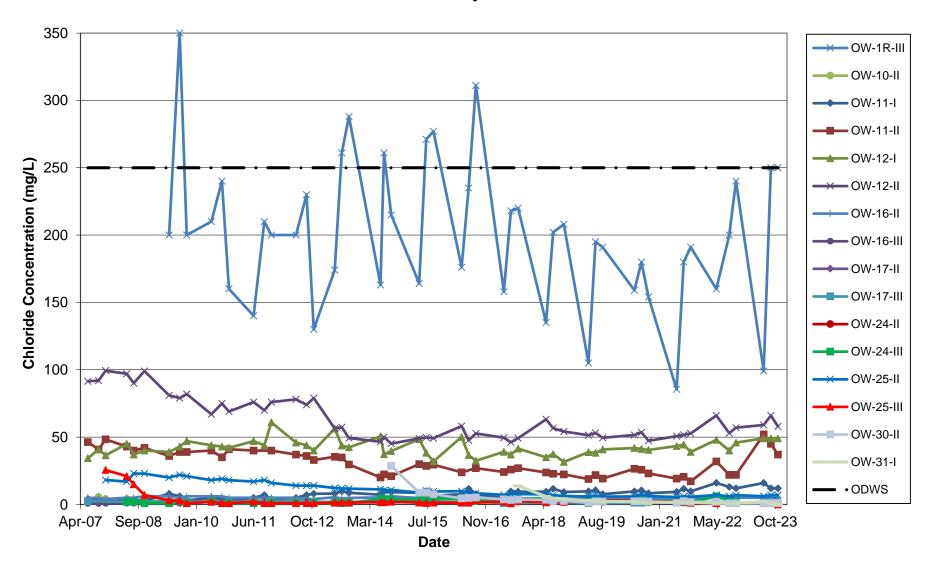
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Barium Trend Analysis - Deep Groundwater

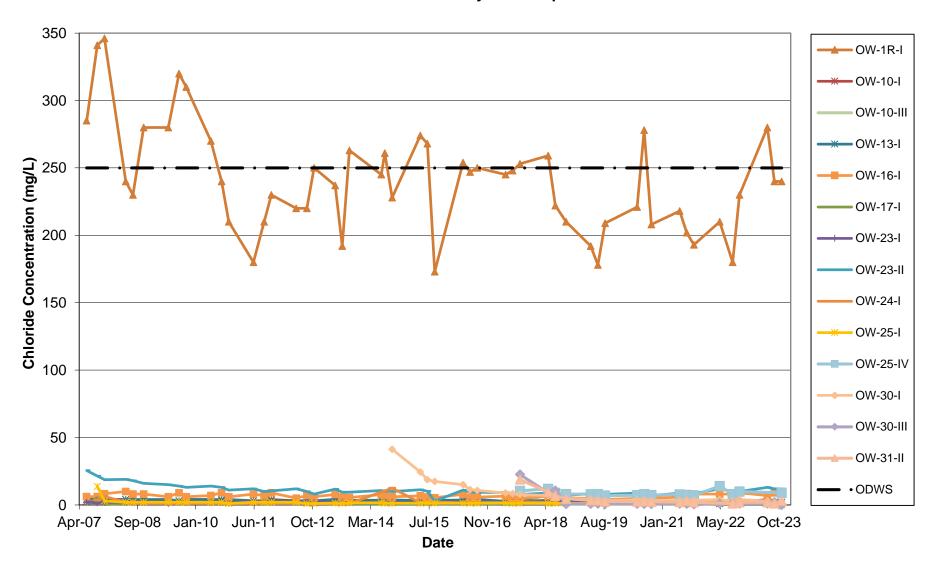
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Boron Trend Analysis - Shallow Groundwater

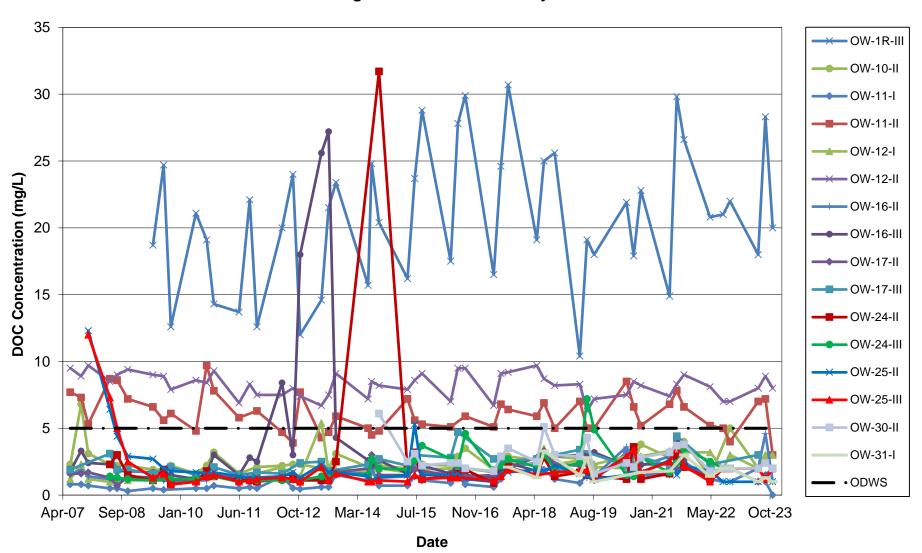
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Boron Trend Analysis - Deep Groundwater

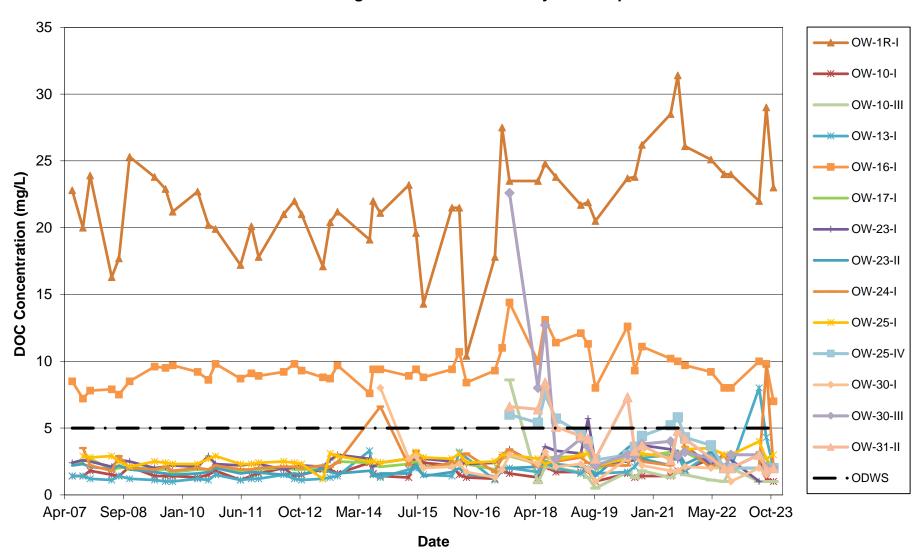
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Chloride Trend Analysis - Shallow Groundwater

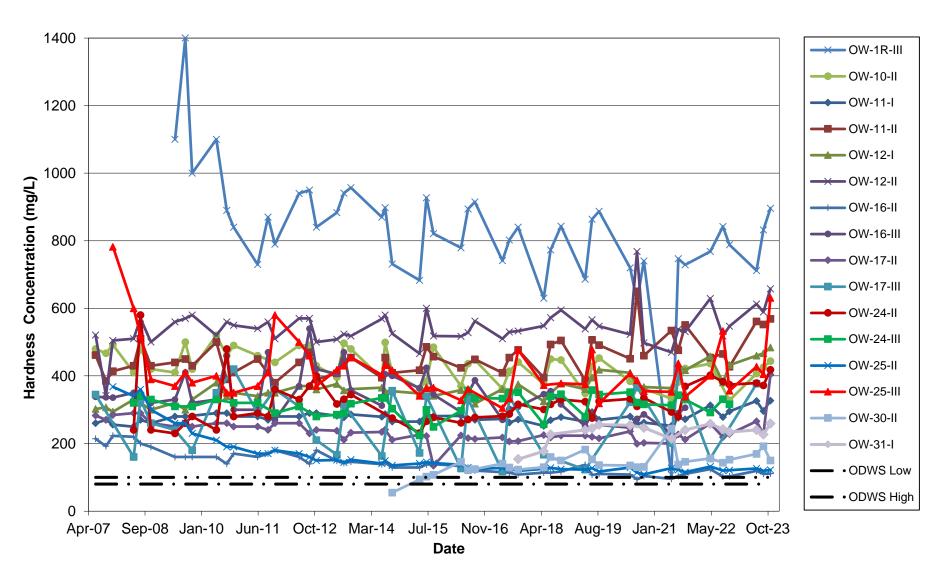
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Chloride Trend Analysis - Deep Groundwater

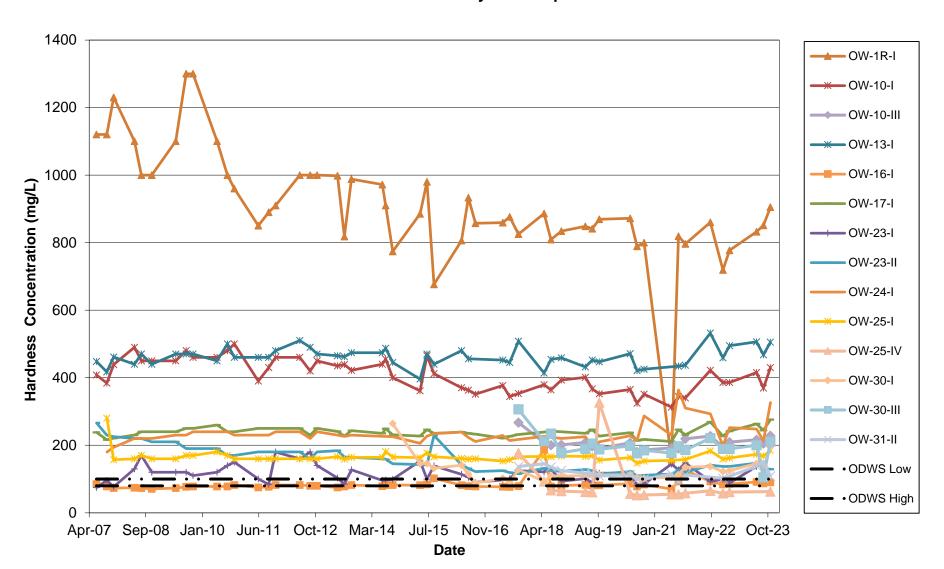
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Dissolved Organic Carbon Trend Analysis - Shallow Groundwater

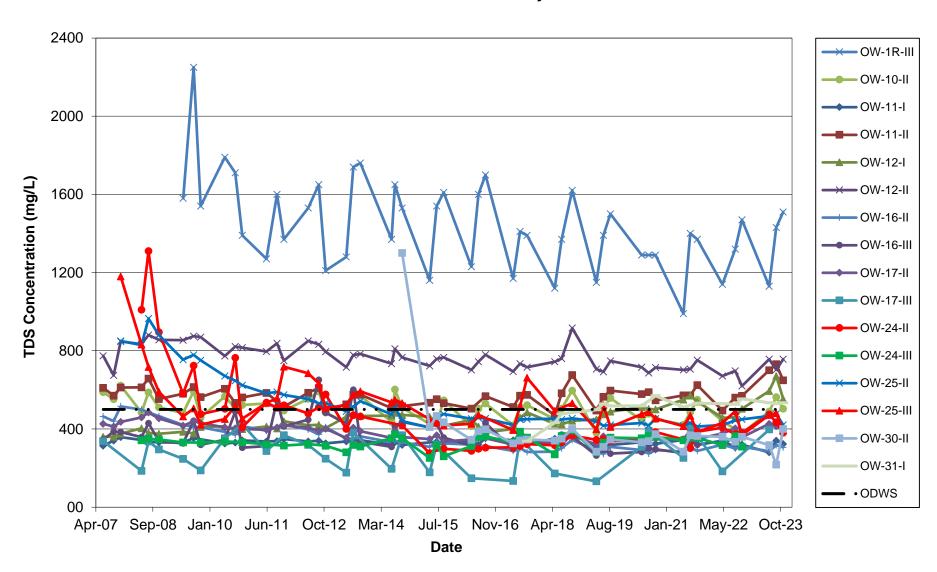
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Dissolved Organic Carbon Trend Analysis - Deep Groundwater

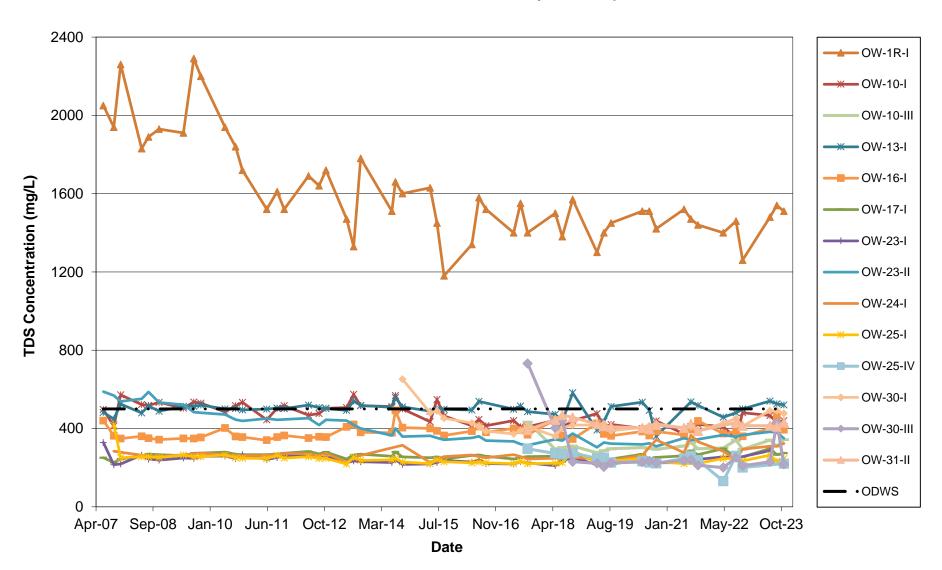
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Hardness Trend Analysis - Shallow Groundwater

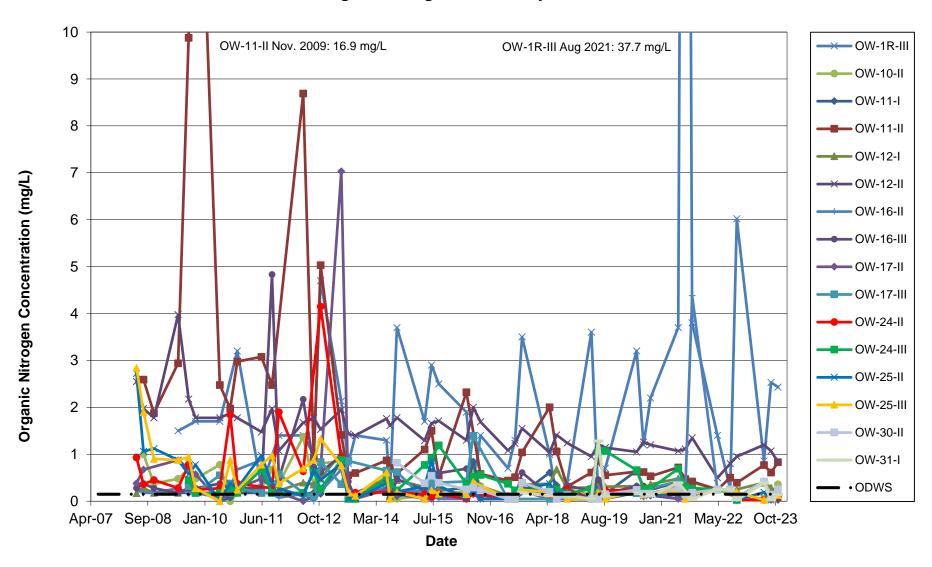
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Hardness Trend Analysis - Deep Groundwater

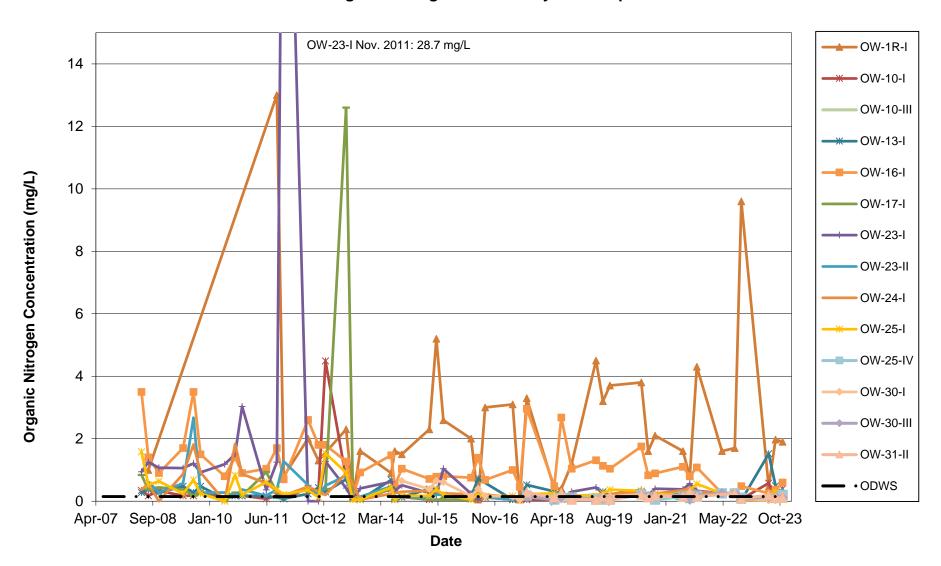
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Total Dissolved Solids Trend Analysis - Shallow Groundwater

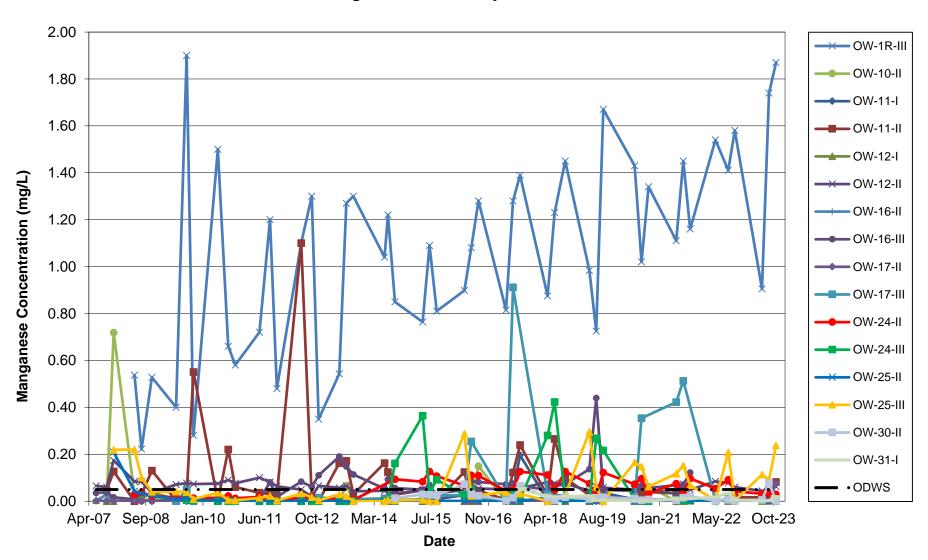
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Total Dissolved Solids Trend Analysis - Deep Groundwater

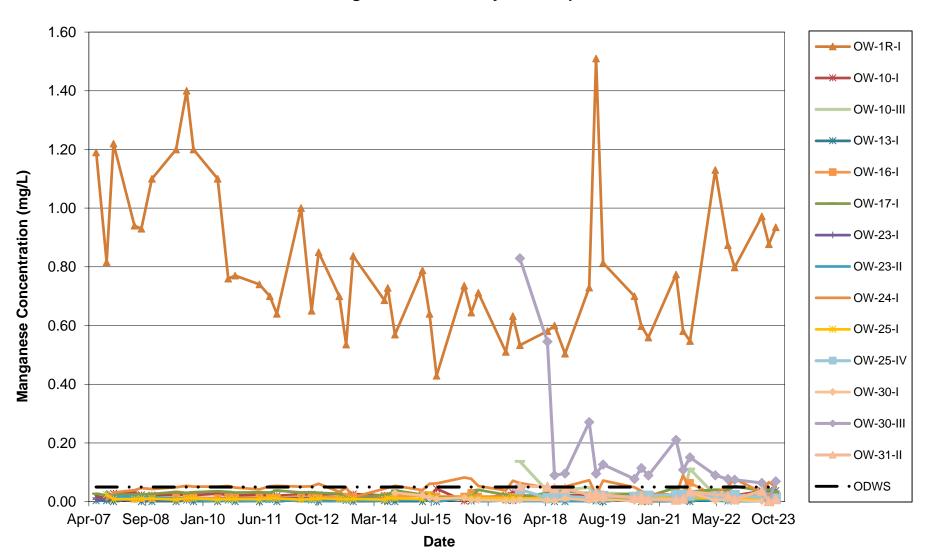
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Organic Nitrogen Trend Analysis - Shallow Groundwater

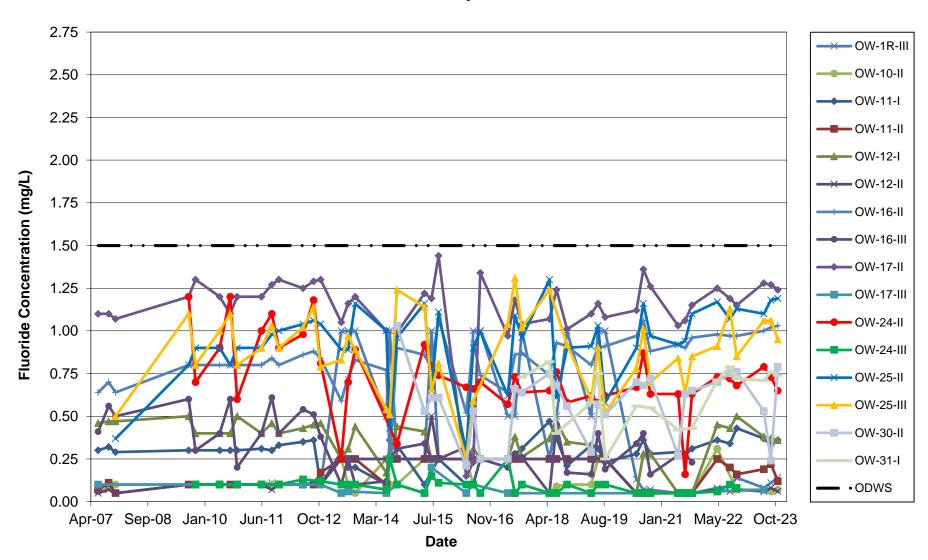
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Organic Nitrogen Trend Analysis - Deep Groundwater

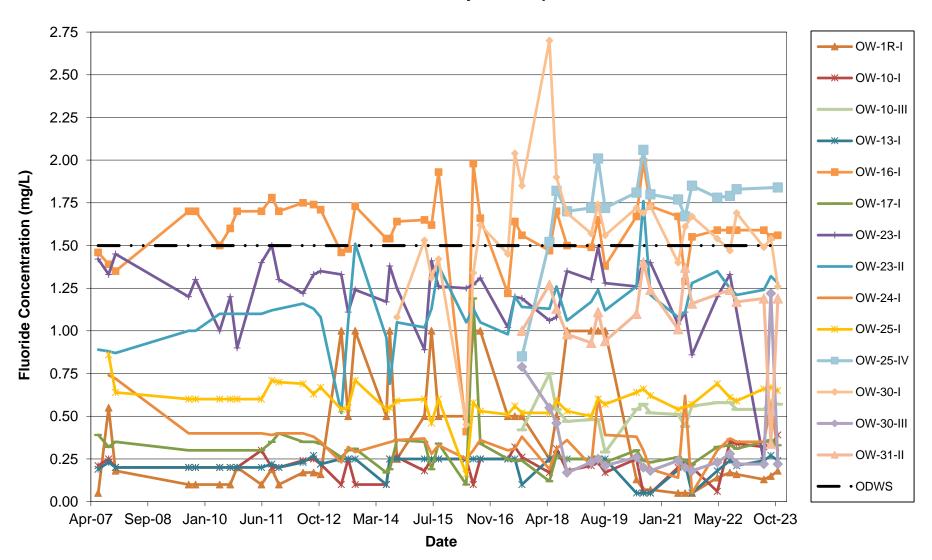
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Manganese Trend Analysis - Shallow Groundwater

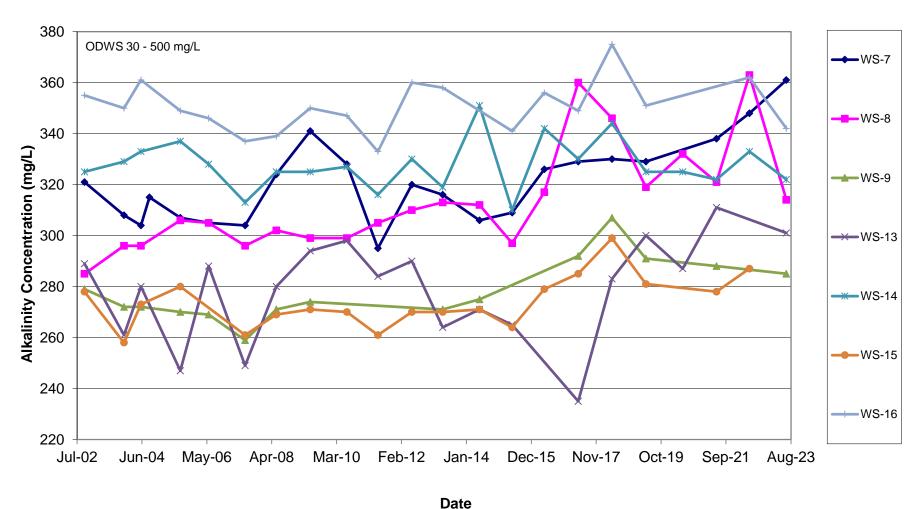
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Manganese Trend Analysis - Deep Groundwater

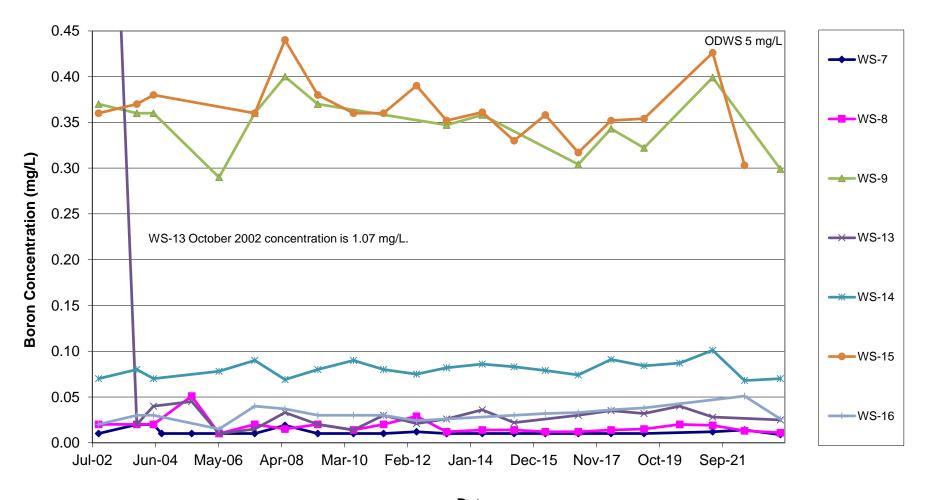
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


FluorideTrend Analysis - Shallow Groundwater

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

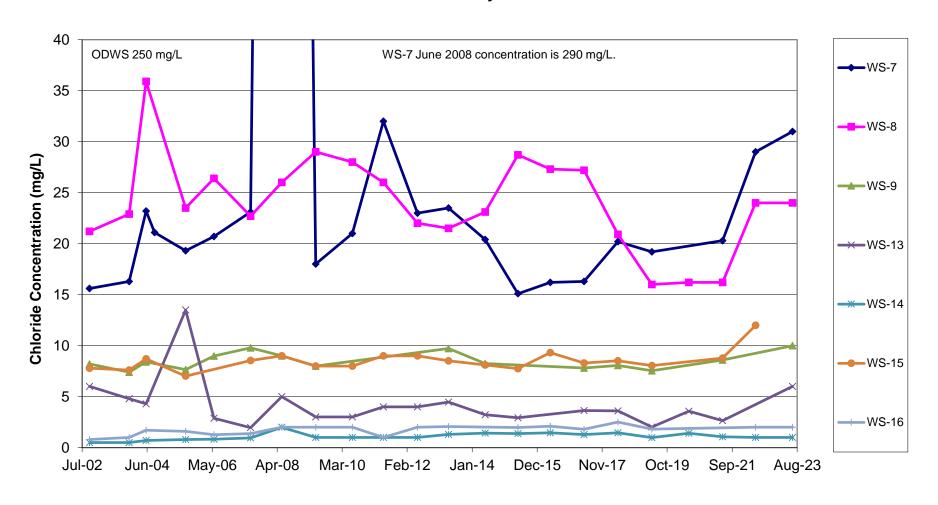

FluorideTrend Analysis - Deep Groundwater

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Alkalinity Trend Analysis - Resdiential Groundwater

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

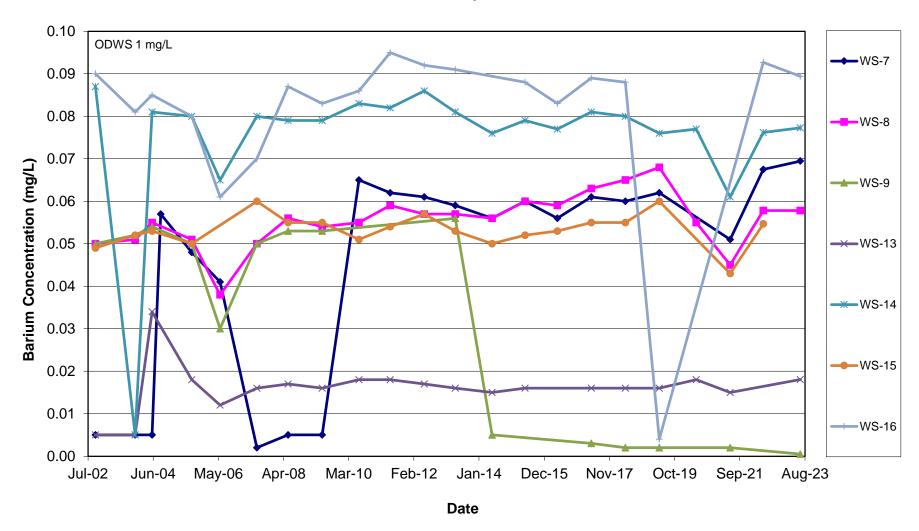
Boron Trend Analysis - Resdiential Groundwater



Date

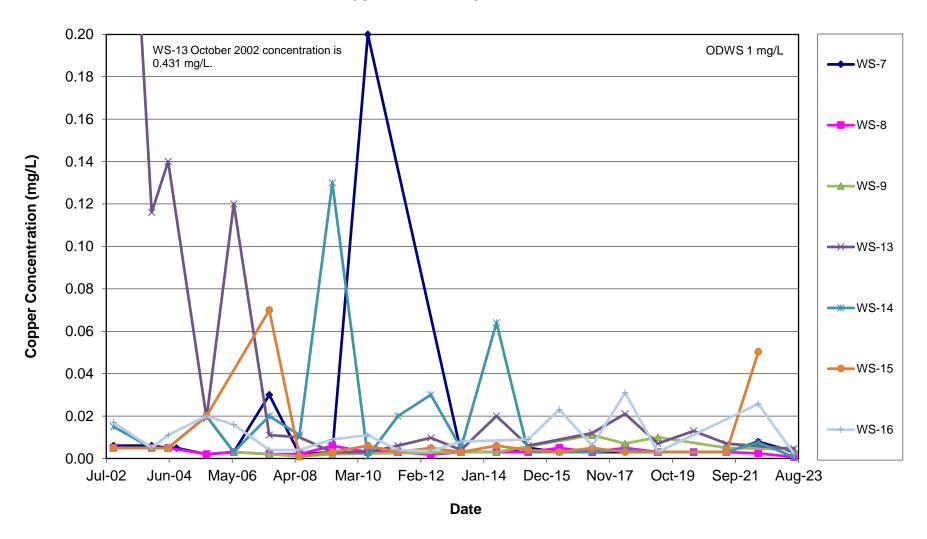
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

Chloride Trend Analysis - Resdiential Groundwater

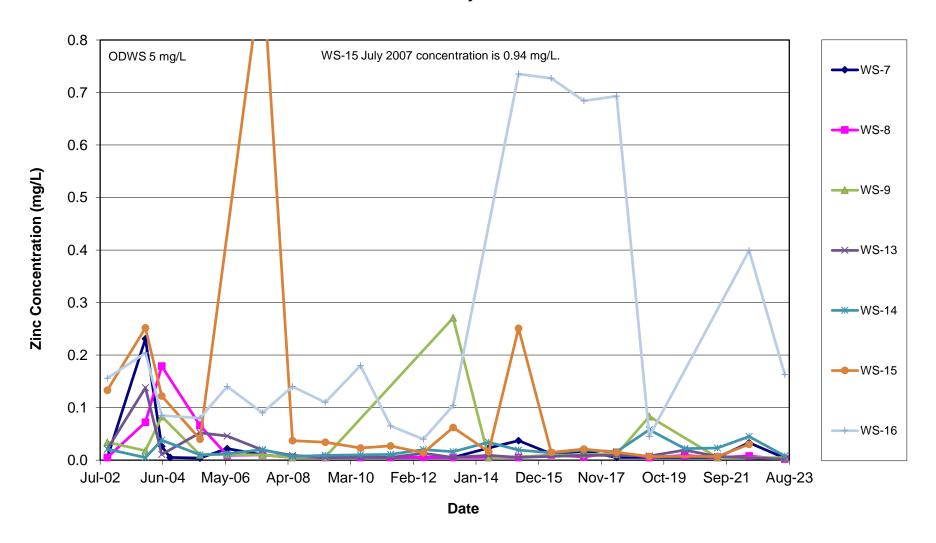


Date

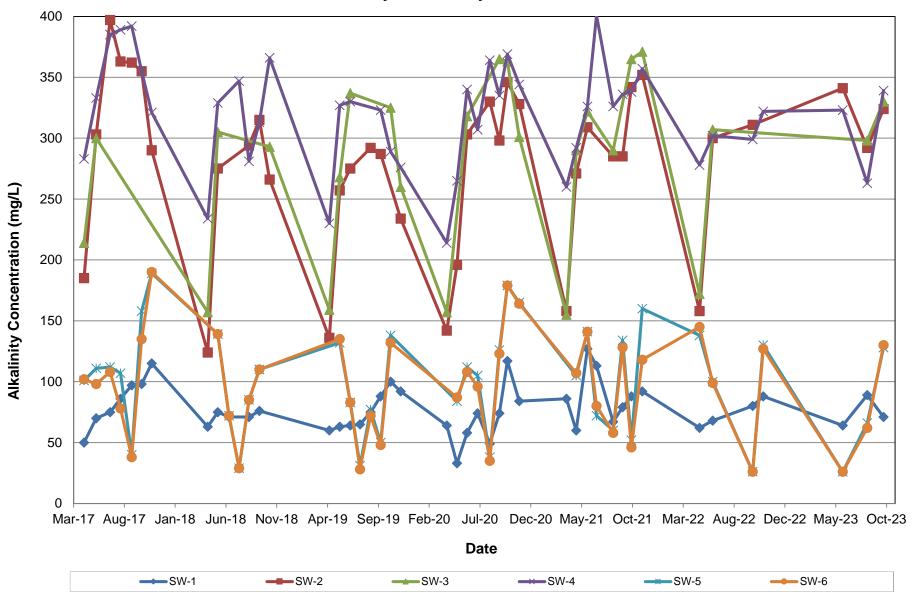
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Barium Trend Analysis - Resdiential Groundwater

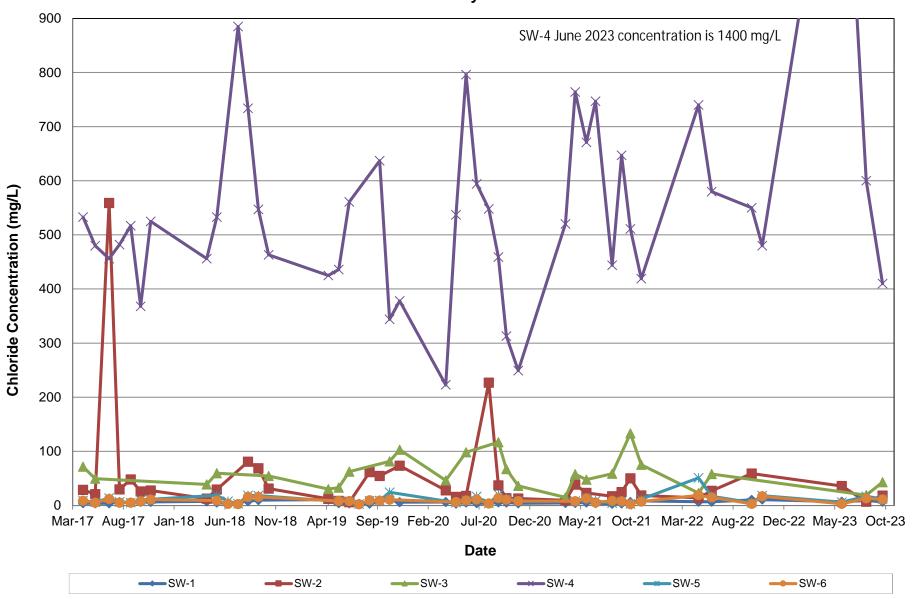
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Copper Trend Analysis - Resdiential Groundwater

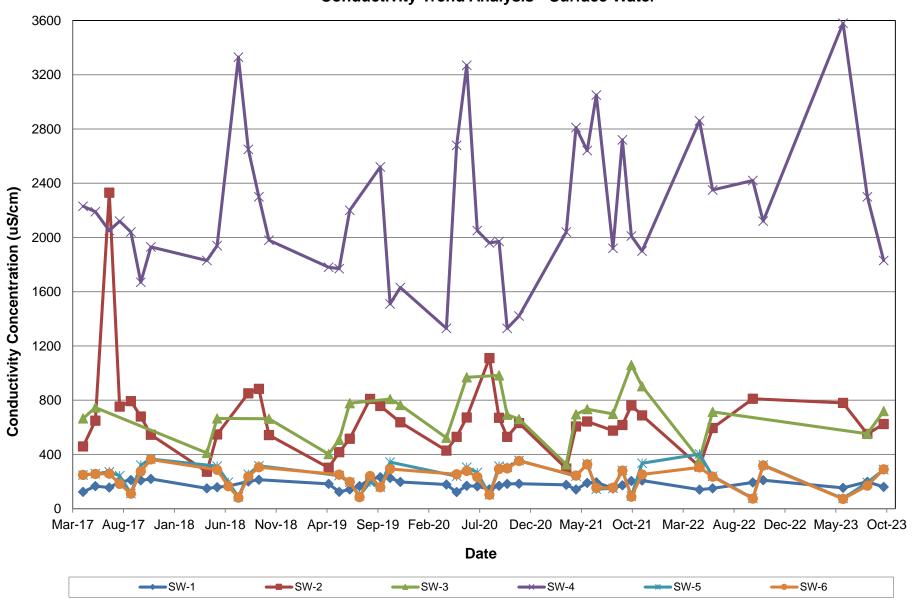
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024


Zinc Trend Analysis - Resdiential Groundwater

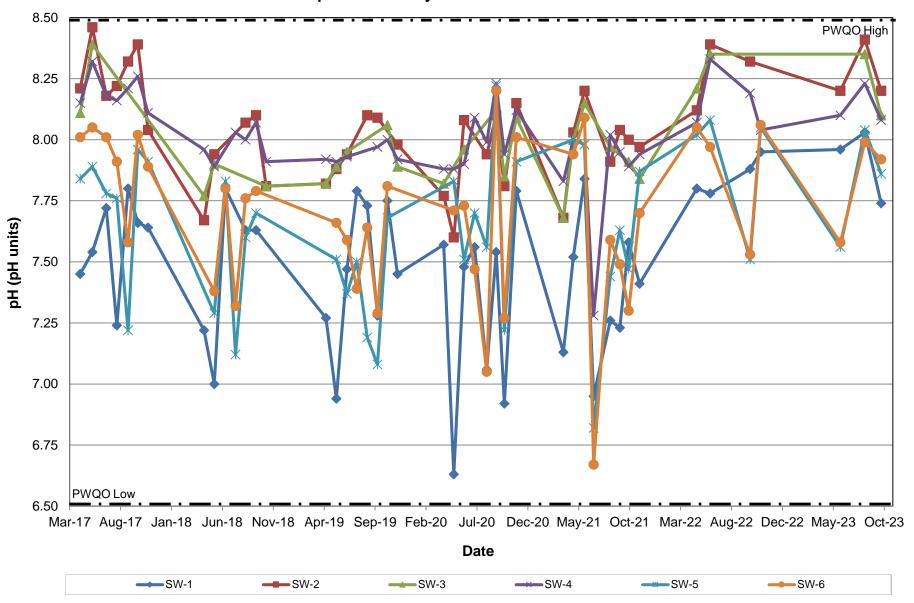
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024


Alkalinity Trend Analysis - Surface Water

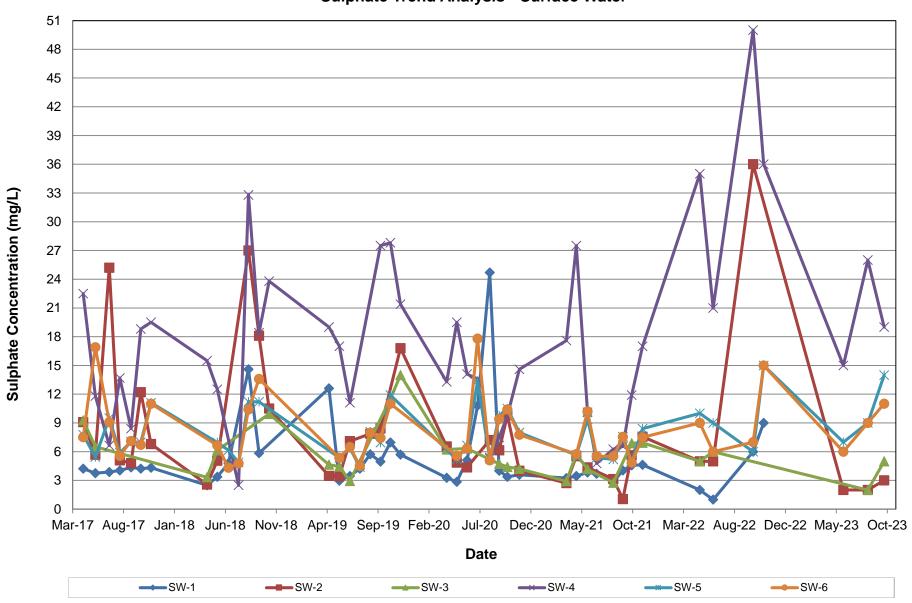
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024


Chloride Trend Analysis - Surface Water

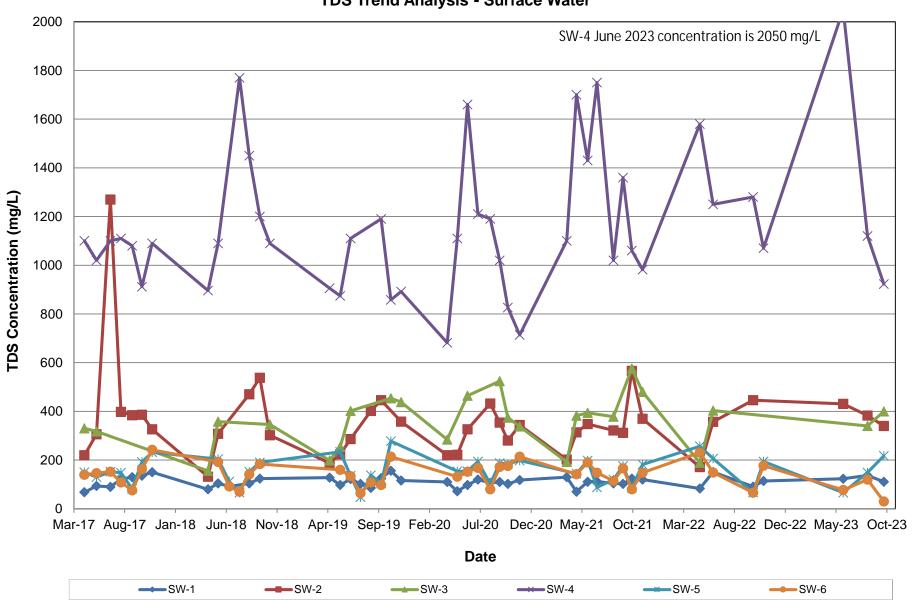
2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024


Conductivity Trend Analysis - Surface Water

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024


pH Trend Analysis - Surface Water

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

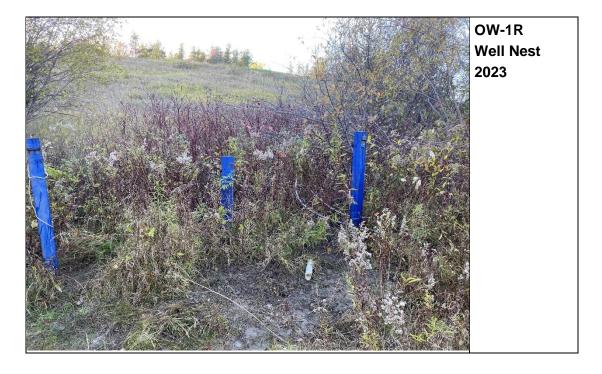

Sulphate Trend Analysis - Surface Water

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, ON April 2024

TDS Trend Analysis - Surface Water

Appendix I

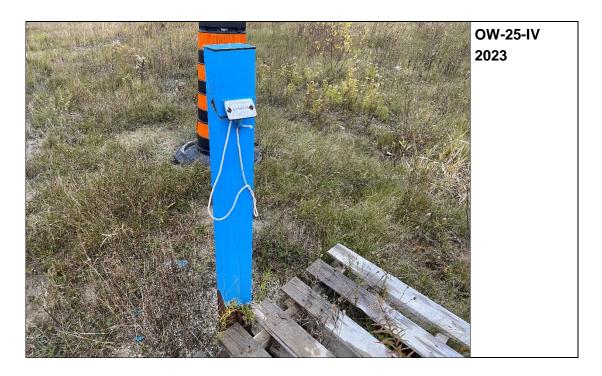
Photographic Inventory of Groundwater and Surface Water Monitoring Locations



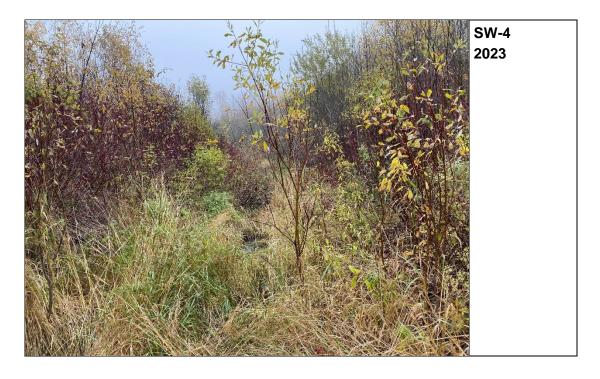
OW-12-II 2023

OW-12 **Well Nest** 2023

OW-20 **Well Nest** 2023



OW-25 **Well Nest** 2023



Appendix J

Field Parameter Measurements

2023 Groundwater **Field Chemistry Data**

Well ID	Date Sampled	Temp (°C)	рН	Conductivity (uS/cm)	TDS (mg/L)
OW-1R-I		11.7	6.77	2546	1273
OW-1R-III		14.0	6.83	1946	973
OW-10-I		7.6	7.64	766	383
OW-10-II		12.6	7.17	421	210
OW-10-III		10.8	7.64	572	286
OW-11-I		9.3	7.72	644	322
OW-11-II		15.9	7.28	1127	564
OW-12-I		8.9	7.46	935	468
OW-12-II		13.5	7.00	835	418
OW-13-I		13.3	7.23	521	261
OW-16-I		15.7	8.09	369	184
OW-16-II		14.7	7.86	328	164
OW-16-III			Dam	aged	
OW-17-I		7.9	7.64	509	255
OW-17-II	l 40 00 0000	8.6	7.89	678	339
OW-17-III	June 19-20, 2023	9.1	7.27	697	349
OW-23-I			Dest	royed	
OW-23-II		9.9	7.72	362.9	181
OW-24-I		10.1	7.83	515	258
OW-24-II		8.7	7.34	750	375
OW-24-III			Dam	aged	
OW-25-I		10.0	7.74	475	238
OW-25-II		15.0	8.65	740	370
OW-25-III		12.8	7.43	782	391
OW-25-IV			D	ry	
OW-30-I		10.0	8.02	408	204
OW-30-II		9.3	7.63	300	150
OW-30-III		9.4	7.16	203	102
OW-31-I		12.3	7.93	835	418
OW-31-II		13.8	676	338	

2023 Groundwater **Field Chemistry Data**

Well ID	Date Sampled	Temp (°C)	рН	Conductivity (uS/cm)	TDS (mg/L)			
OW-1R-I		18.9	7.28	2581	1291			
OW-1R-III		13.4	7.01	2413	1207			
OW-10-I		9.7	7.41	708	354			
OW-10-II		12.1	6.98	795	398			
OW-10-III		11.2	7.56	573	287			
OW-11-I		11.9	7.7	623.0	312			
OW-11-II		15.5	7.13	1121	561			
OW-12-I	,	11.3	7.53	951	476			
OW-12-II		15.0	7.00	1280	640			
OW-13-I		8.9	6.37	571.0	286			
OW-16-I		6.9	8.17	601	301			
OW-16-II		10.6	8.17	538	269			
OW-16-III			Dam	aged				
OW-17-I		7.7	6.96	291	146			
OW-17-II	A	8.9	7.09	409	205			
OW-17-III	August 28-30, 2023							
OW-23-I			Dest	royed				
OW-23-II		10.55	8.16	392	196			
OW-24-I		8.7	7.67	526	263			
OW-24-II		9.7	7.71	767	384			
OW-24-III			Dam	aged				
OW-25-I		9.1	7.7	462.0	231			
OW-25-II		10.3	7.84	735	368			
OW-25-III		14.4	7.27	786	393			
OW-25-IV		Dry						
OW-30-I			8.9	7.93	734	367		
OW-30-II			1		9.8	7.9	599	300
OW-30-III			10.3	7.3	412.0	206		
OW-31-I		13.4	7.7	791.0	396			
OW-31-II		9.0	7.8	688.0	344			

2023 Groundwater **Field Chemistry Data**

Well ID	Date Sampled	Temp (°C)	рН	Conductivity (uS/cm)	TDS (mg/L)		
OW-1R-I		8.9	6.08	2720	1360		
OW-1R-III		11.7	6.14	2550	1275		
OW-10-I		10.6	6.97	721	361		
OW-10-II		12.9	6.66	775	388		
OW-10-III		9.1	7.08	578	289		
OW-11-I		10.8	7.86	595	298		
OW-11-II		11.3	7.1	1110	555		
OW-12-I		12.0	8.06	916	458		
OW-12-II		12.4	7.42	1350	675		
OW-13-I		10.0	7.24	856	428		
OW-16-I		9.3	7.86	585	293		
OW-16-II		9.8	8.02	511	256		
OW-16-III			Dam	aged			
OW-17-I		6.7	7.76	457	229		
OW-17-II	Ostabar 40 40 2022	8.0	7.93	603	302		
OW-17-III	October 16-18, 2023						
OW-23-I			Dest	royed			
OW-23-II		7.4	7.3	599	300		
OW-24-I		9.3	8.07	506	253		
OW-24-II		9.3	7.65	720	360		
OW-24-III			Dam	aged			
OW-25-I		10.0	8.09	429	215		
OW-25-II		10.3	7.72	718	359		
OW-25-III		12.7	7.82	641	321		
OW-25-IV	-	9.9	7.16	399	200		
OW-30-I		10.2	7.50	738	369		
OW-30-II		10.0	7.81	578	289		
OW-30-III		9.0	195				
OW-31-I			Insufficient volume	e for field chemistry			
OW-31-II		9.3	7.58	658 329			

The City of Temiskaming Shores

2023 Annual Groundwater and Surface Water Monitoring Report New Liskeard Waste Disposal Site New Liskeard, Ontario April 2024

2023 Surface Water Field Chemistry Data

Station ID	Date Sampled	Temp (°C)	рН	Conductivity (uS/cm)	Dissolved Oxygen (%)	Flow Rate (m³/sec)
SW-1		23.4	7.51	124.4	5.72	N/A
SW-2		16.9	6.66	5953	0.29	No Measurable Flow
SW-3	19-Jun-23			Dry		
SW-4	19-Jun-23	19.8	7.72	1775	6.23	N/A
SW-5		24.7	8.37	63.3	0.06	N/A
SW-6		24.9	8.48	64.2	11.4	N/A
SW-1		16.12	7.24	264	4.84	N/A
SW-2		15.27	7.7	373	5.77	0.0057
SW-3	20 Aug 22	15.11	8.01	422	14.21	0.0029
SW-4	30-Aug-23	13.3	7.66	1705	7.98	0.0046
SW-5		19.01	8.14	70	6.48	N/A
SW-6		19.43	8.37	81	7.4	N/A
SW-1		8.3	8.42	167	74.4	N/A
SW-2		6.6	7.81	648	67.9	0.0061
SW-3	47.0 -1.00	6.6	7.8	756.0	66.3	0.0075
SW-4	17-Oct-23	7.5	6.6	1091.0	66.2	0.0013
SW-5		9.7	7.63	293	56.5	NA
SW-6		11.0	8.07	305	60	N/A

Appendix K

Piper Plot Tables

Groundwater Ionic Balance and Piper Plot Data - June 2023

Raw Data (mg/L)	OW-1R-I	OW-1R-III	OW-10-I	OW-10-II	OW-10-III	OW-25-I	OW-25-II	OW-25-III	OW-16-I	OW-16-II	OW-24-I	OW-24-II	OW-17-I	OW-17-II	OW-30-I	OW-30-II	OW-30-III	OW-31-I	OW-31-II
Ca	155	176	110	127	54.5	39.5	26.0	104.0	17.2	24.7	68.7	88.1	72.0	51.9	24.9	37.0	54.3	45.2	45.2
Mg	108	66.1	33.9	22.0	19.3	18.1	14.9	40.6	11.7	13.9	18.5	38.6	20.1	33.2	20.2	18.5	15.5	31.0	31.0
Na	181	96	4.67	1.96	36.7	31.9	103	15.3	104	69.9	8.07	15.7	4.12	58.8	107	50.6	4.7	76.4	76.4
К	127	79	5.67	1.09	6.03	3.99	7.72	4.21	4.75	7.59	2.53	5.19	3.46	4.73	7.22	5.24	3.20	9.26	9.26
CI	280	99	4.00	1.00	1.00	1.00	6.00	1.00	7.00	5.00	1.00	3.00	1.00	4.00	3.00	1.00	1.00	2.00	2.00
SO4	98	91	110.0	110	81.0	3.00	200	65	2.00	82.0	24.0	37.0	18.0	72.0	180	55.0	19.0	280	280
ALK	975	797	275	274	201	232	150	348	307	166	233	348	236	280	180	224	182	134	134
рН	7.84	7.85	8.13	8.09	8.14	8.22	8.19	7.99	8.22	8.24	8.09	8.10	8.17	8.24	8.35	8.17	7.90	8.10	8.10
Ion Balance D	ata and Piper	r Plot (%)																	
Cations:	27.74	20.42	8.63	8.26	6.06	4.95	7.20	9.30	6.47	5.61	5.37	8.39	5.51	8.00	7.74	5.70	4.27	8.37	8.37
Anions:	29.42	20.61	7.90	7.79	5.73	4.72	7.33	8.33	6.37	5.16	5.18	7.81	5.12	7.21	7.43	5.65	4.06	8.56	8.56
CBE (%):	-2.93	-0.47	4.42	2.92	2.79	2.33	-0.88	5.50	0.74	4.15	1.74	3.58	3.74	5.23	2.09	0.49	2.55	-1.16	-1.16
Mg:	32.0	26.6	32.3	21.9	26.2	30.1	17.0	35.9	14.9	20.4	28.4	37.9	30.0	34.1	21.5	26.7	29.9	30.5	30.5
Ca:	27.9	43.0	63.6	76.7	44.9	39.8	18.0	55.8	13.3	22.0	63.9	52.4	65.2	32.4	16.0	32.4	63.4	27.0	27.0
Na+K:	40.1	30.4	4.0	1.4	28.9	30.1	65.0	8.3	71.8	57.6	7.7	9.7	4.9	33.5	62.5	40.9	6.7	42.6	42.6
CI:	26.8	13.5	1.4	0.4	0.5	0.6	2.3	0.3	3.1	2.7	0.5	1.1	0.6	1.6	1.1	0.5	0.7	0.7	0.7
SO4:	6.9	9.2	29.0	29.4	29.4	1.3	56.8	16.2	0.7	33.1	9.6	9.9	7.3	20.8	50.5	20.3	9.7	68.1	68.1
HCO3+CO3:	66.2	77.3	69.6	70.2	70.1	98.1	40.9	83.4	96.2	64.2	89.8	89.0	92.1	77.6	48.4	79.2	89.6	31.3	31.3

Groundwater Ionic Balance and Piper Plot Data - August 2023

Raw Data (mg/L)	OW-1R-I	OW-1R-III	OW-10-I	OW-10-II	OW-10-III	OW-25-I	OW-25-II	OW-25-III	OW-16-I	OW-16-II	OW-24-I	OW-24-II	OW-17-I	OW-17-II	OW-30-I	OW-30-II	OW-30-III	OW-31-I	OW-31-II
Са	147	166	95	130	49.3	36.4	22.4	96.6	14.8	21.5	52.7	83.2	65.2	40.4	21.1	50.6	18.5	40.3	26.1
Mg	118	101.0	32.2	24.8	19.9	18.6	15.2	39.7	12.1	13.8	19.8	40.0	19.7	30.8	20.1	16.0	14.3	30.7	20.8
Na	187	147	4.82	1.86	34.3	28.4	101.0	13.9	99.5	62.5	21.40	13.6	3.74	62.0	95.8	4.2	90.30	73.3	61.7
К	124.0	112.0	5.32	1.19	5.88	3.75	7.34	3.74	4.36	7.48	3.02	4.82	3.30	4.40	6.18	3.10	5.44	9.01	6.16
CI	240	250	2.00	2.00	1.00	1.00	7.00	1.00	9.00	5.00	1.00	4.00	1.00	4.00	3.00	1.00	2.00	1.00	1.00
SO4	110	99	91.0	160.0	87.0	2.0	200	64.0	2.00	89.0	32.0	33.0	18.0	70.0	210	18.0	200.0	290	83
ALK	928	1020	282	257	197	231	151	402	389	165	234	345	240	303	206	184	118	148	263
рН	8.14	7.77	7.95	8.17	8.45	8.14	8.30	8.07	8.41	8.09	8.44	8.23	8.02	8.19	8.40	8.00	8.30	8.27	8.37
Ion Balance I	Data and Pipe	r Plot (%)																	
Cations:	28.35	25.85	7.73	8.64	5.74	4.68	6.95	8.79	6.17	5.12	5.27	8.16	5.12	7.36	7.03	4.10	6.17	7.96	5.86
Anions:	27.60	29.50	7.59	8.52	5.77	4.68	7.38	9.39	8.07	5.29	5.37	7.69	5.20	7.62	8.57	4.08	6.58	9.02	7.01
CBE (%):	1.34	-6.58	0.92	0.68	-0.29	-0.07	-2.98	-3.33	-13.29	-1.65	-0.94	2.94	-0.74	-1.76	-9.86	0.30	-3.21	-6.27	-8.97
Mg:	34.2	32.1	34.3	23.6	28.5	32.7	18.0	37.2	16.1	22.2	30.9	40.3	31.7	34.4	23.5	32.1	19.1	31.8	29.2
Ca:	25.9	32.0	61.2	75.1	42.9	38.8	16.1	54.9	12.0	21.0	49.9	50.9	63.5	27.4	15.0	61.5	15.0	25.3	22.2
Na+K:	39.9	35.8	4.5	1.3	28.6	28.5	65.9	8.0	71.9	56.9	19.1	8.8	4.8	38.2	61.5	6.4	66.0	43.0	48.5
CI:	24.5	23.9	0.7	0.7	0.5	0.6	2.7	0.3	3.1	2.7	0.5	1.5	0.5	1.5	1.0	0.7	0.9	0.3	0.4
SO4:	8.3	7.0	25.0	39.1	31.4	0.9	56.4	14.2	0.5	35.0	12.4	8.9	7.2	19.1	51.0	9.2	63.3	66.9	24.7
HCO3+CO3:	67.2	69.1	74.3	60.2	68.1	98.5	40.9	85.5	96.3	62.3	87.1	89.6	92.2	79.4	48.0	90.1	35.8	32.8	74.9

Groundwater Ionic Balance and Piper Plot Data - October 2023

Raw Data (mg/L)	OW-1R-I	OW-1R-III	OW-10-I	OW-10-II	OW-10-III	OW-25-I	OW-25-II	OW-25-III	OW-25-IV	OW-16-I	OW-16-II	OW-24-I	OW-24-II	OW-17-I	OW-17-II	OW-30-I	OW-30-II	OW-30-III	OW-31-I	OW-31-II
Са	164	182	110	138	54.8	39.8	22.2	151.0	13.3	14.6	21.1	89.0	92.5	74.5	83.9	26.0	23.8	55.7	48.3	18.2
Mg	120	107.0	37.8	24.3	22.2	20.8	16.1	61.5	7.15	13.0	14.1	25.2	45.5	21.9	47.2	31.5	22.0	17.6	33.7	15.3
Na	192	169	4.98	2.32	39.3	33.0	112.0	18.5	76.3	113.0	69.2	8.7	15.7	4.36	64.4	97.4	75.3	4.8	79.6	103.0
к	131.0	117.0	6.07	1.03	6.24	4.13	7.96	5.86	2.95	4.82	7.90	2.18	5.70	3.58	4.98	9.47	6.95	3.28	9.83	5.77
CI	240	250	2.00	2.00	1.00	1.00	7.00	1.00	9.00	9.00	5.00	1.00	3.00	1.00	4.00	3.00	1.00	1.00	1.00	3.00
SO4	100	94	100	110	84.0	2.00	180	49.0	17.0	2.00	81.0	23.0	34.0	17.0	66.0	140	96	17.0	280	180
ALK	1090	1030	285	288	204	233	155	347	181	325	169	258	358	239	281	232	226	185	135	121
рН	7.84	7.89	8.11	8.00	8.21	8.22	8.12	8.13	8.27	8.23	8.17	8.09	8.06	8.15	8.21	8.29	8.26	7.95	7.99	8.03
Ion Balance [Data and Pipe	er Plot (%)																		
Cations:	29.76	28.23	8.97	9.01	6.43	5.24	7.51	13.55	4.65	6.84	5.43	6.95	9.19	5.80	11.00	8.37	6.45	4.52	8.90	6.80
Anions:	30.63	29.59	7.83	8.10	5.85	4.72	7.04	7.98	4.22	6.79	5.20	5.66	7.95	5.16	7.10	7.63	6.54	4.08	8.55	6.25
CBE (%):	-1.44	-2.35	6.78	5.33	4.71	5.17	3.21	25.87	4.78	0.36	2.09	10.21	7.26	5.88	21.54	4.59	-0.69	5.13	1.96	4.19
Mg:	33.2	31.2	34.7	22.2	28.4	32.7	17.6	37.3	12.7	15.6	21.4	29.8	40.7	31.1	35.3	31.0	28.1	32.0	31.2	18.5
Ca:	27.5	32.2	61.2	76.4	42.5	37.9	14.8	55.6	14.3	10.7	19.4	63.9	50.2	64.1	38.1	15.5	18.4	61.5	27.1	13.4
Na+K:	39.3	36.6	4.1	1.4	29.1	29.4	67.6	7.0	73.1	73.7	59.2	6.2	9.0	4.8	26.6	53.5	53.5	6.4	41.7	68.1
CI:	22.1	23.8	0.7	0.7	0.5	0.6	2.8	0.4	6.0	3.7	2.7	0.5	1.1	0.5	1.6	1.1	0.4	0.7	0.3	1.4
SO4:	6.8	6.6	26.6	28.3	29.9	0.9	53.2	12.8	8.4	0.6	32.4	8.5	8.9	6.9	19.4	38.2	30.6	8.7	68.1	60.0
HCO3+CO3:	71.1	69.6	72.7	71.0	69.6	98.5	44.0	86.9	85.6	95.6	64.9	91.0	90.0	92.6	79.1	60.7	69.0	90.6	31.5	38.7

Residential Groundwater Ionic Balance and Piper Plot Data - June 2023

Raw Data (mg/L)	OW-1R-I	OW-1R-III	OW-10-I	OW-10-II	OW-10-III	WS-7	WS-8	WS-9	WS-13	WS-14	WS-16
Ca	155	176	110	127	54.5	100.0	87.8	0.42	84.1	73.8	84.70
Mg	108	66.1	33.9	22.0	19.3	34.1	32.6	0.3	25.3	32.1	32.9
Na	181	96	4.67	1.96	0.0	17.4	8.64	162.00	5.11	9.6	6.65
К	127	79	5.67	1.09	6.03	2.07	2.37	0.21	1.14	3.30	2.32
CI	280	99	4.00	1.00	1.00	31.0	24.0	10.00	6.00	1.00	2
SO4	98	91	110	110	81.0	28.0	30.0	84.0	19.0	11.0	15
ALK	975	797	275	274	201	361	314	285	301	322	342
рН	7.84	7.85	8.13	8.09	8.14	8.04	8.07	8.12	7.96	8.07	7.98
Ion Balance Data	and Piper Plot (%)									
Cations:	27.74	20.42	8.63	8.26	4.46	8.61	7.50	7.09	6.53	6.82	7.28
Anions:	29.42	20.61	7.90	7.79	5.73	8.67	7.6	7.72	6.58	6.69	7.20
CBE (%):	-2.93	-0.47	4.42	2.92	-12.44	-0.37	-0.50	-4.25	-0.37	0.99	0.56
Mg:	32.0	26.6	32.3	21.9	35.6	32.6	35.8	0.3	31.9	38.7	37.2
Ca:	27.9	43.0	63.6	76.7	60.9	58.0	58.4	0.3	64.3	54.0	58.0
Na+K:	40.1	30.4	4.0	1.4	3.5	9.4	5.8	99.4	3.9	7.3	4.8
CI:	26.8	13.5	1.4	0.4	0.5	10.1	8.9	3.7	2.6	0.4	0.8
SO4:	6.9	9.2	29.0	29.4	29.4	6.7	8.2	22.6	6.0	3.4	4.3
HCO3+CO3:	66.2	77.3	69.6	70.2	70.1	83.2	82.8	73.7	91.4	96.2	94.9

Appendix L

Guideline B-7 Calculations

Guideline B-7 Spring 2023 Monitoring Event Shallow Aquifer

	Reasonable Use Calcu	ulation (Guideline B-7)		Trigg	ger Level Calculation	1	Downgradient Well Concentrations
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m=C_b+x(C_r-C_b)$ (mg/L)	80% of Reasonable Concentration (mg/L)	Max Background Concentration Cmb (mg/L)	Trigger Concentration Tc=Max(0.8*Cm, Cmb) ⁶ (mg/L)	OW-25-III (mg/L)
Health Related			x=0.25 (2)				
Arsenic	0.01	0.0011	0.003	Not Applica	ble - Not a trigger par	ameter	0.0009
Barium	1	0.024	0.268	Not Applica	ble - Not a trigger par	ameter	0.0597
Boron	5	0.078	1.31	1.05	0.350	1.05	0.0220
Cadmium	0.005	0.0005	0.0016	Not Applica	ble - Not a trigger par	ameter	< 0.000003
Chromium	0.05	0.0012	0.013	Not Applica	ble - Not a trigger par	ameter	0.00009
Fluoride	1.5	0.0934	0.445	0.356	0.350	0.356	<u>1.06</u>
Lead	0.01	0.0005	0.003	Not Applica	ble - Not a trigger par	ameter	< 0.00009
Nitrate-N	10	0.052	2.54	Not Applica	ble - Not a trigger par	ameter	< 0.06
Nitrite-N	1	0.046	0.28	Not Applica	ble - Not a trigger par	ameter	< 0.03
Non-Health Related			x=0.50 (2)				
Alkalinity (High)	500	269	384	307	338	338	<u>348</u>
Hardness (High)	100	389	389 (4)	311	520	520	427
Chloride	250	2.24	126	101	6.43	101	<1
Copper	1	0.0014	0.50	Not Applica	ble - Not a trigger par	ameter	0.0007
DOC	5	2.11	3.56	Not Applica	ble - Not a trigger par	ameter	2.0
Manganese	0.05	0.0070	0.029	0.023	0.149	0.149	0.113
Sodium	200	3.08	101.5	81	5.9	81	15.3
Sulphate	500	132	316	Not Applicable - Not a trigger parameter			65.0
TDS	500	456	478	402	602	602	471
Zinc	5	0.004	2.50	Not Applicable - Not a trigger parameter		ameter	< 0.002

- (1) Average of ten valid sampling rounds at OW10-I and OW-10-II.
 (2) Defined according to Guideline B-7 (MECP, 1994).
 (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
 (4) Background exceeds the ODWS, therefore the maximum concentration has been set at background.
 (5) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (6) <u>Underlined</u> and shaded indicates an exceedances of the Trigger Concentration.

Guideline B-7 Spring 2023 Monitoring Event Moderate Depth Aquifer

	Reasonable Use Calcu	ulation (Guideline B-7)	Tr	rigger Level Calculation	on			Downgradient We	ell Concentrations		
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m=C_b+x(C_r-C_b)$ (mg/L)	80% of Reasonable Concentration (mg/L)	Max Background Concentration Cmb (mg/L)	Trigger Concentration Tc=Max(0.8*Cm, Cmb) ⁶ (mg/L)	OW-25-II (mg/L)	OW-16-II (mg/L)	OW-24-II (mg/L)	OW-17-II (mg/L)	OW-30-II (mg/L)	OW-31-I (mg/L)
Health Related			x=0.25 (2)									
Arsenic	0.01	0.0011	0.003	Not App	Not Applicable - Not a trigger parameter			0.0011	< 0.0002	0.0007	0.0006	0.0003
Barium	1	0.024	0.268	Not App	licable - Not a trigger p	arameter	0.0250	0.0301	0.0489	0.0469	0.0312	0.0318
Boron	5	0.078	1.31	1.05				0.198	0.037	0.134	0.089	0.167
Cadmium	0.005	0.0005	0.0016	Not Applicable - Not a trigger parameter			0.000017	0.000015	0.000003	0.000009	0.000012	0.000006
Chromium	0.05	0.0012	0.013	Not Applicable - Not a trigger parameter			0.00036	0.00036	0.00009	0.00056	0.00017	0.00038
Fluoride	1.5	0.0934	0.445	0.356 0.350 0.356			<u>1.10</u>	1.00	0.790	1.28	0.530	0.710
Lead	0.01	0.0005	0.003	Not App	licable - Not a trigger p	arameter	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Nitrate-N	10	0.052	2.54	Not App	licable - Not a trigger p	arameter	0.12	0.09	0.13	0.07	0.09	0.44
Nitrite-N	1	0.046	0.28	Not App	licable - Not a trigger p	arameter	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Non-Health Related			x=0.50 (2)									
Alkalinity (High)	500	269	384	307	338	338	150	166	<u>348</u>	280	224	134
Hardness (High)	100	389	389 (4)	311	520	520	126	119	379	266	169	240
Chloride	250	2.24	126	101	6.43	101	6.0	5.0	3.0	4.0	1.0	2.0
Copper	1	0.0014	0.50	Not App	licable - Not a trigger p	arameter	0.001	0.0024	0.0007	0.0009	0.0017	0.0018
DOC	5	2.11	3.56	Not App	licable - Not a trigger p	arameter	1.0	2.0	2.0	1.0	2.0	1.0
Manganese	0.05	0.007	0.029	0.023	0.149	0.149	0.0009	0.0011	0.031	0.0039	0.0056	0.0020
Sodium	200	3.08	102	81	5.9	81	<u>103</u>	69.9	15.7	58.8	50.6	76.4
Sulphate	500	132	316	Not Applicable - Not a trigger parameter			200	82.0	37.0	72.0	55.0	280
TDS	500	456	478	382 602 602		466	286	474	426	317	534	
Zinc	5	0.004	2.50	Not Applicable - Not a trigger parameter		0.0030	< 0.002	0.003	< 0.002	< 0.002	< 0.002	

- (1) Average of ten valid sampling rounds at OW10-I and OW-10-II.
 (2) Defined according to Guideline B-7 (MECP, 1994).
- (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
- (4) Background exceeds the ODWS, therefore the maximum concentration has been set at background.
- (5) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (6) <u>Underlined</u> and shaded indicates an exceedances of the Trigger Concentration.

Guideline B-7 Spring 2023 Monitoring Event Deep Aquifer

	Reasonable Use Calcu	ulation (Guideline B-7)	T	rigger Level Calculation	on			Downgrad	ient Well Cond	centrations			
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m = C_b + x(C_r - C_b)$ (mg/L)	80% of Reasonable Concentration (mg/L)	Max Background Concentration Cmb (mg/L)	Trigger Concentration Tc=Max(0.8*Cm, Cmb) ⁶ (mg/L)	OW-25-I ⁽⁵⁾ (mg/L)	OW-16-I ⁽⁵⁾ (mg/L)	OW-24-I ⁽⁵⁾ (mg/L)	OW-17-I (mg/L)	OW-23-II (mg/L)	OW-30-I ⁽⁵⁾ (mg/L)	OW-30-III ⁽⁵⁾ (mg/L)	OW-31-II ⁽⁵⁾ (mg/L)
Health Related			x=0.25 (2)			<u> </u>		•	•				•	
Arsenic	0.01	0.0008	0.003	Not App	licable - Not a trigger p	arameter	0.0002	0.0004	0.0003	0.0003	0.0006	0.0005	< 0.0002	0.0006
Barium	1	0.024	0.268	Not App	licable - Not a trigger pa	arameter	0.0395	0.0421	0.0280	0.0305	0.0324	0.0290	0.0710	0.0446
Boron	5	0.235	1.43	1.14	0.364	1.14	0.140	0.400	0.037	0.037	0.300	0.451	0.025	0.181
Cadmium	0.005	0.0002	0.0014	Not App	Not Applicable - Not a trigger parameter			< 0.000003	< 0.000003	< 0.000003	0.000017	0.000015	< 0.000003	0.000006
Chromium	0.05	0.0010	0.013	Not App	Not Applicable - Not a trigger parameter			0.00048	0.00017	0.00012	0.0004	0.00015	0.00014	0.00195
Fluoride	1.5	0.5158	0.762	0.609	0.609 0.750 0.750			1.59	0.350	0.350	1.24	1.49	0.220	1.19
Lead	0.01	0.0003	0.003	Not App	licable - Not a trigger p	arameter	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00035
Nitrate-N	10	0.029	2.5	Not App	licable - Not a trigger p	arameter	< 0.06	< 0.06	< 0.06	< 0.06	0.13	0.06	< 0.06	< 0.06
Nitrite-N	1	0.023	0.27	Not App	licable - Not a trigger p	arameter	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Non-Health Related			x=0.50 (2)											
Alkalinity (High)	500	205	353	282	237	282	232	<u>307</u>	233	236	219	180	182	130
Hardness (High)	100	201	201 (4)	161	227	227	173	91	248	<u>263</u>	147	146	200	138
Chloride	250	0.809	125	100	1.10	100	< 1	7.0	< 1	< 1	13	3.0	< 1	2.0
Copper	1	0.0012	0.50	Not App	licable - Not a trigger p	arameter	0.0005	0.0009	0.0007	0.0009	0.0015	0.0009	0.0004	0.0034
DOC	5	1.29	3.15	Not App	licable - Not a trigger p	arameter	4.0	10	2.0	3.0	3.0	2.0	3.0	3.0
Manganese	0.05	0.029	0.039	0.031	0.111	0.111	0.0113	0.0177	0.0318	0.0371	0.0012	0.0018	0.0634	0.0367
Organic Nitrogen	0.15	0.111	0.131	0.105	0.350	0.350	0.150	0.250	< 0.05	< 0.05	< 0.05	< 0.05	0.130	0.190
Sodium	200	35.1	118	94	36.7	94	31.9	104	8.07	4.12	86.2	<u>107</u>	4.72	93.2
Sulphate	500	82.6	291	Not Applicable - Not a trigger parameter			3.0	< 2	24.0	18.0	90.0	180	19.0	200
TDS	500	304	402	321 340 340		263	400	309	297	383	<u>491</u>	229	414	
Zinc	5	0.003	3	Not Applicable - Not a trigger parameter			< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.004

- (1) Average of ten valid sampling rounds at OW-10-III.
- (2) Defined according to Guideline B-7 (MECP, 1994).
- (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
- (4) Background exceeds the ODWS, therefore the maximum concentration has been set at background.
- (5) Downgradient property boundary well (i.e., compliance point).
- (6) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (6) <u>Underlined</u> and shaded indicates an exceedances of the Trigger Concentration.

Guideline B-7 Summer 2023 Monitoring Event Shallow Aquifer

	Reasonable Use Calcu	ulation (Guideline B-7)	Т	rigger Level Calculatio	on	Downgradient Well Concentrations		
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m = C_b + x(C_r - C_b)$ (mg/L)	80% of Reasonable Concentration (mg/L)	Max Background Concentration Cmb (mg/L)	Trigger Concentration Tc=Max (0.8*Cm, Cmb) ⁶ (mg/L)	OW-25-III (mg/L)		
Health Related			x=0.25 (2)						
Arsenic	0.01	0.0010	0.003	Not Applicable - Not a trigger parameter		arameter	0.0023		
Barium	1	0.024	0.268	Not App	licable - Not a trigger pa	arameter	0.0744		
Boron	5	0.078	1.31	1.05 0.350 1.05		1.05	0.021		
Cadmium	0.005	0.0004	0.0015	Not Applicable - Not a trigger parameter		arameter	< 0.000003		
Chromium	0.05	0.0011	0.013	Not Applicable - Not a trigger parameter		arameter	0.00026		
Fluoride	1.5	0.0970	0.448	0.358	0.350	0.358	1.06		
Lead	0.01	0.0004	0.003	Not App	licable - Not a trigger pa	arameter	< 0.00009		
Nitrate-N	10	0.051	2.54	Not App	licable - Not a trigger pa	arameter	< 0.06		
Nitrite-N	1	0.045	0.28	Not App	licable - Not a trigger pa	arameter	< 0.03		
Non-Health Related			x=0.50 (2)						
Alkalinity (High)	500	269	385	308	338	338	<u>402</u>		
Hardness (High)	100	388	388 ⁽⁴⁾	311	520	520	405		
Chloride	250	2.22	126	101	6.43	101	<1		
Copper	1	0.0014	0.50	Not App	licable - Not a trigger pa	arameter	0.0004		
DOC	5	2.09	3.55	Not App	licable - Not a trigger pa	arameter	1.20		
Manganese	0.05	0.007	0.029	0.023	0.149	0.149	0.092		
Sodium	200	3.08	101.5	81	5.9	81	13.9		
Sulphate	500	130	315	Not Applicable - Not a trigger parameter		arameter	64		
TDS	500	457	478	383	602	602	480		
Zinc	5	0.003	2.50	Not Applicable - Not a trigger parameter		arameter	< 0.000007		

Notes:

- (1) Average of ten valid sampling rounds at OW10-I and OW-10-II.
 (2) Defined according to Guideline B-7 (MECP, 1994).
 (3) ODWS Ontario Drinking Water Standards (MECP, 2001).

- (4) Background exceeds the ODWS, therefore the maximum concentration has been set at background.(5) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (6) <u>Underlined</u> and shaded indicates an exceedances of the Trigger Concentration.

Guideline B-7 Summer 2023 Monitoring Event Moderate Depth Aquifer

Reasonable Use Calculation (Guideline B-7) Trigger Level Calculation				ion	Downgradient Well Concentrations							
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m = C_b + x(C_r - C_b)$ (mg/L)	80% of Reasonable Concentration (mg/L)	Max Background Concentration Cmb (mg/L)	Trigger Concentration Tc=Max(0.8*Cm, Cmb) ⁶ (mg/L)	OW-25-II (mg/L)	OW-16-II (mg/L)	OW-24-II (mg/L)	OW-17-II (mg/L)	OW-30-II (mg/L)	OW-31-I (mg/L)
Health Related			x=0.25 (2)									
Arsenic	0.01	0.0010	0.003	Not App	licable - Not a trigger p	arameter	0.0026	0.0012	< 0.0002	0.0006	< 0.0002	0.0003
Barium	1	0.024	0.268	Not App	licable - Not a trigger p	arameter	0.0226	0.0310	0.0460	0.0455	0.0646	0.0346
Boron	5	0.078	1.31	1.05	0.350	1.05	0.189	0.194	0.036	0.122	0.031	0.189
Cadmium	0.005	0.0004	0.0015	Not App	licable - Not a trigger p	arameter	0.000023	0.000014	0.000005	0.000006	< 0.000003	0.000011
Chromium	0.05	0.0011	0.013	Not App	Not Applicable - Not a trigger parameter		0.00047	0.000520	0.00010	0.00055	0.00040	0.00033
Fluoride	1.5	0.0970	0.448	0.358	0.350	0.358	<u>1.18</u>	1.02	0.730	1.27	0.240	0.760
Lead	0.01	0.0004	0.003	Not App	licable - Not a trigger p	arameter	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Nitrate-N	10	0.051	2.54	Not App	licable - Not a trigger p	arameter	0.14	0.15	0.06	0.06	< 0.06	0.40
Nitrite-N	1	0.045	0.28	Not App	licable - Not a trigger p	arameter	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Non-Health Related			x=0.50 (2)									
Alkalinity (High)	500	269	385	308	338	338	151	165	<u>345</u>	303	184	148
Hardness (High)	100	388	388 (4)	311	520	520	119	110	372	228	192	227
Chloride	250	2.22	126	101	6.43	101	7.0	5.0	4.0	4.0	< 1	< 1
Copper	1	0.0014	0.50	Not App	licable - Not a trigger p	arameter	0.0013	0.0017	0.0017	0.0014	0.0007	0.0023
DOC	5	2.09	3.55	Not App	licable - Not a trigger p	arameter	1.40	4.60	1.20	1.50	2.40	1.30
Manganese	0.05	0.007	0.029	0.023	0.149	0.149	0.00028	0.00017	0.034	0.0020	0.07860	0.002
Sodium	200	3.08	102	81	5.9	81	<u>101</u>	62.5	13.6	62.0	4.2	73.3
Sulphate	500	130	315	Not App	licable - Not a trigger p	arameter	200	89	33	70	18	290
TDS	500	457	478	383	602	602	477	317	434	414	217	529
Zinc	5	0.003	2.50	Not App	licable - Not a trigger p	arameter	0.0020	0.003	0.004	< 0.002	0.002	0.003

- (1) Average of ten valid sampling rounds at OW10-I and OW-10-II.
 (2) Defined according to Guideline B-7 (MECP, 1994).
- (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
- (4) Background exceeds the ODWS, therefore the maximum concentration has been set at background.
- (5) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (6) <u>Underlined</u> and shaded indicates an exceedances of the Trigger Concentration.

Guideline B-7 Summer 2023 Monitoring Event Deep Aquifer

Reasonable Use Calculation (Guideline B-7) Trigge				rigger Level Calculation	on	Downgradient Well Concentrations								
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m=C_b+x(C_r-C_b)$ (mg/L)	80% of Reasonable Concentration (mg/L)	Max Background Concentration Cmb (mg/L)	Trigger Concentration Tc=Max(0.8*Cm, Cmb) ⁶ (mg/L)	OW-25-I ⁽⁵⁾ (mg/L)	OW-16-I ⁽⁵⁾ (mg/L)	OW-24-I ⁽⁵⁾ (mg/L)	OW-17-I (mg/L)	OW-23-II (mg/L)	OW-30-I ⁽⁵⁾ (mg/L)	OW-30-III ⁽⁵⁾ (mg/L)	OW-31-II ⁽⁵⁾ (mg/L)
Health Related			x=0.25 (2)			•		•						
Arsenic	0.01	0.0007	0.003	Not App	licable - Not a trigger p	arameter	< 0.0002	0.0004	0.0005	0.0008	0.0005	0.0004	0.001	0.0006
Barium	1	0.023	0.268	Not App	licable - Not a trigger p	arameter	0.0384	0.0424	0.0375	0.0296	0.0294	0.0307	0.0392	0.0306
Boron	5	0.232	1.42	1.14	0.364	1.14	0.125	0.411	0.075	0.032	0.336	0.430	0.195	0.138
Cadmium	0.005	0.0002	0.0014	Not App	Not Applicable - Not a trigger parameter		< 0.000003	0.000009	< 0.000003	0.000004	0.000018	0.000027	0.000008	0.000009
Chromium	0.05	0.0010	0.013	Not App	Not Applicable - Not a trigger parameter		0.00024	0.00053	0.00029	0.00032	0.00059	0.00032	0.00035	0.00038
Fluoride	1.5	0.508	0.756	0.605	0.750	0.750	0.670	1.55	0.570	0.360	1.32	1.54	1.22	0.340
Lead	0.01	0.0003	0.003	Not App	Not Applicable - Not a trigger parameter		< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Nitrate-N	10	0.029	2.5	Not App	licable - Not a trigger p	arameter	< 0.06	< 0.06	< 0.06	< 0.06	0.10	< 0.06	< 0.06	< 0.06
Nitrite-N	1	0.022	0.27	Not App	licable - Not a trigger p	arameter	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Non-Health Related			x=0.50 (2)											
Alkalinity (High)	500	204	352	281	237	281	231	389	234	240	217	206	118	263
Hardness (High)	100	201	201 (4)	161	227	227	168	86.7	213	<u>244</u>	131	135	105	151
Chloride	250	0.771	125	100	1.10	100	< 1	9	< 1	< 1	12	3	2	1
Copper	1	0.0012	0.50	Not App	licable - Not a trigger p	arameter	0.0006	0.0003	0.0004	0.0009	0.0013	0.0011	0.0018	0.001
DOC	5	1.25	3.12	Not App	licable - Not a trigger p	arameter	2.7	9.8	9.6	2.7	1.8	1.5	2.1	1.9
Manganese	0.05	0.028	0.039	0.031	0.111	0.111	0.0120	0.0188	0.0662	0.0414	0.0003	0.0034	0.0049	0.0020
Organic Nitrogen	0.15	0.102	0.126	0.101	0.350	0.350	0.300	0.370	< 0.05	0.120	0.130	< 0.05	0.130	0.100
Sodium	200	35	117	94	37	94	28	<u>100</u>	21.4	3.74	80.7	95.8	90.3	62
Sulphate	500	82.9	291	Not App	licable - Not a trigger p	arameter	< 2	< 2	32	18	82	210	200	83
TDS	500	305	402	322	340	340	232	<u>461</u>	309	266	<u>380</u>	<u>491</u>	429	<u>409</u>
Zinc	5	0.003	3	Not App	licable - Not a trigger p	arameter	< 0.002	< 0.002	< 0.002	0.002	< 0.002	< 0.002	< 0.002	< 0.002

- (1) Average of ten valid sampling rounds at OW-10-III.
- (2) Defined according to Guideline B-7 (MECP, 1994).
- (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
- (4) Background exceeds the ODWS, therefore the maximum concentration has been set at background.
- (5) Downgradient property boundary well (i.e., compliance point).
- (6) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (7) <u>Underlined</u> and shaded indicates an exceedances of the Trigger Concentration.

Guideline B-7 Fall 2023 Monitoring Event Shallow Aquifer

ı	Reasonable Use Calcu	ulation (Guideline B-7)	Т	rigger Level Calculation	on	Downgradient Well Concentrations
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m=C_b+x(C_c-C_b)$ (mg/L)	80% of Reasonable Concentration (mg/L)	Max Background Concentration Cmb (mg/L)	Trigger Concentration Tc=Max(0.8*Cm, Cmb) ⁶ (mg/L)	OW-25-III (mg/L)
Health Related			x=0.25 (2)				
Arsenic	0.01	0.0009	0.003	Not App	licable - Not a trigger p	arameter	0.0014
Barium	1	0.025	0.268	Not App	licable - Not a trigger p	arameter	0.0804
Boron	5	0.079	1.31	1.05	0.350	1.05	0.037
Cadmium	0.005	0.0003	0.0015	Not App	licable - Not a trigger p	arameter	0.000045
Chromium	0.05	0.0010	0.013	Not App	Not Applicable - Not a trigger parameter		0.00535
Fluoride	1.5	0.0979	0.448	0.359	0.390	0.390	<u>0.950</u>
Lead	0.01	0.0004	0.003	Not App	licable - Not a trigger p	arameter	0.00261
Nitrate-N	10	0.049	2.54	Not App	licable - Not a trigger p	arameter	< 0.06
Nitrite-N	1	0.041	0.28	Not App	licable - Not a trigger p	arameter	< 0.03
Non-Health Related			x=0.50 (2)				
Alkalinity (High)	500	270	385	308	338	338	<u>347</u>
Hardness (High)	100	387	387 (4)	310	520	520	<u>631</u>
Chloride	250	2.19	126	101	6.43	101	<1
Copper	1	0.0014	0.50	Not App	licable - Not a trigger p	arameter	0.0091
DOC	5	2.08	3.54	Not App	licable - Not a trigger p	arameter	2.00
Manganese	0.05	0.008	0.029	0.023	0.149	0.149	0.238
Sodium	200	3.11	102	81	5.9	81	18.5
Sulphate	500	127	314	Not App	licable - Not a trigger p	arameter	49
TDS	500	453	476	381	602	602	391
Zinc	5	0.003	2.50	Not App	licable - Not a trigger p	arameter	0.010000

- (1) Average of ten valid sampling rounds at OW10-I and OW-10-II.
 (2) Defined according to Guideline B-7 (MECP, 1994).
- (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
- (4) Background exceeds the ODWS, therefore the maximum concentration has been set at background.

 (5) BOLD and shaded indicates an exceedance of the Maximum Concentration.

 (6) Underlined and shaded indicates an exceedances of the Trigger Concentration.

April 2024

Guideline B-7 Fall 2023 Monitoring Event Moderate Depth Aquifer

Reasonable Use Calculation (Guideline B-7)				Ti	rigger Level Calculatio	on	Downgradient Well Concentrations					
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration C _{b (1)} (mg/L)	Maximum Concentration $C_m = C_b + x(C_r - C_b)$ (mg/L)	80% of Reasonable Concentration (mg/L)	Max Background Concentration Cmb (mg/L)	Trigger Concentration Tc=Max(0.8*Cm, Cmb) ⁶ (mg/L)	OW-25-II (mg/L)	OW-16-II (mg/L)	OW-24-II (mg/L)	OW-17-II (mg/L)	OW-30-II (mg/L)	OW-31-I (mg/L)
Health Related			x=0.25 (2)									
Arsenic	0.01	0.0009	0.003	Not App	licable - Not a trigger pa	arameter	0.0020	0.0010	0.0002	0.0010	0.0007	0.0003
Barium	1	0.025	0.268	Not App	licable - Not a trigger pa	arameter	0.0231	0.0300	0.0529	0.0565	0.0252	0.0382
Boron	5	0.079	1.31	1.05	0.350	1.05	0.208	0.199	0.046	0.142	0.175	0.202
Cadmium	0.005	0.0003	0.0015	Not App	Not Applicable - Not a trigger parameter			0.000007	0.000005	0.000027	0.000004	0.000007
Chromium	0.05	0.0010	0.013	Not App	Not Applicable - Not a trigger parameter		0.00024	0.000200	0.00019	0.00423	0.00025	0.00122
Fluoride	1.5	0.0979	0.448	0.359	0.390	0.390	1.19	1.03	0.730	1.24	0.790	0.740
Lead	0.01	0.0004	0.003	Not App	licable - Not a trigger pa	arameter	< 0.00009	< 0.00009	0.00009	0.00179	< 0.00009	0.00028
Nitrate-N	10	0.049	2.54	Not App	licable - Not a trigger pa	arameter	0.16	0.11	0.13	< 0.06	< 0.06	0.40
Nitrite-N	1	0.041	0.28	Not App	licable - Not a trigger pa	arameter	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Non-Health Related			x=0.50 (2)									
Alkalinity (High)	500	270	385	308	338	338	154	170	<u>358</u>	284	205	137
Hardness (High)	100	387	387 (4)	310	520	520	121	103	374	228	152	234
Chloride	250	2.19	126	101	6.43	101	7.0	5.0	3.0	4.0	1.0	< 1
Copper	1	0.0014	0.50	Not App	licable - Not a trigger pa	arameter	0.0034	0.0043	0.0029	0.0049	0.0043	0.0050
DOC	5	2.08	3.54	Not App	licable - Not a trigger pa	arameter	1.00	1.00	2.00	2.00	2.00	1.00
Manganese	0.05	0.008	0.029	0.023	0.149	0.149	0.00125	0.00037	0.043	0.0005	0.00222	0.005
Sodium	200	3.11	102	81	5.9	81	<u>112</u>	69.2	15.7	64.4	75.3	79.6
Sulphate	500	127	314	Not App	Not Applicable - Not a trigger parameter		180	81	34	66	96	280
TDS	500	453	476	381	602	602	420	306	380	397	400	534
Zinc	5	0.003	2.50	Not App	licable - Not a trigger pa	arameter	0.0030	0.004	0.002	0.006	0.004	0.005

- (1) Average of ten valid sampling rounds at OW10-I and OW-10-II.
 (2) Defined according to Guideline B-7 (MECP, 1994).
 (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
 (4) Background exceeds the ODWS, therefore the maximum concentration has been set at background.
- (5) **BOLD and shaded** indicates an exceedance of the Maximum Concentration.
- (6) <u>Underlined</u> and shaded indicates an exceedances of the Trigger Concentration.

Guideline B-7 Fall 2023 Monitoring Event Deep Aquifer

ı	Reasonable Use Calcu	ulation (Guideline B-7))	Ti	rigger Level Calculation	on	Downgradient Well Concentrations								
Parameter	ODWS ⁽³⁾ C _r (mg/L)	Background Concentration $C_{b (1)}$ (mg/L)	Maximum Concentration $C_m = C_b + x(C_r - C_b)$ (mg/L)	80% of Reasonable Concentration (mg/L)	Max Background Concentration Cmb (mg/L)	Trigger Concentration Tc=Max(0.8*Cm, Cmb) ⁶ (mg/L)	OW-25-I ⁽⁵⁾ (mg/L)	OW-25-IV ⁽⁵⁾ (mg/L)	OW-16-I ⁽⁵⁾ (mg/L)	OW-24-I ⁽⁵⁾ (mg/L)	OW-17-I (mg/L)	OW-23-II (mg/L)	OW-30-I ⁽⁵⁾ (mg/L)	OW-30-III ⁽⁵⁾ (mg/L)	OW-31-II ⁽⁵⁾ (mg/L)
Health Related			x=0.25 (2)												
Arsenic	0.01	0.0006	0.003	Not App	licable - Not a trigger p	arameter	< 0.0002	0.0002	0.0003	0.0003	0.0002	0.0005	0.0004	< 0.0002	0.0006
Barium	1	0.023	0.268	Not App	licable - Not a trigger p	arameter	0.0381	0.0138	0.0363	0.0303	0.0315	0.0279	0.0452	0.0521	0.0373
Boron	5	0.235	1.43	1.14	0.364	1.14	0.138	0.339	0.468	0.036	0.030	0.384	0.431	0.026	0.215
Cadmium	0.005	0.0001	0.0013	Not App	licable - Not a trigger p	arameter	< 0.000003	0.000013	0.000003	0.000009	< 0.000003	0.000018	0.000008	0.000003	0.000004
Chromium	0.05	0.0008	0.013	Not App	Not Applicable - Not a trigger parameter		0.00013	0.00009	0.00057	0.00211	0.00136	0.00031	0.00133	0.00012	0.00012
Fluoride	1.5	0.523	0.767	0.614	0.750	0.750	0.650	1.84	1.56	0.300	0.330	1.28	1.26	0.220	1.19
Lead	0.01	0.0002	0.003	Not App	licable - Not a trigger p	arameter	< 0.00009	< 0.00009	< 0.00009	0.00082	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Nitrate-N	10	0.029	2.5	Not App	licable - Not a trigger p	arameter	< 0.06	< 0.06	< 0.06	0.09	< 0.06	0.10	0.11	< 0.06	< 0.06
Nitrite-N	1	0.022	0.27	Not App	licable - Not a trigger p	arameter	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Non-Health Related			x=0.50 (2)												
Alkalinity (High)	500	205	352	282	237	282	233	181	<u>325</u>	258	239	221	232	185	121
Hardness (High)	100	203	203 (4)	162	228	228	185	62.7	90.1	<u>252</u>	<u>276</u>	129	195	211	108
Chloride	250	0.767	125	100	1.10	100	< 1	9	9	< 1	< 1	12	3	< 1	3
Copper	1	0.0012	0.50	Not App	licable - Not a trigger p	arameter	0.0021	0.0016	0.0011	0.0042	0.0013	0.0016	0.0013	0.001	0.0028
DOC	5	1.21	3.10	Not App	licable - Not a trigger p	arameter	3.0	2.0	7.0	2.0	2.0	2.0	2.0	2.0	2.0
Manganese	0.05	0.029	0.039	0.031	0.111	0.111	0.0116	0.0095	0.0153	0.0495	0.0348	0.0046	0.0064	0.0691	0.0087
Organic Nitrogen	0.15	0.105	0.128	0.102	0.350	0.350	0.050	0.200	0.600	< 0.05	0.200	0.380	0.190	0.110	0.110
Sodium	200	35	118	94	39	94	33.0	76.3	<u>113</u>	8.7	4.4	88.5	<u>97.4</u>	4.8	<u>103</u>
Sulphate	500	83.0	291	Not App	licable - Not a trigger p	arameter	< 2	17	< 2	23	17	79	140	17	180
TDS	500	306	403	322	343	343	246	220	<u>393</u>	323	274	<u>349</u>	<u>477</u>	217	429
Zinc	5	0.002	3	Not App	licable - Not a trigger p	arameter	0.002	< 0.002	< 0.002	0.004	< 0.002	0.002	< 0.002	< 0.002	< 0.002

- (1) Average of ten valid sampling rounds at OW-10-III.
- (2) Defined according to Guideline B-7 (MECP, 1994).
- (3) ODWS Ontario Drinking Water Standards (MECP, 2001).
- (4) Background exceeds the ODWS, therefore the maximum concentration has been set at background.
- (5) Downgradient property boundary well (i.e., compliance point).
- (6) BOLD and shaded indicates an exceedance of the Maximum Concentration.
- (7) <u>Underlined</u> and shaded indicates an exceedances of the Trigger Concentration.

Appendix M

Monitoring and Screening Checklist

Appendix D-Monitoring and Screening Checklist General Information and Instructions

General Information: The checklist is to be completed, and submitted with the Monitoring Report.

Instructions: A complete checklist consists of:

- (a) a completed and signed checklist, including any additional pages of information which can be attached as needed to provide further details where indicated.
- (b) completed contact information for the Competent Environmental Practitioner (CEP)
- (c) self-declaration that CEP(s) meet(s) the qualifications as set out below and in Section 1.2 of the Technical Guidance Document.

Definition of Groundwater CEP:

For groundwater, the CEP must have expertise in hydrogeology and meet one of the following:

- (a) the person holds a licence, limited licence or temporary licence under the *Professional Engineers Act*; or
- (b) the person holds a certificate of registration under the *Professional Geoscientists Act, 2000* and is a practicing member, temporary, member or limited member of the Association of Professional Geoscientists of Ontario. O. Reg. 66/08, s. 2...

Definition of Surface water CEP:

A CEP for surface water assessments is a scientist, professional engineer or professional geoscientist as described in (a) and (b) above with demonstrated experience and post-secondary education, either a diploma or degree, in hydrology, aquatic ecology, limnology, aquatic biology, physical geography with specialization in surface water, and/or water resource management.

The type of scientific work that a CEP performs must be consistent with that person's education and experience. If an individual has appropriate training and credentials in both groundwater and surface water and is responsible for both areas of expertise, the CEP may then complete and validate both sections of the checklist.

Monitoring Report and Site Information							
Waste Disposal Site Name	New Liskeard Waste Disposal Site						
Location (e.g. street address, lot, concession)	~3 km west of New Liskeard, Ontario, West ½ of Lot 5, Concession 2, within the City of Temiskaming Shores, in the District of Temiskaming						
GPS Location (taken within the property boundary at front gate/front entry)	596760 Easting and 5262520 Northing, Zone 17						
Municipality	City of Temiskaming Shores						
Client and/or Site Owner	City of Temiskaming Shores						
Monitoring Period (Year)	2023						
This N	Monitoring Report is being submitted under the following:						
Certificate of Approval No.:	A-500-1115044194						
Director's Order No.:							
Provincial Officer's Order No.:							
Other:	C of A No. A571505 (revoked)						

Report Submission Frequency	♠ Annual♠ Other	Specify (Type Here):
The site is:	C	Active Inactive Closed
If closed, specify C of A, control or aut	horizing document closure date:	
Has the nature of the operations at the site changed during this monitoring period?		Yes No
If yes, provide details:	Construction of the landfill expansoperational as of 17 October 2023	sion continued through 2023, and the Site became fu ll y
Have any measurements been taken since the last reporting period that indicate landfill gas volumes have exceeded the MOE limits for subsurface or adjacent buildings? (i. e. exceeded the LEL for methane)		Yes No

Groundwater WDS Verification: Based on all available information about the site and site knowledge, it is my opinion that:								
Sampling and Monitoring Program Status:								
1) The monitoring program continues to effectively characterize site conditions and any groundwater discharges from the site. All monitoring wells are confirmed to be in good condition and are secure:	YesIf no, list exceptions (Type Here):							
2) All groundwater, leachate and WDS gas sampling and monitoring for the monitoring period being reported on was successfully completed as required by Certificate(s) of Approval or other relevant authorizing/control document(s):	Yes● NoNot Applicable	If no, list exceptions below or attach information.						
Groundwater Sampling Location	Description/Explanation for cha (change in name or location, add		Date					
OW-25-IV	Dry during the spring and summe	er monitoring event.	Spring/Summer 2023					
OW-17-III	Dry during the summer and fall m	onitoring event.	Summer/Fall 2023					
OW-23-I; OW-24-III	Noted as damaged during spring 2023; not sampled during all three Spring/Summ/Fall 202							
OW-16-III	Noted as damaged since spring 20 monitoring events.	022; not sampled during all three	Spring/Summ/Fall 2023					

a) Some or all groundwater, leach monitoring requirements have be outside of a ministry C of A, autho b) If yes, the sampling and monito the monitoring period being repo completed in accordance with estalocations, and parameters develop Guidance Document:	en established or defined rizing, or control document. ring identified under 3(a) for rted on was successfully ablished protocols, frequencies,	 Yes No Not Applicable Yes No Not Applicable 	If no, list exceptions below or attach additional information.		
Groundwater Sampling Location	Description/Explanation for cha (change in name or location, add		Date		
Type Here	Type Here		Select Date		
Type Here	Select Date				
Type Here	Type Here		Select Date		
Type Here	Type Here		Select Date		
4) All field work for groundwater investigations was done in accordance with standard operating procedures as established/outlined per the Technical Guidance Document (including internal/external QA/QC requirements) (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):	YesNo	If no, specify (Type Here):			

Sampling	Sampling and Monitoring Program Results/WDS Conditions and Assessment:								
5) The site has an adeque Contaminant Attenue (CAZ) and/or conting place. Design and operation of any adequate to prevent human health impactimpairment of the engage of t	ation Zone lency plan in perational the size and CAZ, are potential ts and	● Yes ○ No	If no, the potential design and operational concerns/ exceptions are as follows (Type Here):						
6) The site meets compl assessment criteria.	liance and	○ Yes	Exceedances of Guideline B-7 were quantified in downgradient monitoring wells, see Section 5.1 of the report for more details						
7) The site continues to anticipated. There h unusual trends/ chan measured leachate a groundwater levels concentrations.	ave been no nges in nd or	YesNo	If no, list exceptions and explain reason for increase/change (Type Here):						
1) Is one or more of the risk reduction practic at the site: (a) There is minimal natural attenuat leachate due to to fan effective wand active leachate collection/treath (b) There is a predict monitoring proges (modeled indicate concentrations proger time for key or (c) The site meets the two conditions (to achieved after 15 longer of site openity). The site has devertable leachate mand stable leachate mand stable leachate mand stable leachate mand ii. Seasonal and alevels and water fluctuations are sunderstood.	reliance on ion of he presence aste liner ate nent; or tive aram in-place tor projected y locations); e following typically 5 years or eration): reloped nound(s) ate plume ntrations; nnual water quality	YesNo	Note which practice(s):	☐ (a) ☐ (b) ☑ (c)					
9) Have trigger values for contingency plans or remedial actions been (where they exist):	rsite	YesNoNot Applicable	Exceedances of the trigger criteria were quantified in downgradient monitoring wells, see Section 5.1 of the repor for more details						

Groundwater CEP Declarati	ion:
defined in Appendix D under Instructi relied on individuals who I believe to b	or a registered professional geoscientist in Ontario with expertise in hydrogeology, as ons. Where additional expertise was needed to evaluate the site monitoring data, I have be experts in the relevant discipline, who have co-signed the compliance monitoring report and who have provided evidence to me of their credentials.
to the site. I have read and followed the Technical Guidance Document (MOE, amended from time to time. I have residentified in this checklist. Except as obeen undertaken by a laboratory which	cate of Approval and any other environmental authorizing or control documents that apply the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water 2010, or as amended), and associated monitoring and sampling guidance documents, as viewed all of the data collected for the above-referenced site for the monitoring period(s) otherwise agreed with the ministry for certain parameters, all of the analytical work has ch is accredited for the parameters analysed to ISO/IEC 17025:2005 (E)- General ting and calibration laboratories, or as amended from time to time by the ministry.
opinion that these exceptions and con Where this is not the case, the circums	s have been noted in the questions in the checklist attached to this declaration, it is my ocerns are minor in nature and will be rectified for the next monitoring/reporting period. tances concerning the exception or potential concern and my client's proposed action have nistry of the Environment District Manager in a letter from me dated:
Recommendations:	
Based on my technical review of the m	onitoring results for the waste disposal site:
No changes to the monitoring program are recommended	
The following change(s) to the monitoring program is/are recommended:	
No Changes to site design and operation are recommended	Type Here
The following change(s) to the site design and operation is/ are recommended:	туре пете

Name:	Larry Rodricks	Larry Rodricks							
Seal:	Add Image								
Signature:	Yang Roches	Date:	March 15, 2024						
CEP Contact Information:	Larry Rodricks, P.Eng.								
Company:	WSP Canada Inc.								
Address:	900 Maple Grove Road, Unit 10 Cambridge, Ontario N3H 4R7								
Telephone No.:	(519) 650-7108	Fax No. :							
E-mail Address:	larry.rodricks@wsp.com								
Co-signers for additional expertise provided:									
Signature:		Date:	Select Date						
Signature:		Date:	Select Date						

Surface Water WDS Verification:			
Provide the name of surface water waterbody (including the nearest sur			proximate distance to the
Name (s)	South Wabi Creek Unnamed Tributary to the Wabi River Wabi River		
Distance(s)	~1 km west of Site Headwaters near northeast corne ~1.5 km northeast of Site	er of CAZ	
Based on all available information an	d site knowledge, it is my opinio	n that:	
S	ampling and Monitorin	g Program Status:	
1) The current surface water monitoring program continues to effectively characterize the surface water conditions, and includes data that relates upstream/background and downstream receiving water conditions:	YesNo	If no, identify issues (Type Here):	
2) All surface water sampling for the monitoring period being reported was successfully completed in accordance with the Certificate(s) of Approval or relevant authorizing/control document(s) (if applicable):	 Yes No Not applicable (No C of A, authorizing / control document applies) 	If no, specify below or provide det	tails in an attachment.
Surface Water Sampling Location		lanation for change tion, additions, deletions)	Date
SW-3	Dry during the spring monitoring	g event	Spring 2023
			Select Date

3) a) Some or all surface water sampling and monitoring program requirements for the monitoring period have been established outside of a ministry C of A or authorizing/control document.		YesNoNot Applicable	
b) If yes, all surface water samplir under 3 (a) was successfully comp established program from the site frequencies, locations and param Technical Guidance Document:	oleted in accordance with the e, including sampling protocols,	YesNoNot Applicable	If no, specify below or provide details in an attachment.
Surface Water Sampling Location		anation for change ion, additions, deletions)	Date
SW3	Dry during the spring monitoring event.		Spring 2023
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
4) All field work for surface water investigations was done in accordance with standard operating procedures, including internal/external QA/QC requirements, as established/outlined as per the Technical Guidance Document, MOE 2010, or as amended. (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):		If no, specify (Type Here):	

Sampling and Monitoring Program Results/WDS Conditions and Assessment:			
5) The receiving water body meets s i.e., there are no exceedances of c Management Policies, Guidelines criteria (e.g., CWQGs, APVs), as no (Section 4.6):	riteria, based on MOE legislatior and Provincial Water Quality Ob	n, regulations, Water ojectives and other assessment	○ Yes
If no, list parameters that exceed crit provide details in an attachment:	eria outlined above and the amo	unt/percentage of the exceedanc	e as per the table below or
Parameter	Compliance or Assessment Criteria or Background	Amount by which Compliance Background E	
e.g. Nickel	e.g. C of A limit, PWQO, background	e.g. X% above PWQO	
Phenols, Iron	PWQO, CWQG	See Section 4.5 and 5.2 of the Rep	ort for details.
Total Phosphorus	PWQO		
Chloride	APV, CWQG		
Copper	PWQO, APV		
6) In my opinion, any exceedances listed in Question 5 are the result of non-WDS related influences (such as background, road salting, sampling site conditions)?	YesNo	Background conditions	

7)	All monitoring program surface water parameter concentrations fall within a stable or decreasing trend. The site is not characterized by historical ranges of concentrations above assessment and compliance criteria.	• Yes No	If no, list parameters and stations that is outside the expected range. Identify whether parameter concentrations show an increasing trend or are within a high historical range (Type Here)
8)	For the monitoring program parameters, does the water quality in the groundwater zones adjacent to surface water receivers exceed assessment or compliance criteria (e.g., PWQOs, CWQGs, or toxicity values for aquatic biota (APVs)):	YesNoNot KnownNot Applicable	No remedial measures necessary.
9)	Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	YesNoNot Applicable	If yes, list value(s) that are/have been exceeded and follow-up action taken (Type Here)

Surface Water CEP Declaration:			
I, the undersigned hereby declare that I am a Competent Environmental Practitioner as defined in Appendix D unde Instructions, holding the necessary level of experience and education to design surface water monitoring and sampling programs, conduct appropriate surface water investigations and interpret the related data as it pertains to the site for thi monitoring period.			
icate of Approval and any other environmental authorizing or control documents that apply the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water 2010, or as amended) and associated monitoring and sampling guidance documents, as eviewed all of the data collected for the above-referenced site for the monitoring period(s) otherwise agreed with the ministry for certain parameters, all of the analytical work has ch is accredited for the parameters analysed to ISO/IEC 17025:2005 (E)- General sting and calibration laboratories, or as amended from time to time by the ministry.			
ns have been noted in the questions in the checklist attached to this declaration, it is my incerns are minor in nature or will be rectified for future monitoring events. Where this is erning the exception or potential concern and my client's proposed action have been y of the Environment District Manager in a letter from me dated:			
nonitoring results for the waste disposal site:			
Type Here			

CEP Signature	VanyRochia	
Relevant Discipline		
Date:	March 15, 2024	
CEP Contact Information:	Larry Rodricks	
Company:	WSP Canada Inc.	
Address:	900 Maple Grove Road, Unit 10 Cambridge, Ontario N3H 4R7	
Telephone No.:	(519) 650-7108	
Fax No.:		
E-mail Address:	larry.rodricks@wsp.com	
Save As		Print Form

Appendix N

Limitations

Limitations

- 1. The work performed in the preparation of this report and the conclusions presented are subject to the following:
 - a. The Standard Terms and Conditions which form a part of our Professional Services Contract;
 - b. The Scope of Services;
 - c. Time and Budgetary limitations as described in our Contract; and
 - d. The Limitations stated herein.
- 2. No other warranties or representations, either expressed or implied, are made as to the professional services provided under the terms of our Contract, or the conclusions presented.
- 3. The conclusions presented in this report were based, in part, on visual observations of the Site and attendant structures. Our conclusions cannot and are not extended to include those portions of the Site or structures, which are not reasonably available, in WSP's opinion, for direct observation.
- 4. The environmental conditions at the Site were assessed, within the limitations set out above, having due regard for applicable environmental regulations as of the date of the inspection. A review of compliance by past owners or occupants of the Site with any applicable local, provincial or federal bylaws, orders-in-council, legislative enactments and regulations was not performed.
- 5. The Site history research included obtaining information from third parties and employees or agents of the owner. No attempt has been made to verify the accuracy of any information provided, unless specifically noted in our report.
- 6. Where testing was performed, it was carried out in accordance with the terms of our contract providing for testing. Other substances, or different quantities of substances testing for, may be present on-site and may be revealed by different or other testing not provided for in our contract.
- 7. Because of the limitations referred to above, different environmental conditions from those stated in our report may exist. Should such different conditions be encountered, WSP must be notified in order that it may determine if modifications to the conclusions in the report are necessary.
- 8. The utilization of WSP's services during the implementation of any remedial measures will allow WSP to observe compliance with the conclusions and recommendations contained in the report. WSP's involvement will also allow for changes to be made as necessary to suit field conditions as they are encountered.
- 9. This report is for the sole use of the party to whom it is addressed unless expressly stated otherwise in the report or contract. Any use which any third party makes of the report, in whole or the part, or any reliance thereon or decisions made based on any information or conclusions in the report is the sole responsibility of such third party. WSP accepts no responsibility whatsoever for damages or loss of any nature or kind suffered by any such third party as a result of actions taken or not taken or decisions made in reliance on the report or anything set out therein.
- 10. This report is not to be given over to any third party for any purpose whatsoever without the written permission of WSP.
- 11. Provided that the report is still reliable, and less than 12 months old, WSP will issue a third-party reliance letter to parties that the client identifies in writing, upon payment of the then current fee for such letters. All third parties relying on WSP's report, by such reliance agree to be bound by our proposal and WSP's standard reliance letter. WSP's standard reliance letter indicates that in no event shall WSP be liable for any damages, howsoever arising, relating to third-party reliance on WSP's report. No reliance by any party is permitted without such agreement.